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Abstract

Electrochemical half-cell studies on industrial electrocatalysts contribute significantly
towards our understanding offuel cell processes. However, the study of complex, often
overlapping reactions using standard methods is limited to the interpretation of a single
electrode current. Presented here are details of the design, construction and
characterisation of a differential electrochemical mass spectrometer (DEMS) that
enables the in-situ elucidation of electrode currents. The capability of the instrument is
demonstrated in two studies. In the first, DEMS is used to resolve the conversion of the
methanol oxidation reaction to carbon dioxide on high surface area carbon (HSAC)
supported Pt and PtRu catalysts, whilst the second focuses on the corrosion of
industrial HSACs, separating partial and complete oxidation processes. Despite that
both systems have long since been studied, new insights and understanding can be
obtained using DEMS.
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Chapter 1
Introduction

At the beginning of a thesis dedicated to the construction of a differential elec-
trochemical mass spectrometer (DEMS), it is essential to first present the broader
significance of the instruments intended application in the fundamental study of
fuel cell relevant electrochemical reaction processes.

1.1 Background

Rising concerns over climate change and future oil and gas supply security are
stimulating a political and economic shift towards a policy of sustainable energy
[1]. In order to achieve sustainable energy consumption, aspects of both renewable
energy and energy efficiency are required to be developed and encouraged.
Sources of renewable energy are, however, not necessarily new concepts with
wind-turbines having been present across the landscape for some time. Never-
theless, changing the way in which we produce and supply energy is only one
aspect; the energy must also be stored and used efficiently. It is in energy effi-
ciency, therefore, that more efficient chemical-electrical energy conversion
(CEEC) devices such as the fuel cell, will play an essential role in replacing
today’s inefficient energy conversion devices, such as the combustion engine [2].
In contrast to the combustion engine, CEEC devices are not restricted by the
Carnot efficiency limitations and can therefore offer higher energy conversion
efficiency for the endeavour of sustainable energy [3].

S. J. Ashton, Design, Construction and Research Application of a Differential
Electrochemical Mass Spectrometer (DEMS), Springer Theses,
DOI: 10.1007/978-3-642-30550-4_1, � Springer-Verlag Berlin Heidelberg 2012
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1.1.1 Fuel Cell Technology

The fuel cell CEEC device essentially converts chemical energy (contained in a
fuel and oxidant) directly into electrical energy, and crucially does not involve any
combustion. In principle, the device operates in a similar manner to an everyday
CEEC, the battery; however, in contrast to the battery in which a limited quantity
of the chemical energy source is stored internally, a fuel cell uses an external
source of fuel and oxidant. An overview of the principle operation of a proton
exchange membrane fuel cell (PEMFC) is depicted in Fig. 1.1.

The PEMFC consists of two platinum (Pt) electrodes: an anode and cathode
which are separated by a proton exchange membrane (PEM) barrier. The device
takes an external source of fuel and oxidant, in this case hydrogen (H2) and oxygen
(O2), and generates electricity by electrocatalytically converting them into water.
This process is a result of two electrochemical reactions which occur at each of the
electrodes. At the anode electrode, the hydrogen is oxidised to produce protons and
electrons:

Anode : H2 ! 2Hþ þ 2e� Eþ ¼ 0:0 VRHE

Once generated, both protons and electrons travel from the anode to the cathode
electrode; however, they must do so via two different paths imposed by the prop-
erties of the PEM. On one hand, the PEM is ion conducting and therefore the protons
created at the anode simply pass through the membrane barrier to the cathode. On the
other, the PEM is an electrical insulating barrier which means that the electrons must
travel to the cathode via an alternate electron conducting pathway through which the
current is harnessed. The protons and electrons are then consumed at the cathode
electrode in the reduction of oxygen in the following reaction:

Cathode :
1
2

O2 þ 2Hþ þ 2e� ! H2O E� ¼ 1:23 VRHE

The only emission from the hydrogen fuelled PEMFC, therefore, is water
vapour. The efficiency of the conversion of chemical into electrical energy in a fuel
cell is determined by the potential difference between the anode and cathode
electrode potentials. Theoretically, the maximum is 1.23 V determined by the
difference between the thermodynamic half-cell potentials (i.e. E- - E+).
Unfortunately, kinetic constraints for both anode and in particular, the cathode
electrochemical reactions make it impossible for the thermodynamic reversible
potential to be realised and large electrode overpotentials result, decreasing the
energy conversion efficiency of the fuel cell CEEC device, as depicted in Fig. 1.2.

In order to achieve acceptable energy conversion efficiency (i.e. improve the
cell potential), a significant quantity of expensive Pt electrocatalyst must be
incorporated into the fuel cell membrane electrode assembly (MEA) to reduce the
electrode overpotentials, particularly for the oxygen reduction reaction (ORR) at
the cathode. In addition to that, is an extra quantity of Pt electrocatalyst required to
ensure that the fuel cell also performs acceptably over its intended lifetime because
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the Pt electrocatalyst performance is not static but unfortunately deteriorates
through use [4, 5]. Although adding Pt electrocatalyst can indeed provide an
efficient and reliable PEMFC device, the net result of the significant Pt content
required is a rather expensive and non-commercially viable CEEC device. Con-
sequently, there is more than a strong incentive to develop electrocatalyst materials
that are more active, more durable and less expensive than today’s state-of-the-art
Pt based fuel cell electrocatalysts [6, 7].

Fig. 1.2 A graph highlighting the origins of PEMFC performance losses. The practical cell
potential (ca. 0.6 V) is significantly lower than the theoretical cell potential (*1.23 V) resulting
in a loss in the energy conversion efficiency. A significant proportion of these losses arise from
cathode due to the significant overpotential (g) required for the oxygen reduction reaction on Pt

Fig. 1.1 A diagram illustrating the principles behind operation of the hydrogen fed PEMFC.The
CEEC device possesses two electrodes that are separated via a proton exchange membrane, and
converts an external supply of fuel (H2) at the anode, and oxidant (O2) at the cathode, into
electricity and water (H2O)

1.1 Background 3



1.1.2 Electrocatalyst Development

There are two feasible approaches to the screening and characterisation of pro-
spective PEMFC electrode materials, whereby the performance of an electrocat-
alyst is either evaluated in-situ, as part of the MEA of a fuel cell; or ex-situ, in a
three–electrode electrochemical half-cell setup, typically employing a rotating disc
electrode (RDE) [7].

In the in situ approach, the electrocatalyst is fabricated into the MEA, and its
performance is assessed by measuring the current–voltage characteristics (or
polarisation curves) of the cell. The exact potentials of the anode and cathode in
such measurements in are in general not known precisely, only their potential
difference. A simplified diagram illustrating the experimental parameters involved
in such an experimental setup is depicted in Fig. 1.3.

In order to assess the performance of an electrocatalysts in an MEA, meticulous
control over the MEA fabrication and experimental variables such as fuel and
oxidant pressure, flow rate, humidity, and fuel cell operating temperature is required.
The cell performance of a particular MEA is typically often published, together with
details of the operating temperature, reactant pressure, stoichiometry, MEA prep-
aration, and cell construction etc. Whilst there is no doubt that the assessment of the
performance of an electrocatalyst in the fuel cell environment is the ultimate test an
electrocatalyst materials performance; controlling every aspect of the MEA fabri-
cation and experimental parameters in order to deduce the performance of the
electrocatalyst alone is far from trivial. Not only does the preparation of an MEA
require great effort in the research environment, but there are also numerous MEA
preparation methods which are often performed by-hand, with questionable repro-
ducibility [8]. It is therefore even more difficult to compare in situ electrocatalyst
performance measurement observations between different research groups, and it
has been suggested that the incorporation of a prospective electrocatalyst in an MEA
should perhaps rather be left to experts in MEA fabrication [9]. The substantial
effort, cost and difficulties associated with fabricating MEAs and reproducing
experimental conditions with relatively slow accumulation of data, suggests that the
in situ assessment of electrocatalyst performance alone is ambiguous, and neither an
intuitive nor cost effective approach to the screening and characterisation of pro-
spective fuel cell electrocatalyst materials.

The second approach concerning fuel cell electrocatalyst development are
ex-situ methods that typically involve fundamental research using an electro-
chemical half-cell in aqueous electrolyte, such as the three-electrode RDE setup
depicted in Fig. 1.4. The three-electrode electrochemical half-cell setup consists of
a working electrode (WE), counter electrode (CE) and reference electrode (RE),
each of which are submerged in a conducting aqueous electrolyte. In this setup, the
potential of the WE is controlled relative to the RE using a potentiostat. The RE is
itself an electrochemical half-cell, whose potential remains at a constant, fixed
value. The potentiostat therefore can be used to precisely manipulate the potential
of the WE electrode relative to the RE using electroanalytical techniques such as
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cyclic voltammetry (CV) to study electrochemical processes. The CE meanwhile
is required to balance the current flowing through the WE (no current flows
through the RE).

The performance and characteristics of electrocatalyst materials can then be
accurately evaluated by measuring the current and WE potential relationship of the
electro catalytic reaction. The principle advantage of the ex-situ three-electrode

Fig. 1.4 An illustration of an
electrochemical half-cell
RDE setup that may be
employed to characterise the
performance of a PEMFC
electrocatalyst material
ex-situ. The electrocatalyst
material is simply deposited
on a WE substrate (i.e. no
MEA fabrication is required).
The setup is rather
straightforward compared to
in situ methodologies with
fewer experimental variables,
and the current and WE
potential relationship may be
measured precisely through
the use of a RE

Fig. 1.3 An outline of the experimental setup and the numerous parameters that must be
controlled during an in situ MEA experiment for the characterisation of electrocatalyst materials.
The electrocatalyst must be fabricated into an MEA and the current is measured as a function of
cell potential. These types of experiments are rather complicated and assessing the performance
of the electrocatalyst alone is far from trivial

1.1 Background 5



electrochemical half-cell over the in situ MEA approach, in terms of electrocat-
alyst development, is essentially its capability to investigate model electrocatalyst
materials. These experimental setups have, for example, been utilised in a number
of fundamental studies with particular focus on the electrocatalysis of fuel cell
reactions, typically the ORR [7, 10], hydrogen oxidation reaction (HOR) and
methanol oxidation reaction (MOR) [11], which have been extensively studied on
model electrodes such as polycrystalline [10], single crystal [12] and well-char-
acterised alloy [11, 13–16] Pt surfaces, in order to gain a fundamental
understanding of the reaction mechanisms and the relationship between catalyst
structure and activity.

Fundamental studies on model catalysts, however, are not always entirely
applicable to the more immediate concerns of fuel cell development, although in
combination with theory [17] they do provide insights into how the ideal fuel cell
electrocatalyst might be designed [11, 18, 19]. A more applied method, therefore,
is to perform fundamental research studies in an electrochemical half-cell which
directly approach problems associated with fuel cell development needs, such as
the characterisation of the activity [7, 20–23], and durability [24, 25] of industrial
fuel cell catalysts. In comparison to in situ methods, there are fewer experimental
variables to control in the electrochemical half-cell, no MEA fabrication is
required and the potential of the WE can be controlled and measured precisely.
Consequently, the experiments are comparatively straightforward and cost effec-
tive, allowing the more rapid accumulation of experimental data. Electrochemical
half-cell setups may therefore be considered as a rather intuitive methodology for
effective fuel cell electrocatalyst material screening and characterisation, as well as
for fundamental research studies on fuel cell relevant electrochemical processes.
This is of course achieved at the expense of the electrocatalyst material being
characterised in an aqueous rather than humid gas phase environment of the fuel
cell, and consequently the extrapolation of ex-situ observations to the MEA is not
necessarily straightforward. A rather complementary approach is therefore crucial
toward developing characterisation methodologies to accelerate fuel cell electro-
catalyst development.

It is the more applied ex-situ approach to the fundamental study of fuel cell
relevant processes, and development of electrocatalyst characterisation method-
ologies in an electrochemical half-cell that is taken in our laboratory. Nevertheless,
such studies using standard RDE setups are not without their own limitations and
ambiguities. For example, the study of complex and frequently overlapping
electrochemical reactions is in principle limited to the clouded interpretation of a
single electrode current. Consequently, more sophisticated techniques that allow
the in situ elucidation of electrochemical reactants, intermediates and products, in
an electrochemical half-cell such as DEMS are an invaluable research tool.
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1.2 Outline and Objectives

The objective of this dissertation was to essentially design, construct and char-
acterise a DEMS instrument, intended for fundamental research studies on fuel cell
relevant electrochemical reaction processes. The thesis is organised in the almost
chronological order of the design, construction and development processes, fol-
lowed by two demonstrations of the DEMS application in research.

In order to achieve this goal it was important to first acquire an overview of the
DEMS literature, and evaluate the various DEMS design solutions that have
appeared previously. A review of the DEMS literature, with particular focus on
previous electrochemical cell design solutions is presented in Chap. 2.

In Chap. 3, an overview of the experimental setup along with the design of the
critical components of the DEMS instrument built as part of this work is then
presented. This section is extended to included necessary details of the hardware
and software that were required, or indeed developed to improve the operation and
usability of the DEMS instrument.

Once a working DEMS instrument was established, it was crucial to then
understand the practical aspects of the instrument and its operation, which is
covered in Chap. 4. This includes the evaluation of the effect of experimental
variables and a guide for optimising and calibrating the DEMS instrument.

In a first study, the research capabilities of the DEMS instrument is demon-
strated in Chap. 5 that revisits the MOR on HSAC supported Pt and PtRu catalysts.
Using DEMS, we are able to observe MOR products and evaluate the conversion
of methanol to CO2 as a function of the WE potential using a variety of electro-
analytical techniques.

Finally, in Chap. 6 the electrochemical oxidation of various HSAC supports is
examined and is a topic which has received relatively little attention using DEMS.
In this study, we are able to elucidate electrode currents that arise from partial and
complete oxidation of the HSAC supports, as well as the oxygen evolution reac-
tion that occurs on the polycrystalline Au substrate or supported Pt particles.
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Chapter 2
Differential Electrochemical Mass
Spectrometry

The intention of this chapter is to provide an overview of the DEMS technique, the
instrument designs and example research applications. This involves the presen-
tation and discussion of previous design solutions, which are separated into three
parts: the electrochemical cell, membrane interface and the vacuum system of the
mass spectrometer. Example experiments from the DEMS literature are then
briefly described which highlight where a particular DEMS electrochemical cell
design may be favoured. Ultimately, the appropriate design solution is determined
by the intended research application of the DEMS instrument.

2.1 Principle of Operation

Differential Electrochemical Mass Spectrometry (DEMS) is essentially an
analytical technique that combines electrochemical half-cell experimentation with
mass spectrometry. This allows the in situ, mass resolved observation of gaseous
or volatile electrochemical reactants, reaction intermediates and/or products. By
correlating the faradaic electrode current with relevant mass ion currents,
ambiguous electrochemical reaction processes can be elucidated, whereas standard
electrochemical techniques such as the RDE are otherwise limited to the inter-
pretation of a single electrode current. An overview of the DEMS instrument is
depicted in Fig. 2.1.

The instrument essentially consists of three crucial components: an electro-
chemical half-cell, a PTFE membrane interface, and a vacuum system including
the quadrupole mass spectrometer (QMS). The role of the electrochemical half-
cell is to enable controlled electrochemical experimentation at a WE of interest,
and to allow reaction products to be transported to the membrane interface. This
interface consists of a microporous PTFE membrane that partitions the aqueous
electrolyte of the electrochemical cell from the high vacuum conditions required
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