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Preface

Nonlinear functional analysis is an important branch of contemporary mathemat-
ics; it has grown from geometry, fluid and elastic mechanics, physics, chemistry,
biology, control theory and economics, etc. It is related to many areas of mathemat-
ics: topology, ordinary differential equations, partial differential equations, groups,
dynamical systems, differential geometry, measure theory, etc.

We mainly present our new results on the three fundamental methods in nonlinear
functional analysis: Variational, Topological and Partial Order Methods with their
Applications. They have been used extensively to solve questions of the existence of
solutions for elliptic equations, wave equations, Schrödinger equations, Hamiltonian
systems, etc. Also they have been used to study the existence of multiple solutions
and the properties of solutions.

Hilbert posed his famous 23 problems on the occasion of his speech at the cen-
tennial assembly of the International Congress 1900 in Paris. Three of these were
related to the calculus of variations. Included are minimization methods, minimax
methods, Morse theory, category, Ljusternik–Schnirelmann theory, etc. in the cal-
culus of variations. We should mention that Ambrosetti and Rabinowitz’s work [11]
in the 1970s is the beginning of the minimax method, making it possible for people
to deal with functionals that are unbounded from below, which come from the study
of nonlinear elliptic equations, Hamiltonian systems, geometry, and mathematical
physics. In the 1930s, Morse developed a theory which set up the relationship be-
tween critical points of a non-degenerate function and the topology of the underlying
compact manifold. In the 1960s Palais [149] and Smale [164] et al. extended Morse
theory to infinite-dimensional manifolds by using the Palais–Smale condition.

Topological methods and partial order methods are basic and important tools in
nonlinear functional analysis too. The Brouwer degree is a powerful tool in alge-
braic topology; the Leray–Schauder degree is an extension of the Brouwer degree
from finite-dimensional spaces to infinite-dimensional Banach spaces, which has
been introduced by Leray and Schauder in the study of nonlinear partial differen-
tial equations in the 1930s. Rabinowitz’s global bifurcation theorem is based on the
computation of the Leray–Schauder degree. In many problems that arise in popu-
lation biology, economics, and the study of infectious diseases, we need to discuss
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vi Preface

the existence of nonnegative solutions with some desired qualitative properties, so
cones are used to develop partial order methods and fixed point index theory. Then
one gets fixed point theorems and applications to many kinds of differential equa-
tion, etc.

In Chap. 1, we present preliminaries: some basic concepts, and useful famous
theorems and results so that the reader may easily find information if need may be.

In Chap. 2, we introduce three kinds of operator: increasing operators, decreasing
operators, and mixed monotone operators. Some fixed point theorems and applica-
tions to integral equations and differential equations are included. One equivalent
condition of the normal cone is given.

In Chap. 3, we present the minimax methods including the Mountain Pass The-
orem, linking methods, local linking methods, and critical groups; next, we treat
some applications to elliptic boundary value problems.

In Chap. 4, we use bifurcation and critical point theory together to study the
structure of the solutions of elliptic equations; also we have results on three sign-
changing solutions.

In Chap. 5, we consider the boundary value problems for a class of Monge–
Ampère equations. First we prove that any solution on the ball is radially symmetric
by the moving plane argument. Then we show that there exists a critical radius such
that, if the radius of a ball is smaller than this critical value, then there exists a
solution, and vice versa. Using a comparison between domains we prove that this
phenomenon occurs for every domain. By using the Lyapunov–Schmidt reduction
method we get the local structure of the solutions near a degenerate point; by Leray–
Schauder degree theory, a priori estimates, and using bifurcation theory we get the
global structure.

In Chap. 6, on superlinear systems of Hammerstein integral equations and appli-
cations, we use the Leray–Schauder degree to obtain new results on the existence of
solutions, and apply them to two-point boundary problems of systems of equations.
We also are concerned with the existence of (component-wise) positive solutions for
a semilinear elliptic system, where the nonlinear term is superlinear in one equation
and sublinear in the other equation. By constructing a cone K1 ×K2, which is the
Cartesian product of two cones in the space C(�), and computing the fixed point
index in K1 ×K2, we establish the existence of positive solutions for the system.

In Chap. 7, we show some results on the Dancer–Fučik spectrum for bounded
domains. We are concerned with the Fučik point spectrum for Schrödinger opera-
tors, −�+ V , in L2(RN) for certain types of potential, V : RN → R. We use the
Dancer–Fučik spectrum to asymptotically linear elliptic problems to get one-sign
solutions.

In Chap. 8, we introduce some results on sign-changing solutions of elliptic and
p-Laplacian, including using Nehri manifold, invariant sets of descent flows, Morse
theory, etc.

In Chap. 9, we show that if u0 ∈ W 1,p
0 (�) is a local minimizer of J in the

C1-topology, it is still a local minimizer of the functional J in W 1,p
0 (�). This ex-

tends the famous results of Brezis–Nirenberg to p > 2. We thus obtain multiple so-
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lutions and structures of solutions for p-Laplacian equations. Finally, we also show
uniqueness results of various kinds.

In Chap. 10, we obtain nontrivial solutions of a class of nonlocal quasilinear
elliptic boundary value problems using the Yang index and critical groups, and we
obtain sign-changing solutions of a class of nonlocal quasilinear elliptic boundary
value problems using variational methods and invariant sets of descent flows. We
also show a uniqueness result.

In Chap. 11, we study free boundary problems, Schrödinger systems from Bose–
Einstein condensates, and competing systems with many species. We prove the ex-
istence and uniqueness result of the Dirichlet boundary value problem of elliptic
competing systems. We show that, for the singular limit, species are spatially seg-
regated; they satisfy a remarkable system of differential inequalities as κ→+∞.
We also introduce optimal partition problems related to eigenvalues and nonlinear
eigenvalues. Finally, some recent new results on Schrödinger systems from Bose–
Einstein condensates are presented.

In preparing this manuscript I have received help and encouragement from sev-
eral professors and from my students. I wish to thank Professor Shujie Li for his
kind suggestions. Special thanks go to my students; to Prof. Xiyou Cheng, Dr. Kelei
Wang, Dr. Yimin Sun for useful corrections, and to Dr. Yimin Sun and Liming Sun
for wonderful typesetting of parts of Chaps. 1, 2, 3, and 11 of this manuscript.

I dedicate this book to my father Deren Zhang, my wife Jimin Fang and my son
Fan Zhang.

Zhitao ZhangBeijing, China
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Chapter 1
Preliminaries

1.1 Sobolev Spaces and Embedding Theorems

Let � denote a bounded domain in R
n (n≥ 1). For p ≥ 1 we let Lp(�) denote the

class Banach space consisting of measurable functions on � that are p-integrable.
The norm of Banach space Lp(�) is defined by

‖u‖p;� = ‖u‖Lp(�) =
(∫

�

|u|p dx
)1/p

. (1.1)

Hölder’s inequality: For real numbers p,q satisfying 1
p
+ 1

q
= 1,

∫
�

uv dx ≤ ‖u‖p‖v‖q (1.2)

for functions u ∈ Lp(�), v ∈ Lq(�). It is a consequence of Young’s inequality:

ab ≤ ap

p
+ bq

q
, ∀a ≥ 0, b ≥ 0.

As p = q = 2, it is the Schwarz inequality.
Generalization of Hölder’s inequality:
Let ui ∈ Lpi (�), i = 1,2, . . . ,m, 1

p1
+ 1

p2
+ · · · + 1

pm
= 1,

∫
�

u1 · · ·um dx ≤ ‖u1‖p1 · · · ‖um‖pm. (1.3)

Minkowski inequality:

‖f + g‖Lp ≤ ‖f ‖Lp + ‖g‖Lp , ∀f,g ∈ Lp(�). (1.4)

As p = 2, it is Cauchy inequality.

Z. Zhang, Variational, Topological, and Partial Order Methods with Their Applications,
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2 1 Preliminaries

Definition 1.1.1 (Weak derivatives) Let u be locally integrable in � and α any
multi-index. Then a locally integrable function v is called the αth weak derivative
of u if it satisfies∫

�

ϕv dx = (−1)|α|
∫
�

uDαϕ dx for all ϕ ∈ C|α|0 (�).

We write v =Dαu, and v is uniquely determined up to sets of measure zero. For
a non-negative integer vector α = (α1, . . . , αn), we denote

Dα = D|α|

∂x
α1
1 · · · ∂xαnn

the differential operator, with |α| = α1 + · · · + αn.
A function is called weakly differentiable if all its weak derivatives of first order

exist and k times weakly differentiable if all its weak derivatives exist for orders
up to and including k. We denote the linear space of k times weakly differentiable
functions by Wk(�). Clearly Ck(�) ⊂ Wk(�). For p ≥ 1 and k a non-negative
integer, let

Wk,p(�)= {u ∈Wk(�);Dαu ∈ Lp(�) for all |α| ≤ k}, (1.5)

with a norm

‖u‖Wk,p(�) =
(∫

�

∑
|α|≤k

∣∣Dαu
∣∣p dx

)1/p

.

Then Wk,p(�) is a Banach space. We also have an equivalent norm

‖u‖Wk,p(�) =
∑
|α|≤k

∥∥Dαu
∥∥
p
.

W
k,p

0 (�) is another Banach space by taking the closure of Ck
0 (�) in Wk,p(�).

Wk,p(�), Wk,p

0 (�) are separable for 1≤ p <∞, and reflexive for 1<p <∞.

As p = 2, Wk,2(�),Wk,2
0 (�)written asHk(�),Hk

0 (�) are Hilbert spaces under
the scalar product

(u, v)k =
∫
�

∑
|α|≤k

DαuDαv dx.

W
k,p

loc (�) are local spaces to be defined to consist of functions belonging to
Wk,p(�′) for all �′ �� (i.e., �′ has compact closure in �).

Definition 1.1.2 Assume E1,E2 are two normed linear spaces, we call E1 embed-
ded in E2, if:

(1) E1 is a subspace of E2,
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(2) There exists an identity operator I :E1→E2 such that I (u)= u, and∥∥I (u)∥∥
E2
≤K‖u‖E1 .

If 1≤ p1 ≤ p2 ≤∞, u ∈ Lp2(�) then u ∈ Lp1(�). Also we have

Lp2(�) ↪→ Lp1(�).

Theorem 1.1.1 The space C∞(�)∩Wk,p(�) is dense in Wk,p(�).

Theorem 1.1.2 (Sobolev embedding theorems)

↗ Lnp/(n−p)(�), p < n,

W
1,p
0 (�) −→ Lϕ(�), ϕ = exp

(|t |n/(n−1))− 1, p = n,
↘ Cλ(�̄), λ= 1− n

p
, p > n,

where Lϕ(�) denotes the Orlicz space.

The Poincaré inequality: For u ∈W 1,p
0 (�), 1≤ p <∞

‖u‖p ≤
(

1

ωn
|�|
)1/n

‖Du‖p
(
ωn = volume of unit ball in R

n
)
.

After extension to the spaces Wk,p

0 (�), we have

↗ Lnp/(n−kp)(�), kp < n,

W
k,p

0 (�)

↘ Cm(�̄), 0≤m< k − n

p
.

For Wk,p(�), if � satisfies a uniform interior cone condition (i.e., there exists
a fixed cone K� such that each x ∈ � is the vertex of a cone K�(x) ⊂ �̄ and
congruent to K�), then there is an embedding

↗ Lnp/(n−kp)(�), kp < n,

Wk,p(�)

↘ Cm
B (�), 0≤m< k− n

p
,

where Cm
B (�)= {u ∈ Cm(�)|Dαu ∈ L∞(�) for |α| ≤m}.

Theorem 1.1.3 (Compactly embedded theorems) The spaces W 1,p
0 (�) are com-

pactly embedded (i) in the spaces Lq(�) for any q < np/(n − p), if p < n, and
(ii) in C0(�̄), if p > n.
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An extension of the above theorem show that the embeddings

↗ Lnp/(n−p)(�), for kp < n, q <
np

n− kp ,

W
k,p

0 (�)

↘ Cm(�̄), for 0≤m< k − n

p

are compact.
Next define the space

H 1(
R
n
) := {u ∈ L2(

R
n
) : ∇u ∈ L2(

R
n
)}

with the inner product

(u, v)1 :=
∫
Rn

[∇u · ∇v+ uv]

and the corresponding norm

‖u‖1 :=
(∫

Rn

[|∇u|2 + u2])1/2

.

It is a Hilbert space.
Let D(�) := {u ∈ C∞(�) : suppu is a compact subset of �}.
Let � be an open subset of R

n, the space H 1
0 (�) is the closure of D(�) in

H 1(Rn).
Let n≥ 3 and 2∗ := 2n/(n− 2). The space

D1,2(
R
n
) := {u ∈ L2∗(

R
n
) : ∇u ∈ L2(

R
n
)}

with the inner product
∫
Rn ∇u · ∇v and the corresponding norm (

∫
Rn |∇u|2)1/2 is a

Hilbert space. The space D1,2
0 (�) is the closure of D(�) in D1,2(Rn). We denote

2∗ =∞ when n= 1,2.

Theorem 1.1.4 (Sobolev embedding theorem) The following embeddings are con-
tinuous:

H 1(
R
n
)
↪→ Lp

(
R
n
)
, 2≤ p <∞, n= 1,2,

H 1(
R
n
)
↪→ Lp

(
R
n
)
, 2≤ p ≤ 2∗, n≥ 3,

D1,2(
R
n
)
↪→ L2∗(

R
n
)
, n≥ 3.

In particular, the Sobolev inequality holds:

S := inf
u∈D1,2(Rn),|u|2∗=1

|∇u|22 > 0. (1.6)
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Then it is clear that H 1
0 (�)⊂D1,2

0 (�). If |�|<∞, Poincaré inequality implies

that H 1
0 (�)=D1,2

0 (�).
The instanton:

U(x) := [n(n− 2)](n−2)/4

[1+ |x|2](n−2)/2
(1.7)

is a minimizer for S,n≥ 3 (Aubin and Talenti, see [193]). For every open subset �
of Rn,

S(�) := inf
u∈D1,2(�),|u|2∗=1

|∇u|22 = S, (1.8)

and S(�) is never achieved except when �=R
n.

By Theorem 4.7.8 of [50] and [39], U(x) is a minimizer for S (1.6) iff U(x) has
the form

U(x) := [n(n− 2)θ ](n−2)/4

[θ2 + |x − y|2](n−2)/2
, ∀θ > 0, ∀y ∈Rn. (1.9)

Theorem 1.1.5 (Strauss [50]) Let H 1
r (R

n) be the subspace of H 1(Rn) consisting
of radial symmetric functions. The embedding H 1

r (R
n) ↪→ Lp(Rn) is compact as

2<p < 2∗, n≥ 2.

Remark 1.1.1 About Sobolev spaces and embedding theorems above, please see
[95, 193] etc.

1.2 Critical Point

Definition 1.2.1 Let J : U → R where U is an open subset of a Banach space E.
The functional J has a Gateaux derivative f ∈E∗ at u ∈U , if for every h ∈E,

lim
t→0

1

t

∣∣J (u+ th)− J (u)− 〈f, th〉∣∣= 0. (1.10)

The functional J has a Fréchet derivative f ∈E∗ at u ∈U , if

lim
h→0

1

‖h‖
∣∣J (u+ h)− J (u)− 〈f,h〉∣∣= 0. (1.11)

The functional J belongs to C1(U,R) if the Fréchet derivative of J exists and is
continuous on U .

Any Fréchet derivative is a Gateaux derivative. Using the mean value theo-
rem, it is easy to know that if J has a continuous Gateaux derivative on U , then
J ∈ C1(U,R).

Suppose J is a Fréchet differentiable functional on a Banach space E with
normed dual E∗ and duality pairing 〈·, ·〉 : E × E∗ → R, and let DJ : E→ E∗
denote the Fréchet-derivative of J . Then the directional (Gateaux-) derivative of J
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at u in direction v is given by

d

dt
J (u+ tv)

∣∣∣∣
t=0
= 〈v,DJ(u)〉=DJ(u)v.

For such J , we call u ∈ E a critical point if J ′(u) := DJ(u) = 0; otherwise u is
called a regular point. A number α ∈ R is a critical value of J if there exists a
critical point u of J with J (u)= α. Otherwise, α is called regular.

Let C1(E,R) denote the set of functionals that are Fréchet differentiable and
whose Fréchet derivatives are continuous on E.

Definition 1.2.2 For J ∈ C1(E,R), we say J satisfies the Palais–Smale condition
(henceforth denoted by (PS) condition) if any sequence {um} ⊂E for which J (um)
is bounded and J ′(um)→ 0 as m→∞ possesses a convergent subsequence.

Definition 1.2.3 For J ∈ C1(E,R), we say J satisfies the (PS)c condition if any
sequence {um} ⊂E for which J (um)→ c and J ′(um)→ 0 as m→∞ possesses a
convergent subsequence.

It is clear that if J satisfies the (PS)c condition, for ∀c, then J satisfies the (PS)
condition.

The (PS) condition is a kind of compact condition. Indeed observe that the (PS)
condition implies that Kc ≡ {u ∈ E|J (u) = c, J ′(u) = 0}, i.e., the set of critical
points having critical value c, is compact for any c ∈R.

Theorem 1.2.1 (Ekeland variational principle [50]) Let (X,d) be a complete met-
ric space, and let f : X→ R ∪ {+∞}, but f �≡ +∞. If f is bounded from below
and lower semi-continuous (l.s.c., ∀λ ∈ R, the level set fλ = {x ∈ X|f (x) ≤ λ} is
closed), and if ∃ε > 0, ∃xε ∈X satisfying f (xε) < infX f + ε. Then ∃yε ∈X such
that

1. f (yε)≤ f (xε),
2. d(xε, yε)≤ 1,
3. f (x) > f (yε)− εd(yε, x), ∀x �= yε .
Theorem 1.2.2 (Pohozaev identity, 1965) For the solution of

−�u= f (u), u ∈H 1
0 (�), (1.12)

where f ∈ C1(R,R) and � is a smooth bounded domain of Rn, n≥ 3. Let F(u)=∫ u
0 f (s) ds.

Let u ∈H 2
loc(�̄) be a solution of (1.12) such that F(u) ∈ L1(�). Then u satisfies

the following:

1

2

∫
∂�

|∇u|2σ · ν dσ = n
∫
�

F(u)dx − n− 2

2

∫
�

|∇u|2 dx,

where ν denotes the unit outward normal to ∂�. (For the proof see [168, 193].)
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For P.L. Lions’ Concentration-Compactness Principle On the basis of this
principle, for many constrained minimization problems it is possible to state nec-
essary and sufficient conditions for the convergence of all minimizing sequences
satisfying the given constraint.

Theorem 1.2.3 (Concentration-Compactness Principle, see [135, 136, 168]) Sup-
pose that μm is a sequence of probability measures on R

n : μm ≥ 0,
∫
Rn μm = 1.

Then there is a subsequence (μm) satisfying one of the following three possibilities:

(1) (Compactness) ∃{xm} ⊂ R
n such that for any ε > 0, ∃R > 0 with the property

that ∫
BR(xm)

dμm ≥ 1− ε for all m.

(2) (Vanishing) For all R > 0, there holds

lim
m→∞

(
sup
x∈Rn

∫
BR(x)

dμm

)
= 0.

(3) (Dichotomy) ∃λ, 0 < λ < 1, such that ∀ε > 0, ∃R > 0 and ∃{xm} with the
following property: GivenR′ >R there are non-negative measuresμ1

m,μ
2
m such

that

0≤ μ1
m+μ2

m ≤ μm, supp
(
μ1
m

)⊂ BR(xm), supp
(
μ2
m

)⊂R
n\BR′(xm),

lim sup
m→∞

(∣∣∣∣λ−
∫
Rn

dμ1
m

∣∣∣∣+
∣∣∣∣(1− λ)−

∫
Rn

dμ2
m

∣∣∣∣
)
≤ ε.

Let X be a topological space. A deformation of X is a continuous map η : X ×
[0,1]→X such that η(·,0)= id.

Definition 1.2.4 For a topological pair Y ⊂ X. A continuous map r : X→ Y is
called a deformation retract, if r ◦ i = idY and i ◦ r ∼ idX , where i : Y → X is the
injection. In this case Y is called a deformation retraction of X.

Definition 1.2.5 A deformation retract r is called a strong deformation retract, if
there exists a deformation η :X × [0,1] →X, such that η(·, t)|Y = idY ,∀t ∈ [0,1]
and η(·,1)= i ◦ r . Then Y is called a strong deformation retraction of X.

Definition 1.2.6 Let E be a real Banach space, U ⊂ E, and I ∈ C1(U,R). Then
v ∈E is called a pseudo-gradient vector for I at u ∈U if

(i) ‖v‖ ≤ 2
∥∥I ′(u)∥∥,

(ii) I ′(u)v ≥ ∥∥I ′(u)∥∥2
.
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Note that a pseudo-gradient vector is not unique in general and any convex com-
bination of pseudo-gradient vectors for I at u is also a pseudo-gradient vector for I
at u.

Let I ∈ C1(E,R) and K ≡ {u ∈ E|I ′(u) = 0}, Ẽ ≡ E \ K ≡ {u ∈ E|I ′(u) �=
0}. Then V : Ẽ→ E is called a pseudo-gradient vector field on Ẽ if V is locally
Lipschitz continuous and V (u) is a pseudo-gradient vector for I for all u ∈ Ẽ.

Theorem 1.2.4 (See [159]) If I ∈ C1(E,R), there exists a pseudo-gradient vector
field for I on Ẽ. If I (u) is even in u, I has a pseudo-gradient vector field on Ẽ given
by an odd function W .

Using the pseudo-gradient vector field, one can construct a deformation by mod-
ified negative gradient flow for I .

Recall that Is ≡ {u ∈ E|I (u) ≤ s} for s ∈ R, sometimes also write I s :=
{u ∈E|I (u)≤ s} and we recall the following version of Deformation Theorems.

Theorem 1.2.5 (Noncritical interval theorem, see [50]) If I ∈ C1(E,R) satisfies
(PS)c,∀c ∈ [a, b] and if K ∩ I−1[a, b] = ∅, then Ia is a strong deformation retrac-
tion of Ib .

Theorem 1.2.6 (Second deformation theorem, see [50]) If I ∈ C1(E,R) satis-
fies (PS)c, ∀c ∈ [a, b], if K ∩ I−1(a, b] = ∅ and the connected components of
K ∩ I−1(a) are only isolated points, then Ia is a strong deformation retraction of Ib .

Theorem 1.2.7 (See [159]) Let E be a real Banach space and let I ∈ C1(E,R)

and satisfy (PS) condition. If c ∈R, ε̄ > 0, and � is any neighborhood of Kc, then
there exist an ε ∈ (0, ε̄) and η ∈ C([0,1] ×E,E) such that

(1) η(0, u)= u for all u ∈E.
(2) η(t, u)= u for all t ∈ [0,1] if I (u) �∈ [c− ε̄, c+ ε̄].
(3) η(t, u) is a homeomorphism of E onto E for each t ∈ [0,1].
(4) ‖η(t, u)− u‖ ≤ 1 for all t ∈ [0,1] and u ∈E.
(5) I (η(t, u))≤ I (u) for all t ∈ [0,1] and u ∈E.
(6) η(1, Ic+ε \�)⊂ Ic−ε .
(7) If Kc = ∅, η(1, Ic+ε)⊂ Ic−ε .
(8) If I (u) is even in u, η(t, u) is odd in u.

Definition 1.2.7 The action of a topological group G on a normed space X is a
continuous map

G×X→X : [g,u]→ gu

such that 1 · u= u, (gh)u= g(hu), u→ gu is linear.

The action is isometric if

‖gu‖ = ‖u‖.
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The space of invariant points is defined by

Fix(G) := {u ∈X : gu= u,∀g ∈G}.
A set A ⊂ X is invariant if gA = A for every g ∈ G. A function ϕ : X→ R is
invariant if ϕ ◦ g = ϕ for every g ∈G. A map f :X→X is equivariant if g ◦ f =
f ◦ g for every g ∈G.

Theorem 1.2.8 (Principle of symmetric criticality, Palais [150]) Assume that
the action of the topological group G on the Hilbert space X is isometric. If
ϕ ∈ C1(X,R) is invariant and if u is a critical point of ϕ restricted to Fix(G),
then u is a critical point of ϕ.

The following part of this section can be seen in [49, 50].

Definition 1.2.8 Let I be a C1 function defined on a Banach space E, let p be an
isolated critical point of I , and let c= I (p).

Cq(I,p)=Hq

(
Ic ∩U,

(
Ic \ {p}

)∩U ;G) (1.13)

is called the qth critical group of I at p,q = 0,1,2, . . . , where G is the co-
efficient group, U is a neighborhood of p such that K ∩ (Ic ∩ U) = {p}, and
H∗(X,Y ;G) stands for the singular relative homology groups with the Abelian co-
efficient group G.

Definition 1.2.9 Let p be a non-degenerate critical point of I , we call the dimension
of the negative space corresponding to the spectral decomposition of I ′′(p), the
Morse index of p, and denote it by ind(I,p).

Example 1.2.1 If p is an isolated minimum point of I , then

Cq(I,p)= δq0 ·G.

Example 1.2.2 If E is n-dimensional, and p is an isolated local maximum point
of I , then

Cq(I,p)= δqn ·G.

Example 1.2.3 If I ∈ C2(E,R) and p is a non-degenerate critical point of I with
Morse index j ; then

Cq(I,p)= δqj ·G.

Suppose that f ∈ C1(E,R) has only isolated critical values, and that each of
them corresponds to a finite number of critical points; say

· · ·< c−2 < c−1 < c0 < c1 < c2 < · · ·
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are critical values with

K ∩ f−1(ci)=
{
zij
}mi

j=1, i = 0,±1,±2, . . . .

One chooses

0< εi <max{ci+1 − ci, ci − ci−1}, i = 0,±1,±2, . . . .

Definition 1.2.10 For a pair of regular values a < b, we call

Mq(a, b)=
∑

a<ci<b

rankHq(fci+εi , fci−εi ;G)

the qth Morse type number of the function f on (a, b), q = 0,1,2, . . . .

Theorem 1.2.9 (See [50]) Assume that f ∈ C1(E,R) satisfies the (PS) condition,
and has an isolated critical value c, with K ∩ f−1(c) = {zj }mj=1. Then for suffi-
ciently small ε > 0 we have

H∗(fc+ε, fc−ε;G)=
m⊕
j=1

C∗(f, zj ) and M∗(a, b)=
∑

a<ci<b

mi∑
j=1

rankC∗
(
f, zij

)
.

Define the qth Betti number

βq = βq(a, b)= rankHq(fb, fa;G), q = 0,1, . . . .

Theorem 1.2.10 (Morse relation [50]) Suppose that f ∈ C1(E,R) satisfies
(PS)c, ∀c ∈ [a, b], where a and b are regular values. Assume (K ∩ f−1[a, b])
is finite. Moreover, if all Mq(a, b) and βq(a, b) are finite, and only finitely many of
them are non-zeroes, then

∞∑
q=0

(
Mq(a, b)− βq(a, b)

)
tq = (1+ t)Q(t), (1.14)

where Q(t) is a formal series with non-negative coefficients. In particular, ∀p =
0,1,2, . . . ,

p∑
q=0

(−1)p−qMq(a, b)≥
p∑

q=0

(−1)p−qβq(a, b). (1.15)

More specifically,

∞∑
q=0

(−1)qMq(a, b)=
∞∑
q=0

(−1)qβq(a, b). (1.16)
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1.3 Cone and Partial Order

Definition 1.3.1 Let E be a real Banach space. A nonempty convex closed set
P ⊂E is called a cone if it satisfies the following two conditions:

(i) x ∈ P, λ≥ 0 implies λx ∈ P ,
(ii) x ∈ P, −x ∈ P implies x = θ , where θ denotes the zero element of E.

Every cone P in E defines a partial ordering in E given by x ≤ y iff y − x ∈ P .
If x ≤ y and x �= y, we write x < y.

Definition 1.3.2 A cone P is called solid if it contains interior points, i.e.,
int(P ) �= ∅, or denote P̊ �= ∅.

Definition 1.3.3 A cone P is called generating if E = P − P , i.e., every element
x ∈E can be represented in the form x = u− v, where u,v ∈ P .

Definition 1.3.4 A cone P ⊂ E is said to be normal if there exists a positive con-
stant δ such that ‖x + y‖ ≥ δ, ∀x, y ∈ P and ‖x‖ = ‖y‖ = 1.

If cone P is solid and y − x ∈ P̊ �= ∅, we write x� y.
Here we list the definitions of different cones:

(a) A cone P ⊂ E is called regular if every increasing and bounded in order se-
quence in E has a limit, i.e., if {xn} ⊂E and y ∈E satisfy

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ y,
then there exists x∗ ∈E such that ‖xn − x∗‖→ 0.

(b) A cone P ⊂ E is called fully regular if every increasing and bounded in norm
sequence in E has a limit, i.e., if {xn} ⊂E satisfies

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · , M = sup
n
‖xn‖<∞,

then there exists x∗ ∈E such that ‖xn − x∗‖→ 0.
(c) A cone P ⊂ E is called minihedral if sup{x, y} exists for any pair x, y, where

supD is the least upper bound of a set D.
(d) A cone P ⊂ E is called strongly minihedral if supD exists for any bounded

above in order set D ⊂E.

For normal cones, we have

Theorem 1.3.1 Assume P is a cone ofE, the following conclusions are equivalent:

(a) P is normal;
(b) there exists a constant δ > 0 such that ‖x + y‖ ≥ δmax{‖x‖,‖y‖} for all x,

y ∈ P ;
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(c) there exists a constant N > 0 such that θ ≤ x ≤ y implies ‖x‖ ≤N‖y‖;
(d) xn ≤ zn ≤ yn (n= 1,2,3, . . .) and ‖xn − x‖→ 0, ‖yn − x‖→ 0 imply ‖zx −

x‖→ 0;
(e) set (B + P)∩ (B − P) is bounded, where B = {x ∈E|‖x‖ ≤ 1};
(f) every order interval [x, y] = {z ∈E|x ≤ z≤ y} is bounded.

Theorem 1.3.2 The following assertions hold:

(i) If E is reflexive, then P is normal⇔ P is regular⇔ P is fully regular.
(ii) If E is separable and reflexive and the cone P ⊂ E is normal and minihedral,

P is strongly minihedral.

Zorn’s lemma Suppose a partially ordered set S has the property that every chain
(i.e., totally ordered subset) has an upper bound in S. Then the set S contains at
least one maximal element.

Note that the content of this section can be seen in [100, 110].

1.4 Brouwer Degree

Theorem 1.4.1 (Sard, see [165]) Let U be an open set of Rp and f :U→R
q be a

Cs map where s >max{p− q,0}. Then the set of critical values in R
q has measure

zero.

(This section is included in [81].)

Definition 1.4.1 Let�⊂R
n be open and bounded, f ∈ C1(�̄) and y ∈Rn\f (∂�∪

Sf ), where Sf (�)= {x ∈� : Jf (x)= 0}. Then we define

d(f,�,y)=
∑

x∈f−1(y)

sgnJf (x)

(
agreement:

∑
∅
= 0

)
.

If y is a regular value of f then f (x)= y has at most finitely many solutions. So
Definition 1.4.1 is reasonable. When y is a singular value of f , we have

Definition 1.4.2 Let � ⊂ R
n be open and bounded, f ∈ C2(�̄) and y /∈ f (∂�).

Then we define d(f,�,y)= d(f,�,y1), where y1 is any regular value of f such
that |y1 − y|< �(y,f (∂�)) and d(f,�,y1) is given by Definition 1.4.1.

In fact, the smooth assumption of f in Definitions 1.4.1 and 1.4.2 can be relaxed
to C(�̄).

Definition 1.4.3 Let f ∈ C(�̄) and y ∈ Rn\f (∂�). Then we define d(f,�,y) :=
d(g,�,y), where g ∈ C2(�̄) is any map such that |g − f |0 < �(y,f (∂�)) and
d(g,�,y) is given by Definition 1.4.2.
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Theorem 1.4.2 Let M = {(f,�,y) : � ⊂ R
n open bounded, f ∈ C(�̄) and y �∈

f (∂�)} and d :M→ Z the topological degree defined by Definition 1.4.3. Then d
has the following properties:

(d1) d(id,�,y)= 1 for y ∈�.
(d2) d(f,�,y)= d(f,�1, y)+d(f,�2, y) whenever �1 and �2 are disjoint open

subsets of � such that y /∈ �̄\(�1 ∪�2).
(d3) d(h(t, ·),�,y(t)) is independent of t ∈ [0,1] whenever h : [0,1]× �̄→R

n is
continuous, y : [0,1]→R

n is continuous and y(t) /∈ h(t, ·)(∂�) on [0,1].
(d4) d(f,�,y) �= 0 implies f−1(y) �= ∅.
(d5) d(·,�,y) and d(f,�, ·) are constant on {g ∈ C(�̄) : |g − f |0 < r} and

Br(y) ⊂ R
n, respectively, where r = �(y,f (∂�)). Moreover, d(f,�, ·) is

constant on every connected component of Rn\f (∂�).
(d6) d(g,�,y)= d(f,�,y) whenever g|∂� = f |∂�.
(d7) d(f,�,y) = d(f,�1, y) for every open subset �1 of � such that y /∈

f (�̄\�1).

Theorem 1.4.3 Let Xn be a real topological vector space of dimXn = n, Xm a
subspace with dimXm =m< n, �⊂ Xn open bounded, f : �̄→ Xm continuous
and y ∈Xm\g(∂�), where g = id−f . Then d(g,�,y)= d(g|�∩Xm

,�∩Xm,y).

1.5 Compact Map and Leray–Schauder Degree

This section is included in Deimling [81].

1.5.1 Definitions

Consider two Banach spaces X and Y , a subset � of X and a map F :�→ Y . Then
F is said to be compact if it is continuous and such that F(�) is relatively compact.
K(�,Y ) will denote the class of compact maps and we shall write K(�) instead
of K(�,X).

F is said to be completely continuous if it is continuous and maps bounded sub-
sets of � into relatively compact sets. F is said to be finite-dimensional if F(�) is
contained in a finite-dimensional subspace of Y . The class of all finite-dimensional
compact maps will be denoted by F (�,Y ) and we shall write F (�) instead of
F (�,X). Instead of “maps” we shall also speak of “operators”.

If F : X→ Y is linear and maps bounded sets into relatively compact sets then
it is automatically continuous, and if it is linear and finite-dimensional then it is
automatically compact.

Finally, let �⊂X be closed and bounded. Then F :�→ Y is said to be proper
if F−1(K) is compact whenever K is compact. Let us note that a continuous proper
map is closed, that is, F(A) is closed whenever A⊂� is closed. In fact, if (xn)⊂A
and Fxn→ y then (xn)⊂ F−1({Fxn : n≥ 1}∪ {y}) and therefore (xn) has a cluster
point x0 ∈A, and y = Fx0 ∈ F(A). Next, we introduce some useful properties.
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1.5.2 Properties of Compact Maps

Definition 1.5.1 Let X be a Banach space and B its bounded sets. Then α : B→
R
+, defined by

α(B)= inf{d > 0 : B admits a finite cover by sets of diameter ≤ d},
is called the (Kuratowski-) measure of noncompactness, the α-MNC for short, and
β : B→R

+ defined by

β(B)= inf{r > 0 : B can be covered by finitely many balls of radius r},
is called the ball measure of noncompactness. (Here diamB = sup{|x − y| : x ∈
B,y ∈ B}.)

Proposition 1.5.1 Let X be a Banach space with dimX =∞, B the family of all
bounded sets of X, and γ : B→R

+ be either α or β . Then

(a) γ (B)= 0 iff B̄ is compact.
(b) γ is a seminorm, i.e., γ (λB)= |λ|γ (B) and γ (B1 +B2)≤ γ (B1)+ γ (B2).
(c) B1 ⊂ B2 implies γ (B1)≤ γ (B2); γ (B1 ∪B2)=max{γ (B1), γ (B2)}.
(d) γ (convB)= γ (B).
(e) γ is continuous with respect to the Hausdorff distance �H , defined by

�H (B1,B2)=max
{

sup
B1

�(x,B2), sup
B2

�(x,B1)
}
;

in particular γ (B̄)= γ (B).

Together with the degree for finite-dimensional spaces the following proposition
will be essential to obtain a degree for compact perturbations of the identity.

Proposition 1.5.2 Let X and Y be Banach spaces, and B ⊂ X closed bounded.
Then

(a) F (B,Y ) is dense in K(B,Y ) with respect to the sup norm, i.e. for F ∈
K(B,Y ) and ε > 0 there exists Fε ∈F (B,Y ) such that supB |Fx − Fεx| ≤ ε.

(b) If F ∈K(B) then I − F is proper.

Proof To prove (a), let F ∈K(B,Y ), ε > 0 and y1, y2, . . . , yp such that F(B) ⊂⋃p

i=1Bi(yi). Let ϕi(y)=max{0, ε− |y− yi |} and ψi(y)= ϕi(y)/∑p

j=1 ϕj (y) for

y ∈ F(B), and define Fε(x) =∑p

i=1ψi(Fx)yi for x ∈ B . Then Fε is continuous,
Fε(B)⊂ {y1, . . . , yp}, Fε(B) is relatively compact and supB |Fεx − Fx| ≤ ε.

To prove (b), let A= (I − F)−1(K) and K compact. Then α(A) ≤ α(F (A))+
α(K)= 0 and A is closed, and therefore compact. �

For differentiable compact maps we have



1.5 Compact Map and Leray–Schauder Degree 15

Proposition 1.5.3 Let X, Y be Banach space, �⊂ X be open, F ∈K(�,Y ) and
F is differentiable at x0 ∈�. Then F ′(x0) is completely continuous.

Proof Since F ′(x0) ∈ L(X,Y ), it is sufficient to prove that F ′(x0)(B1(0)) is
relatively compact. Recall that F(x0 + h) = Fx0 + F ′(x0)h + ω(x0;h) with
|ω(x0;h)| ≤ εδ for |h| ≤ δ = δ(x0, ε). Therefore,

δF ′(x0)
(
B1(0)

)= F ′(x0)
(
Bδ(0)

)⊂−Fx0 + F
(
Bδ(0)

)+ δBε(0),
and this implies δ · α(F ′(x0)(B1(0)))≤ 2εδ, i.e., α(F ′(x0)(B1(0)))= 0 since ε > 0
has been arbitrary. �

Proposition 1.5.4 Let X, Y be Banach spaces, A ⊂ X closed bounded and F ∈
K(A,Y ). Then F has an extension F̃ ∈K(X,Y ) such that F̃ (X)⊂ convF(A).

1.5.3 The Leray–Schauder Degree

Let X be a real Banach space, � ⊂ X open bounded, F ∈K(�) and y /∈ (I −
F)(∂�). On these admissible triplets (I − F,�,y) we want to define a Z-valued
function D that satisfies the three basic conditions corresponding to (D1)–(D3) of
the Brouwer degree, namely

(D1) D(I,�,y)= 1 for y ∈�;
(D2) D(I − F,�,y)=D(I − F,�1, y)+D(I − F,�2, y) whenever �1 and �2

are disjoint open subsets of � such that y /∈ (I − F)(�̄\(�1 ∪�2));
(D3) D(I − H(t, ·),�,y(t)) is independent of t ∈ [0,1] whenever H : [0,1] ×

�̄→X is compact, y : [0,1]→X is continuous and y(t) /∈ (I −H(t, ·))(∂�)
on [0,1].

Since G = I − F is proper and y /∈ G(∂�), we have � = �(y,G(∂�)) > 0, and
if we choose F1 ∈ F (�̄) such that sup{|F1x − Fx| : x ∈ �̄} < �, then H(t, x) =
Fx + t (F1x − Fx) satisfies (D3) with y(t) ≡ y, and therefore D(I − F,�,y) =
D(I − F1,�,y).

Next, since F1(�̄) is contained in a finite-dimensional subspace, we may choose
a subspace X1 with dimX1 <∞ such that y ∈X1 and F(�̄)⊂X1.

Then x − F1x = y for some x ∈� implies that x is already in � ∩X1 and this
suggests that D(I −F1,�,y) should already be determined by the Brouwer degree
of (I−F1)|�∩X1

with respect to�∩X1 and y. Notice, in particular, that�∩X1 = ∅
implies 0=D(I − F1,�,y)=D(I − F,�,y), by (D2).

To make this precise, notice first that there exists a continuous projection P1 from
X onto X1. Then X =X1⊕X2, where X2 = P2(x), P2 = I −P1, and X2 is closed
since P2 is continuous. Let �1 = � ∩ X1 �= ∅ and F̃1 : X1→ X1 be any continu-
ous extension of F1|�̄1

. Then we obtain D(I − F1,�;y)=D(I − F̃1P1,�,y), by

means of (D3) applied to H(t, x)= tF1x + (1− t)F̃1P1x and y(t)≡ y. But all so-
lutions in � of x− F̃1P1x = y belong to �1 and therefore (D2) tells us that we may
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replace � by any bounded open set which contains �1, for example by �1+B1(0),
where B1(0) is the unit ball of X2. Hence, we have

D(I − F,�,y) =D(I − F1,�,y)=D
(
I − F̃1P1,�1 +B1(0), y

)
=D

(
I − F1P1,�1 +B1(0), y

)
.

Now, you will guess how we have to proceed. Given any open bounded set�1 ⊂X1,
f ∈ �̄1→X1 continuous and y ∈X1\f (∂�1), we define

d0(f,�1, y) =D
(
I − (I − f )P1,�1 +B1(0), y

)
=D

(
fP1 + P2,�1 +B1(0), y

)
.

Then (D1)–(D3) imply that d0 satisfies (d1)–(d3), and therefore d0 is the Brouwer
degree for X1. In particular, choosing f = (I − F)|�∩X1

, we obtain

D(I − F1,�,y)= d0
(
(I − F)|�∩X1

,�∩X1, y
)
.

Thus, there is at most on function D. But the construction of D is now a simple ex-
ercise in using Theorem 1.4.3. In fact, if F2 and X2 satisfy the same conditions as F1
and X1, we let X0 be the span of X1 and X2 and �0 =�∩X0. Then Theorem 1.4.3
implies

d
(
(I − Fi)|�̄0

,�0, y
)= d((I − Fi)|�̄i

,�i, y
)

for i = 1,2

and since x − h(t, x) �= y on [0,1] × ∂�0 for h(t, x) = tF1x + (1 − t)F2x, (d3)
implies d((I −F1)|�̄0

,�0, y)= d((I −F2)|�̄0
,�0, y). Therefore, we define D(I −

F,�,y) by d((I − F1)|�̄1
,�1, y) for any pair F1 and X1 of the type mentioned

above. Let us write down this result as

Theorem 1.5.1 Let X be a real Banach space and

M = {(I − F,�,y) :�⊂X open bounded, F ∈K(�̄) and y /∈ (I − F)(∂�)}.
Then there exists exactly a functionD :M→ Z, the Leray–Schauder degree, satisfy-
ing (D1)–(D3). The integer D(I −F,�,y) is given by d((I −F1)|�1 ,�1, y), where
F1 is any map in F (�̄) such that sup�̄ |F1x − Fx| ≤ �(y, (I − F)(∂�)), �1 =
� ∩ X1, and X1 is any subsequence of X such that dimX1 <∞, y ∈ X1 and
F1(�̄)⊂X1, and d is the Brouwer degree of X1.

Further properties of the Leray–Schauder degree

Theorem 1.5.2 Besides (D1)–(D3), the Leray–Schauder degree has the following
properties:

(D4) D(I − F,�,y) �= 0 implies (I − F)−1(y) �= ∅;
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(D5) D(I−G,�,y)=D(I−F,�,y) for G ∈K(�̄)∩Br(F ) andD(I−F,�, ·)
is constant on Br(y), where r = �(y, (I − F)(∂�)). Even more: D(I −
F,�, ·) is constant on every connected component of X\(I − F)(∂�);

(D6) D(I −G,�,y)=D(I − F,�,y) whenever G|∂� = F |∂�;
(D7) D(I − F,�,y)=D(I − F,�1, y) for every open subset �1 of � such that

y /∈ (I − F)(�̄\�1).

We have a product formula

Theorem 1.5.3 Let � ⊂ X be open bounded, F0 ∈K(�̄) and F = I − F0, G0 :
X→ X completely continuous and G = I −G0, y /∈ GF(∂�) and (Kλ)λ∈� the
connected components of X\F(∂�). Then

D(GF,�,y)=
∑
λ∈�

D(F,�,Kλ)D(G,Kλ,y)

where only finitely many terms are non-zero and D(F,�,Kλ) is D(F,�, z) for any
z ∈Kλ.

1.6 Fredholm Operators

Definition 1.6.1 Suppose that X,Y are Banach spaces, L ∈ L(X,Y ) (linear
bounded maps) is called a Fredholm operator, if

(1) RangeL is closed;
(2) dim KerL<∞;
(3) CokerL= Y/RangeL has finite dimension.

We denote F(X,Y ) all Fredholm operators from X to Y . Especially as Y = X,
we denote F(X).

Definition 1.6.2 Assume L ∈F(X,Y ), let

ind(L)�q dim KerL− dim CokerL,

it is called the index of L.

Example 1.6.1 If F : X→ X is linear compact, then T = I − F ∈ F(X), and
ind(T )= 0.

For the Leray–Shauder degree theory extending to Fredholm operators of in-
dex 0, please see [50].

Theorem 1.6.1 (Gohberg and Krein, see [165]) The set F(X,Y ) of Fredholm op-
erators is open in the space of all bounded operators L(X,Y ) in the norm topology.
Furthermore the index is continuous on F(X,Y ).
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Definition 1.6.3 Suppose that X,Y are C1 Banach manifolds and f : X→ Y is a
C1 map. A point x ∈X is called a regular point of f if Df (x) : Tx(X)→ Tf (x)(Y )

is surjective, and is singular if not regular. The images of the singular points under f
are called the singular values or critical values, their complement the regular values.

Note that if y ∈ Y is not in the image of f it is automatically a regular value.

Definition 1.6.4 Assume U ⊂ X, a map f ∈ C1(U,Y ) is called Fredholm map if
for each x ∈ U , the derivative Df (x) : Tx(U)→ Tf (x)(Y ) is a Fredholm operator.
The index of f is defined to be the index of Df (x) for some x. By Theorem 1.6.1,
if U is connected, then indf ′(x) (or Df (x)) does not depend on x, it is denoted by
ind(f ).

Theorem 1.6.2 (Sard–Smale, see [165]) Assume X is a separable Banach space
and Y is a Banach space. Let f : X → Y be a Cq Fredholm map with q >

max{ind(f ),0}. Then the regular values of f are almost all of Y (or the set of
critical values is of first category).

Corollary 1.6.1 (See [165]) X is a separable Banach space and Y is a Banach
space. Let f :X→ Y be a C1 Fredholm map of negative index, its image contains
no interior points.

Corollary 1.6.2 (See [165]) X is a separable Banach space and Y is a Banach
space. Let f : X→ Y be a Cq Fredholm map with q > max{ind(f ),0}, then for
almost all y ∈ Y, f−1(y) is a submanifold of X whose dimension is equal to index
of f or is empty.

Definition 1.6.5 A map is proper if the inverse image of a compact set is compact.

Theorem 1.6.3 (See [165]) A Fredholm map is locally proper. In other words, if
f :X→ Y is Fredholm and x ∈X, there exists a neighborhood N of x such that f
restricted to N is proper.

1.7 Fixed Point Index

Remember that a subset K �= ∅ of X is called a retract of X if there is a continuous
map R :X→K , a retraction, such that Rx = x on K . Recall also that every closed
convex subset is a retract and that every retract is closed but not necessarily convex;
remember that ∂B1(0) is a retract of X if dimX =∞.

Whenever we are concerned with subsets of a retract K , it is understood that
all topological notions are understood with respect to the topology induced by | · |
on K .

Now, let � ⊂ K be open and F : �̄→ K compact and such that Fix(F ) ∩
∂� = ∅, where Fix(F ) = {x ∈ �̄ | F(x) = x}. If R : X→ K is retraction, then
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D(I − FR,R−1(�,0)) is defined, and it follows immediately from the homotopy
invariance and the excision property (D3) and (D7) that this integer is the same for
all retractions of X onto K . Conventionally, this number is called the fixed point
index over � with respect to K for the compact F , i(F,�,K) for short. The map
i :M→ Z with

M = {(F,�,K) :K ⊂X retract, �⊂K open, F : �̄→K compact,

Fix(F )∩ ∂�= ∅},
inherits the properties of Leray–Schauder degree D.

Let X be a Banach space, K ⊂X a cone and F :K→X. Since one often knows
F(0)= 0 but fixed points in K\{0} are of interest, the simplest abstract approach is
to consider a shell {x ∈K : 0< � ≤ ‖x‖ ≤ r} and to impose conditions at the lower
and upper boundary sufficient for F to have a fixed point in the shell. In the sequel,
we let Kr = K ∩ Br(0) and we shall write i(F,�) for i(F,�,K) whenever the
index is defined. Let us start with

Theorem 1.7.1 Let X be a Banach space, K ⊂ X a cone and F : K̄r → K is
γ -condensing. Suppose that

(a) Fx �= λx for ‖x‖ = r and λ > 1;
(b) there exist a smaller radius � ∈ (0, r) and an e ∈K\{0} such that x −Fx �= λe

for ‖x‖ = � and λ > 0.

Then F has a fixed point in {x ∈K : � ≤ ‖x‖ ≤ r}.

As a trivial consequence we have the following corollary on ‘compression of
conical shells’:

Corollary 1.7.1 Suppose that F : K̄r→K is γ -condensing and such that

(a) Fx � x on ‖x‖ = r .
(b) Fx � x on ‖x‖ = �, for some � ∈ (0, r).
Then F has a fixed point in {x ∈K : � < ‖x‖< r}.

Theorem 1.7.2 Let 0< � < r, F : K̄r→K compact and such that

(a) Fx �= λx on ‖x‖ = r and λ > 1.
(b) Fx �= λx on ‖x‖ = � and λ < 1.
(c) inf{|Fx| : ‖x‖ = �}> 0.

Then F has a fixed point in K̄r\K� .

Remark 1.7.1 Note that this section is included in Deimling [81].
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1.8 Banach’s Contract Theorem, Implicit Functions Theorem

Theorem 1.8.1 Let X be a Banach space, D ⊂ X closed and F :D→D a strict
contraction, i.e., ‖F(x)− F(y)‖ ≤ k‖x − y‖ for some 0 < k < 1 and all x, y ∈D.
Then F has a unique fixed point x∗. For any x0 ∈D, let xn+1 = F(xn)= Fnx0, then
xn→ x∗, and ‖xn − x∗‖ ≤ (1− k)−1kn‖F(x0)− x0‖.

Theorem 1.8.2 (Implicit function theorem) Let X, Y , Z be Banach spaces, U ⊂X
and V ⊂ Y neighborhoods of x0 and y0, respectively, F : U × V → Z continuous
and continuously differentiable with respect to y. Suppose also that F(x0, y0) = 0
and F−1

y (x0, y0) ∈ L(Z,Y ). Then there exist balls B̄r (x0) ⊂ U , B̄δ(y0) ⊂ V and
exactly one map T : Br(x0)→ Bδ(y0) such that T x0 = y0 and F(x,T x) = 0 on
Br(x0). This map T is continuous.

Moreover, T is as smooth as F , possibly on a smaller ball B�(x0)⊂ Br(x0), i.e.,
F ∈ Cm(U × V ) implies that T ∈ Cm(B�(x0)).

Theorem 1.8.3 (Inverse function theorem) Let X,Y be Banach space, U0 a neigh-
borhood of x0, G : U0 → Y continuously differentiable and G′(x0)

−1 ∈ L(Y,X).
Then G is a local homeomorphism, i.e., there is a neighborhood U ⊂U0 of x0 such
that G|U is a homeomorphism onto the neighborhood G(U) of y0 =Gx0. Further-
more, there is a possibly small neighborhood V ⊂ U such that G|−1

U ∈ C1(G(V ))

and (
G|−1

U

)′
(GX)=G′(x)−1 on V.

Actually G|−1
U is as smooth as G, i.e., G|−1

U ∈ Cm(G(V )) if G ∈ Cm(U0), also for
m=∞.

1.9 Krein–Rutman Theorem

Let E be a real Banach space. We denote by L(E) := L(E,E) the Banach space
of all continuous linear operators in E. Let P ∗ = {f ∈ E∗|f (x) ≥ 0,∀x ∈ P }, if
P − P =E (i.e., P is total), then P ∗ ⊂E∗ is a cone. Then for every T ∈ L(E), the
limit

r(T ) := lim
n→∞

∥∥T k
∥∥1/k

exists and is called the spectral radius of T .
Recall that a linear operator T ∈ L(E) is called compact if the image of the unit

ball is relatively compact in E. An eigenvalue λ of a linear operator T is called
simple if dim(

⋃∞
k=1 ker(λ− T )k)= 1.

Theorem 1.9.1 (Krein and Rutman, see [8]) Let (E,P ) be an OBS with total pos-
itive cone. Suppose that T ∈ L(E) is compact and has a positive spectral radius
r(T ). Then r(T ) is an eigenvalue of T and of the dual operator T ∗ with eigenvector
in P and in P ∗, respectively.


