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Preface

The typical description of the past million years would be that the Earth has
experienced about 10 major periods of glaciation (ice ages) spaced at roughly
100,000-year intervals. This presupposes that ice ages are unusual departures from
normalcy. Actually, it appears as if the natural state of the Earth during this period
was an ice age, but there were about 10 interruptions during which the climate
resembled something like today’s climate for perhaps 10,000 years or so. Each ice
age required several tens of thousands of years to develop to its maximum state of
glaciation.

During the Last Glacial Maximum, some 20,000 years ago, Canada and the
northern U. S. were blanketed by huge ice sheets up to 4 km thick. In addition,
there was a large ice sheet covering Scandinavia that reached down into Northern
Europe. The Antarctic ice sheet was somewhat more full than today. Local glacia-
tions existed in mountainous regions of North America, Europe, South America,
and Africa driving the tree line down by as much as 700m (800m in some cases). The
temperature of Greenland dropped by as much as 20�C, but the climate was prob-
ably only a few degrees colder than normal in the tropics. Conditions were very
harsh 20,000 years ago at the Last Glacial Maximum (LGM) when an ice sheet more
than 2 miles thick pushed down from Canada into the northern U. S.

These ice sheets tied up so much of the Earth’s water that the oceans were as
much as 120m shallower. As a result, the shorelines of continents extended much
farther out than today. The Beringia land bridge from Siberia to Alaska was created,
allowing animals and humans to cross from one continent to the other. In the upper-
to mid-latitudes the climate was semi-Arctic and the flora shifted to tundra.
Humidity was reduced and much of the land dried out. The sharp temperature
discontinuity at the edges of the ice sheets generated violent winds that swept up
dust and dirt from dry regions, filling the atmosphere. This ice age began to wane
around 15,000 years ago and dissipated through a series of gyrating climate
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oscillations, ending in the comparatively benign period that has lasted for the past
�10,000 years called the Holocene.

A few geologists in the 19th century were perceptive enough to notice signs of
glaciation in rocks and geological formations and concluded that the Earth must
have once (at least) been heavily glaciated with massive ice sheets that generated the
markings and rock depositions that they observed. They eventually overcame the
initial resistance to this new (and shocking) concept in the geological community.
But, it was not until the 1970s that extensive studies of marine sediments (followed
by polar ice core studies in the 1980s and 1990s) demonstrated the existence,
amplitude, and recurrent chronology of multiple ice ages.

During the 19th century several scientists proposed that ice ages could have
resulted from the quasi-periodic variability of the Earth’s orbital parameters that
affect relative solar energy input to higher latitudes. As the theory goes, when
summer solar energy input to higher northern latitudes drops below a critical thresh-
old, ice and snow can better survive the summer. Data acquired in the 20th century
suggest that ice sheets slowly begin to form over many millennia at latitudes roughly
in the range 60�N to 70�N. As the ice cover spreads, the albedo (reflectivity) of the
region increases, further adding to the cooling effect. Water increasingly leaves the
oceans and gets deposited in the process of building ice sheets, lowering the oceans
and extending shorelines. Since land has a higher albedo than the ocean, this pro-
vides further cooling. In regions adjacent to the ice sheets vegetation is inhibited,
adding still further to increased Earth albedo. As northerly regions cool, the con-
centrations of key greenhouse gases such as water vapor, CO2, and CH4 decrease,
creating a worldwide cooling effect that converts the budding ice age into a global
phenomenon. Other effects such as widespread dust storms and the expansion of sea
ice and mountain glaciers also contribute. Thus, the runaway expansion of ice sheets
develops over many millennia. James Croll formulated the concept of the Sun acting
as a trigger for ice ages based on variations of the Earth’s orbit in 1875. In the first
several decades of the 20th century, M. Milankovitch quantified this theory by
carrying out extensive calculations by hand (no mean feat in the pre-computer
age). Nevertheless, in the absence of long-term data over many ice ages, the astro-
nomical theory remained an abstract concept. Furthermore, there were no credible
mechanistic models to describe how changing solar energy input to higher latitudes
could lead to alternating ice ages and deglaciations.

With the advent of marine sediment data in the 1970s, it became possible to
compare the astronomical theory with data over many glacial cycles. John Imbrie
was a pioneer in this regard. He built up a stack of ocean sediment data—which he
dubbed the ‘‘SPECMAP’’ stack—from several sites with the objective of reducing
noise and devised models to compare ice sheet volume (V) with solar variations. In
doing this, he tuned the chronology of the SPECMAP stack using solar variability as
a guide. He also used spectral analysis to show that some of the prominent frequency
components in SPECMAP variability were in consonance with known frequencies of
solar variation. From this, he concluded that the astronomical model explained
much of the ice age record—at least for the past �650,000 years. However, there
seems to be some circular reasoning involved and one could construe his procedure
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as involving curve fitting in addition to physics. More importantly, when modeled ice
sheet volume and solar intensity are dispassionately compared today, the results are
not quite so overwhelming.

As ocean sediment data were extended backward in time, it became apparent
that some features of the sediment record did not fit astronomical predictions. What
stands out here was the fact that the period from about 2.7 million years before the
present (mybp) to about 1mybp was characterized by relatively rapid smaller ampli-
tude climate cycles, whereas since �1mybp climate cycles have increased in period
and amplitude. By contrast, the astronomical theory would not have predicted any
such major shift in frequency and amplitude since there is no reason to believe that
solar forcing at higher latitudes changed qualitatively during this time period. There
were other problems with the theory as well; during some major occurrences of
climate change there were no corresponding variations in solar input (e.g., 400,000
years ago). Since the 1990s, a number of studies have attempted to resolve the
differences between the data and the astronomical theory. Some of these studies
had an obvious and pervasive bias in favor of the astronomical theory—in some
cases seemingly an attempt to preserve the theory against all odds. Scientific objec-
tivity seems to have been lost somewhere along the way. For example, a number of
investigators suggested that each of the several parameters (obliquity, eccentricity,
longitude of precession) acted separately over different eras to produce a changing
data record. While there may indeed be strange and unusual nonlinear effects in the
way that climate reacts to orbital parameters (e.g., Rial, 1999), as far as the conven-
tional astronomical theory is concerned these parameters do not act separately. They
act in concert to change solar intensity, and it is solar intensity that determines the
climate—at least according to the astronomical theory.

Yet, despite problems with the astronomical theory, there are several tantalizing
similarities between climate data and the historical solar record. These include
the correlation of several important frequencies in spectral analyses and certain
undeniable rough similarities in the climate and solar records over some periods
during the past several hundred thousand years.

Roe (2006) looked at the astronomical theory in a way that is both novel and
impressive. Instead of modeling ice sheet volume with a simplistic model, he took the
slope of the SPECMAP curve as an indicator of dV=dt, the rate of change in ice
volume. He then compared this with midsummer solar intensity at 65�N and found a
very good correlation. This is perhaps the most convincing evidence in favor of the
astronomical theory.

Solar intensity varies with a �22,000-year period due to precession of the
equinoxes. These oscillations vary in amplitude over long time periods due to the
variability of eccentricity and obliquity. The temperatures implied by ice core records
do not oscillate with this frequency. However, there does seem to be some correla-
tion between the amplitude of solar oscillations and ice core temperatures. In many
(but not all) cases, periods with higher amplitude solar oscillations appear to be
associated with increasing Earth temperatures and those during which solar oscilla-
tions are weak seem to be associated with decreasing temperatures. This would be
the case if (1) there were a fundamental tendency toward glaciation and (2) ice sheets

Preface xi



grow slowly and disintegrate rapidly. In that case ice sheets would disintegrate and
not recover when solar oscillations were large, but would grow when solar oscilla-
tions were small. As in AM radio, the oscillating precession signal is amplitude-
modulated due to changes in eccentricity and obliquity. The precession cycle
merely acts as a carrier wave. All of this is very tenuous and represents a somewhat
subjective interpretation of the data. However, the fact that the frequency spectrum
shows frequencies for eccentricity and obliquity but not precession suggests that it is
the amplitude of solar oscillations that matters and that the precession frequency
does not directly contribute to climate change. Only eccentricity and obliquity
determine the amplitude of precession oscillations.

Nevertheless, what seems to be most glaringly absent from the astronomical
theory is a clear quantitative mechanism by which variations in solar input to
higher latitudes produce changes in climate, including various positive feedback
effects due to changes in albedo, greenhouse gas concentrations, ocean currents,
and north–south energy exchange, although the paper by Hansen and Sato (2011)
provides some insights. The Imbrie model for comparing ocean sediment time series
with the astronomical theory has the virtues of clarity and simplicity, but it is too
simplistic to describe the variable climate of the Earth with all its intricate feedback
mechanisms and complexities.

There are other aspects of long-term climate change that further confuse
matters. There is some evidence that the termination of ice ages may originate in
the Southern Hemisphere—not the Northern hemisphere. In addition, there are
alternativee theories that propose that ice age cycles are controlled by cosmic rays
penetrating the Earth’s atmosphere enhancing cloud formation and producing a
cooling effect. However, such theories are very speculative.

The role of greenhouse gases, particularly CO2, in transitions between ice ages
and interglacials remains murky despite several attempts to unravel the processes
involved. While measurements taken from ice cores clearly show that the CO2

concentration rose and fell from interglacial to ice age in a repetitive pattern, the
factors that caused these changes are still only partly understood. There is troubling
evidence that past interglacials were warmer than the present one, yet they did not
have higher CO2 concentrations. How can that be?

Amidst all this work, both experimental and theoretical, there does not seem to
be a single reference work that provides an in-depth review of the data and models.
The Great Ice Age is a book that does a creditable job in many respects (Wilson,
2000). The closest that anyone has come to a thorough review is Richard A. Muller
and Gordon J. MacDonald’s Ice Ages and Astronomical Causes, published by Wiley/
Praxis in 2000 (called ‘‘M&M’’ throughout the current book). M&M covers much of
the data that were available at the time the book was written (late 1990s) and
discusses the models in some depth. Spectral analysis was the dominant theme in
M&M, almost to the neglect of other aspects. While it may be true that, in seeking a
relationship between two noisy time series, comparison of the important frequencies
in the frequency domain has implications for a possible connection, ultimately, it is
the time phasing of the two curves (temperature vs. time and solar intensity vs. time)
that is of greatest importance in establishing a cause–effect relationship. I have relied
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upon M&M as a source of data, analysis, and discussion in a number of places. Their
book is an obvious starting point for anyone interested in ice ages.

It is interesting to speculate when the next ice age might occur. This topic is
discussed briefly toward the end of this book. Some climatologists believe that global
warming induced by CO2 emissions will prevent ice ages from occurring.

Throughout this study of ice ages and climatology, what surprises me most is
that climatologists seem determined to draw a dollar’s worth of conclusions from a
penny’s worth of data. Even more amazing to this writer is the certainty and assur-
ance that climatologists have in their conclusions, which are typically based on
inadequate data. The most perceptive comment I have found is that of Wunsch
(1999):

‘‘Sometimes there is no alternative to uncertainty except to await the arrival
of more and better data.’’
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1

Life and climate in an ice age

What was the global impact of the growth of large ice sheets in the far north
during past ice ages? What were the climates of the various continents 20,000
years ago at the height of the Last Glacial Maximum? Why was there a greater
diversity of species, higher numbers of animals, more large animals, and larger
animals? How did climate changes impact the evolution and migration of humans,
animals, and vegetation? These are questions that have been pondered and studied
by many researchers. Several scenarios have been put forth. However, it is difficult
to draw firm conclusions. All we can do is provide a few fragmentary insights.

1.1 CONTINENTAL CLIMATES DURING THE ICE AGE

As we will show in subsequent chapters, based on geological evidence, and data
from ice cores and ocean sediments, we know that the Earth was immersed in an
ice age over the past �100,000 years that peaked about 20,000 years ago, began to
wane about 15,000 years ago, and ended roughly 10,000 years ago. The immensity
of the ice sheets is difficult to comprehend. The maximum volume of the ice
sheets—about 18,500 years before the present (ybp)—was about 57� 106 km3.
This huge volume of ice resulted in a lowering of sea level of about 110m (Zweck
and Huybrechts, 2005).1 Assuming that this ice sheet was built up over �60,000
years, that would imply that ice was added to the ice sheets at the average rate
of about 1012 m3 per year. The lowering of sea level exposed large areas of con-
tinental shelves that were (at least initially) barren and susceptible to wind erosion.

Ice core data from Greenland and Antarctica indicate that the atmosphere
was heavily laden with dust and salt during periods of high glaciation, suggesting

1 The removal of water from the oceans was actually about 50m greater than this because the

crust below the ocean rebounded about 50m when water was removed at the LGM.

D. Rapp, Ice Ages and Interglacials: Measurements, Interpretation, and Models, Springer Praxis Books,  1
DOI 10.1007/978-3-642-30029-5_1, © Springer-Verlag Berlin Heidelberg 2012



that the world was a stormy place with high winds that whipped up dust from
land and salt from oceans. The dustiness would suggest that many areas of the
Earth were arid. And indeed, the prevailing view seems to be that the Earth was
predominantly arid during ice ages, although some areas, particularly the
Southwestern U. S., were extremely wet. Yet, there had to be winds that carried
moisture to northern climes in order to drop some 1012 m3 of ice per year on the
growing ice sheets. Since the temperature drop during ice ages at high latitudes
was far greater than the temperature drop in the tropics, the temperature differen-
tial between the tropics and polar areas was greater during ice ages, creating a
greater driving force for flow of atmosphere toward polar areas.

A comparison of the distribution of vegetation for all the continents of the
world at the height of the last ice age with the distribution today was provided by
Adams and Faure (1997). Their comparison for North and Central America is
provided here in Figures 1.1 and 1.2. According to this model, the distribution of
flora (and presumably fauna as well) migrated toward the equator during ice ages,
and areas adjacent to the ice sheets were converted to tundra and semi-desert.
Burroughs (2005) provides a similar flora map of Europe.

Barton et al. (2002) provide a window into life, flora, and fauna in North
America as the last ice age began to wane:

‘‘Flying over the ice fields of Canada it is easy to imagine being back in the
last Ice Age. There is ice as far as the eye can see. Glaciers roll down the valleys,
towering ice sculptures rise out of the mountainsides, and exquisite turquoise
pools glisten in the fissures below.’’

Figure 1.3 shows the Wrangell–Saint Elias ice field on the Alaska–Yukon
border. It is the largest non-polar ice field in the world and shows what much of
the continent would have looked like at the height of the glaciation around 20,000
years ago. Barton et al. (2002) describe this scene as follows:

‘‘Sheets of ice stretch as far as the eye can see, with strange shell-like patterns
scalloped into the surface. Snow clings to mountainsides in great crumbling
chunks while in the glaciers below, ultramarine pools glint in the sunlight. Rivers
run across this glacial landscape and suddenly disappear through the ice to the
valleys below. The ice here is up to 900m deep and the glaciers move up to 200m
a year as they grind and sculpt the landscape around them.’’

During the last ice age, glaciers radically changed the north of the continent,
leading to the human invasion of North America through the creation of the
Bering land bridge. At the peak of the last ice age the land bridge was 1,600 km
wide (see Figure 1.4). For the first time since the previous ice age (about 100,000
years prior), animals could travel across the land bridge from Siberia into the
North American continent. According to Barton et al. (2002):

‘‘The land bridge was part of a larger ice-free area called Beringia, which

2 Life and climate in an ice age [Ch. 1



included Siberia, Alaska and parts of the Yukon. Beringia was bounded by the
then permanently frozen Arctic Ocean and the continental ice sheets. Rain and
snow tended to fall on the high southern ice fields of the Yukon and Alaska, thus
reducing the amount that fell on the Beringian side. At the height of glaciation
the retreat of the sea meant that most of the land was far from maritime influence
and so had an arid, continental climate. The low winter snowfall prevented
glaciers from forming and left grass and other vegetation accessible to grazers
throughout the winter. This is what made Beringia habitable at a time when
much of the land to the south was buried in ice.

As well as creating a dry climate, the ice sheets also made loess—a fine dust
produced by the grinding action of the glaciers and deposited on the edge of
streams emerging from the ice front. Loess blew across Beringia, establishing a
well-draining soil. The result was a land of grassy steppes. An array of tiny plants

1.1 Continental climates during the Ice Age 3]Sec. 1.1

Figure 1.1. Distribution of vegetation in North and Central America at the height of the last

ice age (Adams and Faure, 1997).


