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Preface

1 Welcome to ‘‘Matrix Information Geometry’’

This book is the outcome of the Indo-French Workshop on ‘‘Matrix Information
Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering,’’
which was held at École Polytechnique and Thales Research and Technology
Center, Palaiseau, France, in February 23–25, 2011.

The workshop was generously funded mostly by the Indo-French Centre for the
Promotion of Advanced Research (IFCPAR). During the event, 22 renowned
invited French and Indian speakers gave lectures on their areas of expertise within
the field of matrix analysis and processing.

From these speakers, a total of 17 original contributions or state-of-the-art
chapters have been prepared in this edited book. All articles were thoroughly peer-
reviewed (from 3 to 5 reviewers) and improved according to the suggestions,
remarks or comments of the referees.

For the reader’s convenience, the 17 contributions presented in this book are
organized into three parts, as follows:

1. State-of-the-art surveys & original matrix theory papers,
2. Advanced matrix theory for radar processing,
3. Matrix-based signal processing applications (computer vision, economics,

statistics, etc.)

Further information including the slides of speakers and photos of the event can
be found on-line at:

http://www.informationgeometry.org/MIG/
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2 Group Photo (24th February 2011)

3 Organization

The 17 chapters of the book have been organized into the following three parts:

1. State-of-the-art surveys & original matrix theory work:

• Supremum/infimum and nonlinear averaging of positive definite symmetric
matrices (Jesús Angulo)

• The Riemannian mean of positive matrices (Rajendra Bhatia)
• The geometry of low-rank Kalman filters (Silvère Bonnabel and Rodolphe

Sepulchre)
• KV cohomology in information geometry (Michel Nguiffo Boyom and Paul

Mirabeau Byande)
• Derivatives of multilinear functions of matrices (Priyanka Grover)
• Jensen divergence-based means of SPD matrices (Frank Nielsen Meizhu Liu,

Baba C. Vemuri)
• Exponential barycenters of the canonical Cartan connection and invariant

means on Lie groups (Xavier Pennec and Vincent Arsigny)

2. Advanced matrix theory for radar processing:

• Medians and means in Riemannian geometry: existence, uniqueness and
computation (Marc Arnaudon, Frédéric Barbaresco and Le Yang)

This photo was taken in the ‘‘Cour Ferrié’’ of École Polytechnique, France
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• Information geometry of covariance matrix: Cartan-Siegel homogeneous
bounded domains, Mostow/Berger fibration and Fréchet Median (Frédéric
Barbaresco)

• On the use of matrix information geometry for polarimetric SAR image
classication (Pierre Formont, Jean-Philippe Ovarlez, and Frédéric Pascal)

• Doppler information geometry for wake turbulence monitoring (Zhongxun Liu
and Frédéric Barbaresco)

3. Matrix-based signal processing applications:

• Review of the application of matrix information Theory in Video Surveillance
(M.K. Bhuyan and Malathi.T)

• Comparative evaluation of symmetric SVD algorithms for real-time face and
eye tracking (Tapan Pradhan, Aurobinda Routray, and Bibek Kabi)

• Real-time detection of overlapping sound events with non-negative matrix
factorization (Arnaud Dessein, Arshia Cont, Guillaume Lemaitre)

• Mining matrix data with Bregman matrix divergences for portfolio selection
(Richard Nock, Brice Magdalou, Eric Briys, and Frank Nielsen)

• Learning mixtures by simplifying kernel density estimators (Olivier Schwan-
der and Frank Nielsen)

• Particle filtering on Riemannian manifolds: Application to covariance matrices
tracking (Hichem Snoussi).

Besides keywords mentioned at the beginning of each chapter, a global index of
terms is provided at the end of the book.

4 Sponsors

We gratefully acknowledge the generous financial support of the Indo-French
Centre for the Promotion of Advanced Research (IFCPAR/CEFIPRA) and the
following sponsor institutions without which we could not have successfully
organized this meeting:

• Agence Nationale pour la Recherche (ANR, Contract ANR-07-BLAN-328,
GAIA: Computational Information Geometry and its Applications)

• École Polytechnique, and specially the Computer Science Department (LIX) of
Ecole Polytechnique

• CEREGMIA, University of Antille-Guyane, Martinique.
• Sony Computer Science Laboratories Inc
• Thales

In particular, we would like to warmly thank Dr. A. Amudeswari, Director of
the Indo French Centre for the Promotion of Advanced Research. In addition, we
would like to express our deep gratitude to Amit Kumar Mishra (Indian Institute of
Technology Guwahati, now a Senior Lecturer at University of Cape Town) who
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was instrumental in the early stages to kick off the meeting.We gratefully
acknowledge the editorial and production staff of Springer-Verlag with special
thanks to Dr. Christoph Baumann and Ms. Carmen Wolf.

We would also like to thank Frédéric Barabaresco (Thales), François
Le Chevalier (Thales Air Operations), Olivier Schwander (École Polytechnique,
LIX), Ms. Corinne Poulain (École Polytechnique, LIX) and Ms. Evelyne Rayssac
(École Polytechnique, LIX) for providing us with valuable assistance.

Frank Nielsen (5793b870) expresses his gratitude to Prof. Mario Tokoro and
Dr. Hiroaki Kitano, as well as all other members of Sony Computer Science
Laboratories, Inc.

It is our hope that this collection of contributed chapters presented in this book
will be a valuable resource for researchers working with matrices, and for graduate
students. We hope the book will stimulate further research into this fascinating
interface of matrices, geometries and applications.

April 2012 Prof. Frank Nielsen
Prof. Rajendra Bhatia
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Part I
State-of-the-Art Surveys and Original

Matrix Theory Work



Chapter 1
Supremum/Infimum and Nonlinear Averaging
of Positive Definite Symmetric Matrices

Jesús Angulo

1.1 Introduction

Mathematical morphology is a nonlinear image processing methodology originally
developed for binary and greyscale images [33]. It is based on the computation
of maximum

∧
(dilation operator) and minimum

∨
(erosion operator) in local

neighborhoods called structuring elements [36]. That means that the definition of
morphological operators needs a partial ordering relationship ≤ between the points
to be processed. More precisely, for a real valued image f : E → R, the flat dilation
and erosion of image f by structuring element B are defined respectively by

δB( f )(x) =
{

f (y) : f (y) =
∧

z

[ f (z)], z ∈ Bx

}

. (1.1)

εB( f )(x) =
{

f (y) : f (y) =
∨

z

[ f (z)], z ∈ B̌x

}

, (1.2)

where Bx ⊂ E is the structuring element centered at point x ∈ E , and B̌ is the
reflection of structuring element with respect to the origin. Evolved operators are
based on dilations and erosions: openings/closings, residues (gradient, top-hats),
alternate sequential filters, geodesic operators (opening/closing by reconstruction,
levelings). Morphological operators and filters perform noise suppression, contrast
image enhancement, structure extraction and multi-scale decomposition, etc. [36].

J. Angulo (B)
CMM-Centre de Morphologie Mathématique,
Mathématiques et Systèmes, MINES ParisTech,
35, rue Saint Honoré, Cedex, 77305 Fontainebleau, France
e-mail: jesus.angulo@mines-paristech.fr

F. Nielsen and R. Bhatia (eds.), Matrix Information Geometry, 3
DOI: 10.1007/978-3-642-30232-9_1, © Springer-Verlag Berlin Heidelberg 2013



4 J. Angulo

Theory of morphological operators has been formulated in the general framework
of complete lattices [23]: a complete lattice (L,≤) is a partially ordered set L with
order relation ≤, a supremum written

∨
, and an infimum written

∧
, such that every

subset of L has a supremum (smallest upper bound) and an infimum (greatest lower
bound). Let L be a complete lattice. A dilation δ : L → L is a mapping commuting
with suprema, i.e., δ

(∨
i Xi

) = ∨
i δ (Xi ). An erosion ε : L → L commutes with

infima, i.e., δ
(∧

i Xi
) = ∧

i δ (Xi ). Then the pair (ε, δ) is called an adjunction on L
if for very X,Y ∈ L, it holds: δ(X) ≤ Y ⇔ X ≤ ε(Y ). Mathematical morphology is
also characterized by its domain of invariance in the complete lattice L) of the space
of image values. Morphological operators ψ(·) : L → L commutate with a group
of transformations G(·) : L → L of image values, i.e., for any f (x) ∈ F(E,L) we
have ψ(G( f ))(x) = G(ψ( f ))(x) or

f (x) −→ ψ( f )(x)
� �

G( f )(x) −→ ψ(G( f ))(x)

Obviously the commutativity of the product G◦ψ is equivalent to the invariance of the
ordering ≤ under the transformation G(·). The group of invariant transformations
G(·) depends on the physical properties of each particular L, e.g., in gray level
images, morphological operators commute with anamorphosis (i.e., G(·) is a strictly
increasing mapping).

Dilation and erosion can be also computed using an eikonal PDE [2]:

∂ut = ± ‖ ∇u ‖, (1.3)

with initial conditions u(x, y, 0) = f (x, y). The sign + leads to the dilation and the
sign—to an erosion using an isotropic structuring element. Some advantages of the
continuous formulation are, on the one hand, the fact that required elements (partial
derivatives and Euclidean norm) do not required an ordering and, on the other hand,
as other standard methods for numerical solutions of PDEs, the continuous approach
allows for sub-pixel accuracy of morphological operators.

In addition, dilation and erosion can be also studied in the framework of convex
analysis, as the supremum/infimum convolution in the (max,+)/(min,+) algebras,
with the corresponding connection with the Legendre transform [26]. More precisely,
the two basic morphological mappings F(E,R)→ F(E,R) are given respectively
by

δb( f )(x) = ( f ⊕ b)(x) = sup
h∈E

( f (x − h)+ b(h)) , (1.4)

and
εb( f )(x) = ( f � b)(x) = inf

h∈E
( f (x + h)− b(h)) . (1.5)

where the canonical family of structuring functions are the paraboloids

ba(x) = −‖x‖2

2a .
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Matrix and tensor valued images appear nowadays in various image processing
fields and applications [43]:

• Structure tensor images representing the local orientation and edge informa-
tion [19], which are computed by Gaussian smoothing of the dyadic product
∇u∇uT of an image u(x, y):

G(u)(x, y) = ωσ ∗
(
∇u(x, y)∇u(x, y)T

)
=

(
gxx (x, y) gxy(x, y)
gxy(x, y) gyy(x, y)

)

where ∇u(x, y) =
(
∂u(x,y)
∂x ,

∂u(x,y)
∂y

)T
is the 2D spatial intensity gradient and

ωσ stands for a Gaussian smoothing with a standard deviation of σ. Hence, the

components of the matrix are gxx (x, y) = ωσ ∗
(
∂u(x,y)
∂x

)2
, gyy(x, y) = ωσ ∗

(
∂u(x,y)
∂y

)2
and gxy(x, y) = ωσ ∗

(
∂u(x,y)
∂x

∂u(x,y)
∂y

)
.

• Diffusion tensor magnetic resonance imaging (DT-MRI) [10] which describes the
diffusive property of water molecules using 3×3 positive semidefinite matrix-field,
i.e., image value at each pixel (x, y) is a tensor:

D(x, y) =
⎛

⎝
dxx (x, y) dxy(x, y) dxz(x, y)
dxy(x, y) dyy(x, y) dyz(x, y)
dxz(x, y) dyz(x, y) dzz(x, y)

⎞

⎠

where dii (x, y) describes molecular mobility along each direction i of the space
and di j (x, y) the correlation between directions i and j of the space.

• Covariance matrices in different modalities of radar imaging [8, 9], including
matrices of particular structure as the Toeplitz covariance matrices (from reflection
coefficients parametrization) [47].

In this chapter we are interested in matrix-valued images considered as a spatial
structured matrix field f (x) such that

f : E ⊂ Z
2, Z

3 −→ PDS(n)

where E is the support space of pixels and, in particular, we focuss on (real) positive
definite symmetric n × n matrices PDS(n). The reader interested in positive definite
matrices is referred to the excellent monograph [11], which considers issues on
functional analysis, harmonic analysis and differential geometry in the manifold
of positive definite matrices, and in particular it is explained recent work on the
geometric mean of several matrices which will be used in this study.

In order to visualize the PDS(n) matrices, and operations between them, we
consider the classical property which said that a matrix A ∈ PDS(n) corresponds to
a quadratic form

qA(x) = xT A−1x, x ∈ R
n .
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Fig. 1.1 Example of two
matrices PDS(2) depicted by
their ellipses

A1 =
3 2
2 3

A2 =
2 −1

−1 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Set of matrices (in blue)

Therefore, the matrix A can be represented by the isohypersurface qA(x), i.e., the
ellipsoid xT A−1x = 1 centered around 0. Figure 1.1 gives an example for PDS(2).
In the context of DTI, the ellipoids have a natural interpretation: if the matrix A ∈
PDS(3) represents the diffusivity at a particle, then the ellipsoid encloses the smallest
volume within which this particle will be found with some required probability after
a short time interval.

The application of classical real-valued morphological operators to vector-valued
images such as colour or multispectral images is not straightforward [39, 40]. To
consider separately each vector component independently does not generally lead
to useful operators [34]. In the framework of matrix-valued spaces, the extension
of mathematical morphology to images f ∈ F(E,PDS(n)) requires also adapted
methods but this extension is neither natural nor unique.

1.1.1 State-of-the-Art

To the best of our knowledge, extension of mathematical morphology to matrix-
valued images has been addressed exclusively by Burgeth et al. [15, 16]. They have
considered two different approaches. The first one [16] is based on the Löwner par-
tial ordering ≤L : ∀A, B ∈ PDS(n), A ≤L B ⇔ B − A ∈ PDS(n), and where
the supremum and infimum of a set of matrices are computed using convex matrix
analysis tools (penumbral cones of each matrix, minimal enclosing circle of basis,
computation of vertex of associated penumbra matrix). There is a geometrical inter-
pretation viewing the tensors PDS(n) as ellipsoids: the supremum of a set of tensors
is the smallest ellipsoid enclosing the ellipsoids associated to all the tensors; the
infimum is the largest ellipsoid which is contained in all the ellipsoids. The second
approach [15] corresponds to the generalization of the morphological PDE given
in Eq. (1.3) to matrix data: the numerical schema of Osher and Sethian for diffu-
sion equation is generalized to matrices. Both approaches were compared in [15] for
various basic morphological operators, mainly for regularization (smoother results
for PDE framework than for Löwner ordering) and for edge/details extraction in
DT-MRI examples.
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Besides the Löwner ordering, there exist a theory on ordering of matrices, which
is almost limited to Hermitian nonnegative definite matrices; a recent book [27]
on the topic studies in depth this topic. There are three well characterized partial
orderings [37, 7, 22]: the Löwner ordering ≤L (defined above); the minus ordering
A ≤− B ⇔ rank(B − A) = rank(B) − rank(A); and the star ordering A ≤∗ B
⇔ A2 = AB. They are related between them according to A ≤∗ B ⇒ A ≤− B ⇒
A ≤L B. It is evident that the minus and the star orderings are two restrictive and
consequently without interest for matrix-valued image processing.

As we have just mentioned above, finding the unique smallest enclosing ball of a
set of points in a particular space (also known as the minimum enclosing ball or the
1-center problem) is related to the Löwner ordering in the case of PDS(n) matrices.
Some recent works in the topic [29, 1] are therefore appropriate for sup/inf compu-
tation. In particular, it was introduced in [4] a generic 1-center iterative algorithm
for Riemannian geometries, which can be instantiated for example to the case of the
manifold of PDS(n) matrices.

From the applications viewpoint, the mean of PDS(n))matrices is very important
in DTI denoising and analysis [41, 25]. However, to our knowledge, the previous
theoretical results of mathematical morphology for PDS(n)) matrices [15, 16] have
not yet proved their interest for real applications, over and above some illustrative
examples from small DTI samples.

1.1.2 Aim of the Study and Chapter Organisation

The goal of this work is to introduce various alternatives ways to extend mathematical
morphology to the space PDS(n), which are different from those introduced by
Burgeth et al. [15, 16].

More precisely, let A = {Ai }N
i=1 be a finite set of N matrices, where Ai ∈

PDS(n), we are aiming at computing the supremum sup (A) = A∨ and the infimum
inf (A) = A∧ matrices, such that A∨, A∧ ∈ PDS(n). As mentioned above, if the
operators sup (A) and inf (A) are defined, dilation and erosion according to Eqs. (1.1)
and (1.2) are stated for any image f ∈ F(E,PDS(n)) and any structuring element.

Three different families of approaches are explored in the rest of the document.

• Section 1.2 deals with total orderings for sup-inf input-preserving operators. The
basic idea consists in defining as supremum of a set of matrices, the matrix which
is bigger according to the lexicographic priority of eigenvalues or according to
a given priority between some matrix invariants associated to the eigenvalues.
This kind of approaches is valid when a total ordering is defined. Consequently,
the spectral information should be completed with additional conditions in the
lexicographic cascade.
In cases where a pair of reference matrix sets is defined (typically, a training set
of matrices associated to the foreground and a training set of matrices associated
to the background), it is also possible to define a total ordering according to the
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distances of each matrix to both reference sets. In such a technique, the distance
between matrices is the key element for the ordering.

• Section 1.3 discusses partial spectral ordering and inverse eigenvalue problem. By
considering as partial ordering the product ordering of eigenvalues, it is possible to
define the sup/inf of a set of matrices as the matrix having as eigenvalues the sup/inf
of eigenvalues. However, the definition of the orthogonal basis of corresponding
supremum is not straightforward. We propose two alternatives, the most interesting
one based on using as orthogonal basis the one obtained from the geometric mean
of the matrices.

• The notion of counter-harmonic mean is introduced in Sect. 1.4 as a nonlinear aver-
aging procedure to calculate pseudo-morphological operators. We have recently
shown in [3] how the counter-harmonic mean [14] can be used to introduce non-
linear operators which asymptotically mimic dilation and erosion. It is shown how
the extension of counter-harmonic mean to symmetric positive definite matrices
is very natural and leads to an efficient operator to robustly estimate the supre-
mum/infimum of a set of matrices.

Application of these supremum/infimum definitions to compute morphological
operators on PDS(n) matrix-valued images is illustrated in Sect. 1.5. The prelimi-
nary comparative results are useful to understand the potential interest of nonlinear
filtering on matrix-valued images but also to show that there is no universal ordering
strategy for all image processing tasks.

Finally, Sect. 1.6 of conclusions and perspectives close the chapter.

1.2 Total Orderings for Sup-Inf Input-Preserving Sets
of PDS Matrices

Before introducing total orderings based on lexicographic cascades of spectral invari-
ants as well as on kernelized distances to reference matrices, we start this section by
a discussion on the difference between partial and total ordering.

1.2.1 Partial Ordering vs. Total Ordering

We remind that ≤ is a partial order (or antisymmetric preorder) over the set of
PDS(n)matrices if for all A, B, and C in PDS(n), we have that: A ≤ A (reflexivity);
if A ≤ B and B ≤ A then A = B (antisymmetry); if A ≤ A and B ≤ C then A ≤ C
(transitivity).

For matrices A, B elements of the partially ordered set PDS(n) according to ≤,
if A ≤ B or B ≤ A, then A and B are comparable. Otherwise they are incompara-
ble. That involves that using a partial ordering ≤ over PDS(n) the computation of
supremum (resp. infimum) of a set of matrices A can produce the situation where
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two matrices which are incomparable are also bigger (smaller) than any of the other
matrices of A.

A typical case of partial ordering for matrices is the one which corresponds to
the product order of the matrix components, i.e., the matrix components are taken
marginally. For instance for matrices A, B ∈ PDS(2) we have

A =
(

a11 a12
a21 a22

)

≤marg B =
(

b11 b12
b21 b22

)

⇔
{

a11 ≤ b11 and a12 ≤ b12 and
a21 ≤ b21 and a22 ≤ b22

The marginal (or componentwise) supremum/infimum associated to the product
partial ordering are given respectively by

marg
sup (A) =

(∨
i a11,i

∨
i a12,i∨

i a21,i
∨

i a22,i

)

and
marg
inf (A) =

(∧
i a11,i

∧
i a12,i∧

i a21,i
∧

i a22,i

)

As we can expect, the obtained supremum/infimum can be a new matrix which
may not belong to A: this is known as the “false color” problem in multivariate
morphology [35]. Similarly, two different sets of matrices A1 and A2 can lead to
the same supremum/infimum and consequently these subsets will not be comparable
between them.

However, the fundamental drawback of the product order of matrices ≤marg

applied to PDS(n) is the fact that it is not guaranteed that A∨ and A∧ belongs
to PDS(n), e.g.,

A1 =
(

6 3
3 2

)

∈ PDS(2), A2 =
(

10 3
3 1

)

∈ PDS(2)

and the infimum matrix:

A1

marg∧
A2 =

(
6 3
3 1

)

is symmetric but not positive definite.
A partial order under which every pair of elements is comparable is called a total

order (or linear order). A totally ordered set is also called a chain. Hence, we have
a total ordering ≤ over the set PDS(n) if for any two different matrices A �= B, we
have A < B or B < A, i.e., all the PDS(n) matrices are ordered according to ≤.

Besides this practical interest of having comparable elements, the other advantage
of total ordering is associated to the following notion.

Definition 1 Given A = {Ai }N
i=1, a finite set of N matrices, where Ai ∈ PDS(n),

the supremum and infimum are input-preserving iff A∨ ∈ A and A∧ ∈ A.
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Obviously, any sup/inf input-preserving operator involves necessarily supre-
mum/infimum matrices belonging to the set PDS(n).

We have now this classical result which can be easily proven.

Proposition 1 Any total ordering in PDS(n) leads to sup/inf input-preserving oper-
ators.

We can now introduce two families of total orderings.

1.2.2 Lexicographic Total Orderings Based
on Tensor Invariants

Let us consider that the N matrices of A = {Ai }N
i=1 have been factorized in their

spectral form, i.e.,
Ai = Vi�i V T

i

where �i is the diagonal matrix of ordered eigenvalues

�i = diag (λ1(Ai ), · · · ,λn(Ai )) ,

with λ1(Ai ) ≥ · · · ≥ λn(Ai ), and Vi ∈ SO(n) is the orthogonal matrix of eigenvec-
tor basis

Vi =
( −→
v 1(Ai ), · · · ,−→v n(Ai )

)
,

such that ‖−→v 1(Ai )‖ = 1 and 〈−→v j (Ai ),
−→
v k(Ai )〉 = 0, ∀ j �= k. This representation

is frequently used in this study.
We introduce the lexicographic spectral partial ordering ≤0

lex as follows.

Definition 2 Let A and B be two PDS(n) matrices. We define that A ≤0
lex B if

the ordered sequence of the eigenvalues of A is lexicographically smaller or equal
to the corresponding sequence of eigenvalues of B, i.e., if there exists an index j ,
1 ≤ j ≤ n such that λi (A) = λi (B) for all i < j , and λ j (A) < λ j (B) if j ≤ n

To be precise, it is a total ordering for the space of eigenvalues however is only an
antisymmetric preorder for PDS(n). In fact, using their interpretation as ellipsoids,
two unequal matrices A and B can have the same shape, given by their eigenvalues
but different orientation in the space given by the orthogonal matrix basis. The most
natural way to complete the spectral ordering in order to have a total spectral ordering
involves fixing a reference orthogonal basis R0, in such a way that for A and B having
the same eigenvalues the biggest is the matrix having an orthogonal basis closer to R0;
this distance should be of course measured in SO(n). An additional question should
be taking into account concerning the choice of R0. If the value of the reference
is independent of the image to be morphologically processed involves that a global
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transformation of the space values will induce a modification of the ordering; for
instance a rotation of all the matrix-valued of the image by a change of origin during
the acquisition. Consequently, in order to be invariant to the reference R0, its choice
should be intrinsically done from the image values. In particular, we can consider
that an useful R0 corresponds to the mean value of the matrix basis of the image,
where the computation of the mean value is done in SO(n).

One of the difficulties of the lexicographic ordering ≤0
lex is the lack of geometric

interpretation of the induced supremum and infimum. A more general strategy to
define a spectral-based total orderings lies in associating to each PDS(n) matrix a
set of (scalar) invariants which have a geometric interpretation. Then, to define a
priority between the invariants in order to build a lexicographic ordering according
to these invariants. Finally, to complete with additional condition of distance from
R0 to ensure the totality of the ordering.

For instance, given A ∈ PDS(3), let (S1(A), S2(A), S3(A)) be the set of funda-
mental symmetric polynomials:

• S1(A) = λ1(A)+ λ2(A)+ λ3(A) (mean diameter of the ellipsoid),
• S2(A) = λ1(A)λ2(A) + λ2(A)λ3(A) + λ1(A)λ3(A) (second order relation of

diameters),
• S3(A) = λ1(A)λ2(A)λ3(A) (volume of ellipsoid).

we can define various other orderings, by changing the priorities between these
invariants, e.g.,

(i) Priority is given to the mean diameter of the ellipsoid, then to the main eccen-
tricity finally to the volume:

A ≤1
lex B ⇔

⎧
⎪⎨

⎪⎩

S1(A) < S1(B) or
S1(A) = S1(B) and λ1(A)

S1(A)
<

λ1(B)
S1(B)

or

S1(A) = S1(B) and λ1(A)
S1(A)

= λ1(B)
S1(B)

and S3(A) ≤ S3(B)

(ii) Priority is given to the volume of the ellipsoid, then to the main eccentricity
finally to the mean diameter:

A ≤2
lex B ⇔

⎧
⎪⎨

⎪⎩

S3(A) < S3(B) or
S3(A) = S3(B) and λ1(A)

S1(A)
<

λ1(B)
S1(B)

or

S3(A) = S3(B) and λ1(A)
S1(A)

= λ1(B)
S1(B)

and S1(A) ≤ S1(B)

(iii) Priority is given to the “size” of the ellipsoid, then to the global eccentricity
then to the main eccentricity:

A ≤3
lex B ⇔

⎧
⎪⎨

⎪⎩

S3(A)
S1(A)

<
S3(B)
S1(B)

or
S3(A)
S1(A)

= S3(B)
S1(B)

and λ1(A)+λ2(A)
S1(A)

<
λ1(B)+λ2(B)

S1(B)
or

S3(A)
S1(A)

= S3(B)
S1(B)

and λ1(A)+λ2(A)
S1(A)

= λ1(B)+λ2(B)
S1(B)

and λ1(A)
S1(A)

≤ λ1(B)
S1(B)
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These geometric parameters of the ellipsoids in PDS(n) are often used in DT-
MRI [45, 31] (bulk mean diffusivity, isotropy, fractional anisotropy, etc.), therefore
the lexicographic orderings yields easy understanding dilation/erosion operators.
Other orthogonal tensor invariant as the proposed in [18] can be also considered for
the construction of total orderings.

Figure 1.2 provides an example of supremum and infimum computation for a
set of 10 PDS(2) matrices using the lexicographic ordering ≤0

lex . This result can
be compared with the sumpremum and infimum obtained by the product order of
matrices ≤marg .

From the previous example, we see that, for instance, according to≤0
lex , the matri-

ces are ordered mostly by the first priority in the lexicographic cascade. Generally, it
is possible to reduce the “contribution” to the ordering schema of the first considered
invariant by a simple quantization of this invariant. Therefore, we can introduce the
α-modulus lexicographic ordering ≤3

lex,α as

A ≤3
lex,α B ⇔

⎧
⎪⎨

⎪⎩

� S3(A)
α � < � S3(B)

α � or
� S3(A)

α � = � S3(B)
α � and λ1(A)/S1(A) < λ1(B)/S1(B) or

� S3(A)
α � = � S3(B)

α � and λ1(A)/S1(A) = λ1(B)/S1(B) and S1(A) ≤ S1(B)

where �x� maps to the largest integer not greater than x and where the value of
parameter α allows controlling the degree of quantization of the first condition. For
this example, the ellipsoids are roughly compared by their volume, and ellipsoid of
similar volume are then compared according to their main eccentricities.

We can consider the main properties of the lexicographic-based total orderings.

Proposition 2 Lexicographic total orderings based on tensor invariants, completed
with distance to a reference R0, have the following properties.

• The associated supremum and infimum involve dilation and erosion operators in
the sense that the dilation (erosion) commutes with the supremum (infimum) and
that the dilation/erosion forms an adjunction.

• Since the sumpremum and infimum are input preserving, the dilation and erosion
produce symmetric positive definite matrices.

• Dilation and erosion are rotationally invariant if the reference R0 follows the same
rotation as the image values.

• More generally, dilation and erosion are invariant to any contrast mapping of the
matrix image, that is, to any transformation which modifies the eigenvalues values
in such a way that ordering is preserved.

The proofs are relatively straightforward. We can said as conclusion that these
orderings yield a totally ordered complete lattice over PDS(n) which is compatible
with the general formulation of dilation/erosion and which have good properties of
invariance.
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Fig. 1.2 a Set Aof N = 10 PDS(2)matrices. b Supremum (in red) and infimum (in magenta) using
the product order of matrices≤marg (componentwise processing); the marginal mean of the matrices
is also given in green. c Supremum (in red) and infimum (in magenta) using the lexicographic total
ordering ≤0

lex , which is input-preserving

1.2.3 Lexicographic Total Orderings Based
on Prior Sets (B,F)

In scalar morphology, the “foreground” is associated to the maximal intensity value
� (i.e., white) and the “background” to the minimal intensity value ⊥ (i.e., black).
The supremum brings towards � and the infimum towards ⊥. Using this viewpoint
we have recently formulated a general notion of ordering in vector spaces [39] by
fixing the references �, ⊥ and using a supervised learning algorithm. This approach
can be naturally extended to non Euclidean spaces such as PDS(n).

Let us consider a training set of I matrices associated to the “foreground”
F = {Fi }I

i=1 and a training set of J matrices associated to the “background”
B = {Bi }J

i=1. Let
h(B,F) : PDS(n)→ R

be a surjective mapping, such that for any A ∈ PDS(n) we have
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h(B,F)(A) =
(

I∑

i=1

K (Fi , A)

)

−
⎛

⎝
J∑

j=1

K (Bi , A)

⎞

⎠ , (1.6)

where the kernel function K (·, ·) is a mapping

K (R, A) : PDS(n)× PDS(n)→ R
+ ∪ {0}

Typically, we can consider for instance a radial basis function as kernel

Kα(R, A) = e−
d(R,A)2

α , (1.7)

where d(R, A) is a distance between the PDS(n) matrices R and A.
Once again, the mapping h(B,F)(·) only involves a preorder on the space PDS(n)

since two unequal matrices can be mapped on the same real value. The idea to have
a complete totally ordered set, i.e., a chain from � to ⊥, consists in associating any
lexicographic cascade after the computation of the h-mapping.

Definition 3 The lexicographic-completed (B,F)-supervised ordering for any pair
of matrices A and C is given by

A ≤(B,F)sup C ⇔{
h(B,F)(A) ≤ h(B,F)(C) or
h(B,F)(A) = h(B,F)(C) and {Lexicographic cascade of tensor invariants}

In practice, we remark that the main ingredient of this kind of approach is the
distance between the pair of matrices d(R, A). Many distance and dissimilarity
measures have proposed in the literature for the case of DT-MR [31]. We consider
that the most useful distances are those which are intrinsically adapted to the geometry
of the space PDS(n):

• Riemannian distance. The set of n×n positive matrices is a differentiable manifold
with a natural Riemannian structure (see [11] for a deeper understanding). By
integration of its metric over their shortest path on the manifold, given in next
section, it is obtained the Riemannian distance for two square positive matrices:

dRie(R, A) =
∣
∣
∣log

(
R−1/2 AR−1/2

)∣
∣
∣
F
=

(
N∑

i=1

log2 λi (R
−1 A)

)1/2

. (1.8)

This distance is also known as affine-invariant since it is invariant to affine trans-
formation [28].

• Log-Euclidean distance. This notion proposed by [6] coincides with the usual
Euclidean (arithmetic) mean in the domain of matrix logarithms:
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dL E (R, A) =
√

tr (log(R)− log(A))2. (1.9)

We remind that the matrix logarithm log(M) is defined as the inverse of the matrix
exponential exp(M) = ∑+∞

k=0 Mk/k!. One should note that for general matrices,
neither the uniqueness nor the existence of a logarithm is guaranteed for a given
invertible matrix [17]. However, the logarithm of a PDS(n)matrix is well defined
and is a symmetric matrix. Distance dL E (R, A) is defined by a Riemannian point
of view of a particular vector space structure. Log-Euclidean distance satisfies a
number of invariance properties [6]: distance is not changed by inversion (since the
inverse of matrices only results in the multiplication by −1 of their logarithms);
distance are by construction invariant with respect to any logarithm multiplica-
tion (i.e., invariance to any translation in the domain of logarithms); distance is
invariant to orthogonal transformation and scaling (but not to any general affine
transformation).

Finally, concerning the properties of these total orderings, besides the ones which
hold for any total ordering, the invariance properties will depend on the invariance
of the chosen distance metric as well as how the training set of matrices (B,F) are
selected.

1.3 Partial Spectral Ordering for PDS Matrices
and Inverse Eigenvalue Problem

In this section, we continue to use the spectral decomposition of PDS(n) matrices.
We start by introducing the spectral product partial ordering ≤sp as follows.

Definition 4 Let A and B be two PDS(n) matrices. We say that A ≤sp B if the
ordered sequence of the eigenvalues of A (λ1(A) ≥ · · · ≥ λn(A) ≥ 0) is lexi-
cographically smaller or equal to the corresponding sequence of eigenvalues of B,
(λ1(B) ≥ · · · ≥ λn(B) ≥ 0), i.e., λ j (A) ≤ λ j (B), ∀ j = 1, · · · , n.

The product ordering ≤sp of eigenvalues does not be confused with their lexico-
graphic ordering ≤0

lex . In any case, as we have previously discussed, it is easy to see
that ≤sp is only a preorder over PDS(n): the orientation information represented by
the eigenvectors is totally ignored (i.e., it does not allow to distinguish between a
matrix and rotated version of it).

By using the spectral partial ordering ≤sp, the spectral supremum and infimum
of a family of matrices A = {Ai }N

i=1 are respectively the matrices

Asp
∨ = sup

sp
(A) = V∨�∨V T∨ , (1.10)

Asp
∧ = inf

sp
(A) = V∧�∧V T∧ , (1.11)
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where the diagonal matrices of the supremum and the infimum are

�∨ = diag

(
∨

i

λ1(Ai ), · · · ,
∨

i

λn(Ai )

)

, (1.12)

and

�∧ = diag

(
∧

i

λ1(Ai ), · · · ,
∧

i

λn(Ai )

)

, (1.13)

that is, they are obtained as the marginal supremum and infimum of eigenvalues.
Obviously, the question is how to define now supremum/infimum orthogonal basis

V∨ and V∧, which can be interpreted as solving an “inverse eigenvalue problem”.
In fact, this way of decoupling the shape of the ellipsoids and its orientation have
used for instance in [12, 13] for the computation of the distances or geometric
means of (fixed) low rank matrices. More precisely, it can be view as a mapping
from PDS(n) onto the product space R

n × SO(n), where the supremum/infimum
on PDS(n) is obtained by an operation on R

n (the vector space of the eigenvalues)
which is simply the marginal vector supremum/infimum and an operation on the
space of the eigenvectors SO(n).

We can already remark that in such a case, the supremum/infimum on PDS(n)
are not induced by a partial ordering on this space and consequently the operators
obtained will not be strictly morphological dilation/erosion.

1.3.1 Spectral Sup/Inf on Geometric Mean Basis

A first alternative is to associate to both V∨ and V∧ the orthogonal basis of Aμ, the
matrix mean of A.

There are different alternatives which have been considered in the literature for
computing means of symmetric positive definite matrices [6, 12, 28]. The geometric
mean obtained from the Riemannian framework is without any doubt the most inter-
esting. Let us recall the basic elements which can be found in [11]. The Riemannian
metric for a matrix A in the manifold PDS(n) is given by the differential

ds =
(

tr(A−1d A
)1/2

. (1.14)

The (unique) geodesic between two matrices A, B ∈ PDS(n) has a parametrization:

γ(t) = A1/2et log
(

A−1/2 B A−1/2
)

A1/2 = A1/2
(

A−1/2 B A−1/2
)t

A1/2, (1.15)

with t ∈ [0, 1], where γ(0) = A and γ(1) = B. The Riemannian mean between A
and B is defined as
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A ◦ B = γ(1/2) = A1/2
(

A−1/2 B A−1/2
)1/2

A1/2, (1.16)

which corresponds to the geometric mean of the matrices, i.e., a symmetrized version
of (AB)1/2.

The extension of the geometric mean computation of more than two matrices is
solved using the notion of Riemannian center, known as Karcher-Frechet barycen-
ter [20, 24]. A fast and efficient algorithm proposed by F. Barbaresco [8, 9] is
summarized as follows.

Definition 5 For a set of matrices A = {Ai }N
i=1, the Karcher-Frechet barycenter is

computed as Aμ(A) = Xk+1 such that

Xk+1 = X1/2
k e

ε
∑N

i=1 log
(

X−1/2
k Ai X−1/2

k

)

X1/2
k , (1.17)

where ε > 0 is the step parameter of the gradient descent.

For robustness purposes, it is probably more appropriate to consider the notion of
Riemannian median [46, 5].

In summary, the algorithm for supremum matrix Asp
∨ :

1. Compute marginal supremum of eigenvalues: �∨ = diag
(∨

i λ1(Ai ), · · · ,∨i
λn(Ai ))

2. Compute Karcher-Frechet barycenter: Aμ = Vμ�μV T
μ

3. Compute inverse spectral matrix: Asp
∨ = Vμ�∨V T

μ

Mutatis mutandis ∨ by ∧, a similar algorithm is defined for the matrix infimum Asp
∧ .

In Fig. 1.3 is given an example of the supremum/infimum obtained for a set of 10
PDS(2)matrices: the geometric mean, the supremum and the infimum are ellipsoids
with same orientation.

Asp
∨ and Asp

∧ inherit the properties of the Karcher-Frechet barycenter. This ques-
tion will be considered in ongoing work. In any case, we insist again that Asp

∨ and
Asp
∧ do not produce dilation/erosion operators since they do not commute with

supremum/infimum, i.e., given two sets of PDS(n) matrices A = {Ai }N
i=1 and

B = {B j }M
j=1 and let C = A ∪ B = {Ai }N

i=1 ∪ {B j }M
j=1, we have

Asp
∨

sp∨
Bsp
∨ �= Csp

∨

This is due to the fact that Karcher-Frechet barycenter is not associative, i.e., Aμ ◦
Bμ �= Cμ.

1.3.2 Spectral Sup/Inf on Optimized Basis

To complete this section, let us to mention briefly an alternative to tackle the problem
of defining the orthogonal basis of the supremum/infimum.
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Fig. 1.3 a Set Aof N = 10 PDS(2)matrices. b spectral sup/inf on geometric mean basis (Karcher-
Frechet barycenter computed with parameters k = 20 and ε = 0.1). c spectral sup/inf on optimized
basis. The supremum appears in red, the infimum in magenta and the Karcher-Frechet in green

This approach relies on the idea that the largest eigenvalue and corresponding
eigenvector should naturally adopted for the matrix Asp

∨ . Clearly, in the case of
PDS(2), the eigenvector basis V∨ is already determined. For general PDS(n), the
second eigenvector of Asp

∨ can be computed from the given set of matrices by finding
the vector lying in the subspace orthogonal to the first eigenvector which is as closer as
possible to eigenvector of largest second eigenvalue; and then similarly for the other
eigenvectors. Formally, the algorithm to compute the orthogonal basis of supremum:

V∨ =
(−→
v ∨

1 , · · · ,
−→
v ∨

n

)
is given as follows.

1.
−→
v ∨

1 = −→
v 1(Ak) such that λ1(Ak) = ∨

i λ1(Ai );

2.
−→
v ∨

2 = −→
v , where

−→
v minimizes ‖−→v 2(Ak)−−→

v ‖2 subject to
−→
v ∨

1 ⊥
−→
v , such that

λ2(Ak) = ∨
i λ2(Ai );

3.
−→
v ∨

n−1 = −→
v , where

−→
v minimizes ‖−→v 3(Ak)−−→

v ‖2 subject to
−→
v ∨

1 ⊥
−→
v ∨

2 ⊥
−→
v ,

such that λn−1(Ak) = ∨
i λn−1(Ai ).
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4.
−→
v ∨

n = −→
v such that

−→
v ∨

1 ⊥
−→
v ∨

2 ⊥ · · · ⊥−→
v n−1⊥−→

v

Mutatis mutandis ∨ by ∧, a similar algorithm is defined for the matrix infimum
Asp
∧ .
An efficient implementation of this algorithm is still an open question, and more

important, the properties (existence and uniqueness) of a such orthogonal basis should
be also studied in ongoing work.

1.4 Asymptotic Nonlinear Averaging Using Counter-Harmonic
Mean for PDS Matrices

We change now our framework and we propose to explore the definition of the
supremum/infimum as the asymptotic values of a particular mean which is extended
to PDS(n) matrices.

1.4.1 Counter-Harmonic Mean

The counter-harmonic mean (CHM) belongs to the family of the power means [14].
More precisely, the CHM is defined as follows.

Definition 6 Let a = (a1, a2, · · · , an) and w = (w1, w2, · · · , wn)be real n−tuples,
i.e., a,w ∈ R

n . If P ∈ R then the P−th counter-harmonic mean of a with weight w
is given by [14]

κP (a;w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑n
i=1 wi a

P+1
i∑n

i=1 wi a P
i

if P ∈ R

max(ai ) if P = +∞
min(ai ) if P = −∞

(1.18)

It will be denotedκP (a) the equal weight case. We notice thatκ0(a;w) is the weighted
arithmetic mean and κ−1(a;w) is the weighted harmonic mean.

Used in image processing as a filter, CHM is well suited for reducing the effect
of pepper noise for P > 0 and of salt noise for P < 0 [21]. It is easy to see that for
P � 0 (P � 0) the pixels with largest (smallest) values in the local neighborhood
will dominate the result of the weighted sum. Of course, in practice, the range of P
is limited due to the precision in the computation of the floating point operations. In
the pioneering paper [38], starting from the natural observation that morphological
dilation and erosion are the limit cases of the CHM, it was proposed to use the CHM
to calculate robust nonlinear operators which approach the morphological ones but
without using max and min operators. In addition, these operators are more robust
to outliers (i.e., to noise) and consequently it can be considered as an alternative to
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rank-based filters in the implementation of pseudo-morphological operators. In our
recent study [3] we have also considered empirically how both means converge to
the supremum (resp. infimum) when positive P increases (negative P decreases).
But let us examine also two properties which are useful to understand the practical
interest of the CHM filter.

Proposition 3 If 0 ≤ P ≤ +∞ then κP (a) ≥ νP (a); and if −∞ ≤ P ≤ 0 then the

following stronger results holds: κP (a) ≤ νP−1(a); where νP (a) = (∑n
i=1 a P

i

)1/P

is the P−th power-mean filter, or Minkowski mean of order P , defined for P ∈ R
∗.

Inequalities are strict unless P = 0, +∞, −∞ or if a is constant.

Proposition 4 If −∞ ≤ P ≤ Q ≤ +∞ then κP ( f ) ≤ κQ( f ), with equality if and
only if a is constant.

Proofs of Propositions 3 and 4 as well as other properties can be found in [14].
Proposition 3 justifies theoretically the suitability of CHM with respect to the alterna-
tive approach by high-order Minkowski mean, as considered by Welk [44], in order
to propose a nonlinearization of averaging-based filters. We notice that according
to Proposition 3, the convergence to the erosion with P � 0 is faster than to the
dilation with equivalent P � 0, i.e., for P > 0

|κP (a)−
∨

i

ai | ≥ |κ−P (a)−
∧

i

ai |

This asymmetry involves that κP (a) and κ−P
B (a) are not dual operators with respect

to the complement, i.e., for P > 0

κP (a) �= κ−P (�a)

with �a = −a = (−a1,−a2, · · · ,−an).

1.4.2 Counter-Harmonic Mean for PDS Matrices

We propose a straightforward generalization of CHM for PDS(n) matrices.

Definition 7 Given A = {Ai }N
i=1, a finite set of N matrices, where Ai ∈ PDS(n),

the counter-harmonic matrix mean (CHMM) of order P is defined by

κP (A) =
(

N∑

i=1

AP
i

)−1/2 (
N∑

i=1

AP+1
i

)(
N∑

i=1

AP
i

)−1/2

(1.19)

In order to understand the interest of the CHMM, we can study its behavior with
respect to P for a numerical example. Let us consider two PDS(2) matrices:


