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Preface

The Earth’s natural energy resources (i.e. essentially the sun and the fossil fuel
reserves: oil, coal and natural gas) are limited, which is of concern especially for
future generations, as the demand for energy is continuously increasing. Most
probably, even if much cheaper and/or safer energy forms (such as for example,
nuclear fusion or a significant increase in the use of renewable energy) will
become available in the near future, a significant rationalization of the production
and use of energy will be unavoidable. This process has—or should have—already
started with the Kyoto protocol, which came into force on February 16 2005, with
the ambition of not overloading our planet with chemical and thermal pollution.

Energy conversion as well as energy use and energy saving are focussing more
and more attention on heat transfer questions and, since heat transfer often
involves fluids, thermo-fluid-dynamics represents a fundamental engineering issue
to be faced. How can energy be efficiently transferred, in the form of heat, between
a body and a fluid?

Computational Thermo-Fluid-Dynamics is of course helpful in answering such
a question, even if the acronym CTFD is not frequently seen in the literature.
However, in spite of recent advances in numerical techniques, partly due to the
enormous increase in the efficiency of computers, the need to perform experi-
ments, especially in complex fluid flows, still exists. In addition, although com-
puter models have been increasingly successful in simulating and solving a wide
range of rather intricate thermo-fluid-dynamic problems, it is nevertheless
indispensable that their results are experimentally validated.

Naturally, experimental techniques have also undergone enormous develop-
ment and, amongst these techniques, InfraRed Thermography (IRT) has proved to
be a very effective investigative tool for thermo-fluid-dynamic experimental
research. One major drawback experienced by the authors over the last two dec-
ades, while using this technique (this is particularly true for Astarita but
Carlomagno has been working in this field for longer than he cares to admit), was
the fact that they had to continuously update their research instrumentation
because of the uninterrupted development of infrared cameras. Fortunately, the
involved costs decreased almost accordingly.
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Infrared thermography is a methodology that allows remote detection of ther-
mal energy that is radiated from objects in one of the InfraRed (IR) bands of the
electromagnetic spectrum, conversion of such energy into a video signal, and
representation of the surface temperature map (distribution) of an object. In
simpler terms, IRT allows one to obtain a temperature map over a body surface.

The method has great potential to be exploited in many application fields and
for many different purposes, as long as temperature variations are involved. For
example, IRT may be used in various types of diagnosis (in medicine, architecture,
maintenance), or for material characterization and assessment of procedures,
which can help in improving the design and manufacture of products, as well
certain modes of their testing. As technology evolves, infrared systems offer new
opportunities for innovative applications. Undoubtedly, any process which is
temperature dependent may benefit from the use of an infrared device.

The aim of this monograph is to present an analysis of how to exploit ther-
mographic measurements in complex fluid flows, either to evaluate wall convec-
tive heat fluxes, or to investigate flow field behaviour over complicated body
shapes in order to better comprehend some peculiar fluid dynamics phenomena,
such as flow instability, flow separation and reattachment.

The monograph covers the following important points, which may be of benefit
both to newcomers and those already using infrared thermography in convective
heat transfer:

1. What is infrared thermography and how did it develop in thermo-fluid-
dynamics?

2. What are the very basic principles of radiation heat transfer that make the IR
scanner (camera) a temperature transducer?

3. What is the current technology of modern IR cameras?
4. Once a camera has to be acquired, how can one evaluate its performance?
5. How is the calibration of this temperature transducer performed?
6. Since an IR camera is nothing more than a temperature transducer, we provide

detail on the heat flux sensors that must accompany it, including their limits in
space and time and paying particular attention to their use in infrared
thermography.

7. The degradation (modulation) of the thermal image (introduced by the IR
imaging system, the heat flux sensor and the environment) is considered and we
provide a general analysis of its restoration.

8. We discuss a number of selected applications in several different areas with the
principal aim of indicating either how this experimental method progressed or
how to apply it correctly.

Of course, some of the points tackled herein are of little use to those who are
already involved with infrared thermography. However, these elementary points
are included to provide researchers with little experience of IRT enough knowl-
edge to begin using it, and also for the sake of completeness.

The development of ideas and the final achievement of the volume and the
thoughts contained therein are due not only to the authors’ knowledge but also to
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helpful insights provided by many others. The observations, criticisms and findings
of our Master and PhD students over the past several years contributed to
broadening and refining this work; further, they carried out the majority of the
experimental work. In addition, the authors are truly grateful to several colleagues
for offering data, their valuable comments and intense support. Amongst others,
we would especially like to mention Gennaro Cardone, Luigi de Luca and Caro-
sena Meola, whose information, contributions and resources were essential to
accomplish the final goal of writing this monograph and to George Powell for copy
editing the final version. Finally, the authors are grateful to Wolfgang Merzkirch
for the suggestions he made after reading the initial manuscript.

Napoli, February 2012 The authors
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Editorial

With the present volume, the monograph series Experimental Fluid Mechanics
now comprises 11 volumes. These monographs describe either progress with the
application of experimental methods for research in fluid mechanics and
convective heat transfer, or they discuss the measurement principles, scientific
background and applicability of a particular class of experimental methods. The
contributions to this series are authored by scientists that lead in their respective
fields, and the volumes of this series have become helpful and practical guides for
researchers in the laboratory. Although the series already covers a broad range of
topics, we expect new volumes as the field of experimental fluid mechanics
continues to develop and expand in scope.

The appearance of the present monograph, the 11th of the series, is motivation
for the editors to express their thanks to all authors who contributed to the series
and in this way to its success. As the authors of this volume point out, ‘‘Infrared
thermography for thermo-fluid-dynamics’’ is of major interest both for funda-
mental research as well as for applied studies of problems in energy management
and environmental research, and the volume addresses technical and social
challenges that demand such approaches. The content of the book summarises the
many contributions of the life-long research of Professor Giovanni Maria
Carlomagno in this field. Over the years, he has established a ‘‘school’’ of
graduates, one member being his former student, Professor Tommaso Astarita,
who has joined him in writing this monograph. We are convinced that the users of
thermography will appreciate the guidance provided by this book and will join us
in thanking the authors for their conscientious and comprehensive efforts in
compiling the monograph.

February 2012 W. Merzkirch
D. Rockwell

C. Tropea
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1 Introduction and historical grounding

1.1 Introduction

The main purpose of this book is to examine ways of taking advantage of
InfraRed Thermography (IRT) either for measuring wall convective heat fluxes, or
for investigating flow field behaviour over complex body shapes. This is to better
and quickly recognize as well as understand particular fluid dynamic behaviours,
such as flow instabilities, flow separations and reattachments.

Naturally, between the two above-mentioned goals the most difficult to achieve
is the first one since it requires a quantitative evaluation of the heat fluxes, while
flow field characterization (even if connected to heat flux measurements) has a
more qualitative nature.

Measuring heat fluxes in thermo-fluid-dynamics requires both a thermal sensor
(which is herein called a heat flux sensor), with its related physical model, and one
or more temperature transducers.

In more conventional techniques where the temperature is measured with
standard transducers (e.g. thermocouples, resistance temperature detectors (RTDs),
pyrometers, etc.), each transducer yields either the temperature at a single point or,
better, a space-averaged one; hence, in terms of spatial resolution, the sensor itself
has to be considered as zero-dimensional. This constraint makes measurements
essentially meaningless whenever the temperature and/or the heat flux fields
exhibit high spatial variations.

Instead, the infrared (IR) camera, also called infrared scanner, constitutes a
truly two-dimensional temperature transducer since it allows accurate measure-
ments of surface temperature maps even in the presence of relatively high spatial
gradients. Accordingly, also the heat flux sensor becomes two-dimensional, as
long as one performs the likely necessary corrections.

When compared to standard techniques, the use of an infrared camera as a
temperature transducer in convective heat transfer measurements appears advan-
tageous from several points of view.

In fact, since the IR camera is fully two-dimensional (today up to more than 1M pixels per
frame), besides producing a whole temperature map, it allows for an easier evaluation of
errors due to radiation and tangential conduction (see section 5.2). Furthermore, the camera
is non-intrusive (i.e. it does not disturb the measuring process and, e.g. allows one to get rid of
conductionerrorsdue to thermocoupleorRTDwires), ithashighsensitivity (down to 10mK)
and low response time (down to 20ls). As such, IR thermography can be effectively
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exploited to measure convective heat fluxes, with either steady or transient tech-
niques, and/or to perform detailed thermal surface flow visualizations.

1.2 Historical grounding

The origin of infrared thermography dates back to the year 1800 when the
English physicist William Herschel (1800) discovered the so-called thermal
radiation, outside the deep red in the visible spectrum, the invisible light later
called infrared. In the succeeding years, many physicists, amongst them Mace-
donio Melloni, Gustav Kirchhoff, Clark Maxwell, Joseph Stefan, Ludwig Boltz-
mann and Max Planck, addressed the problem of fully understanding the properties
and energy distribution of the wide spectrum of radiation.

The first infrared cameras were developed in the 1960s as offshoots of military
programs but without significant accuracy features, not mandatory for the per-
ceived existing needs.

The energy crisis of the 1970s brought government support in Sweden and so
AGA and Bofors, both Swedish companies, developed the first radiometric thermal
imagers. These cameras used a single detector, the two-dimensionality of the
image being achieved by rotating, or oscillating, mirrors and/or refractive elements
(such as prisms) which optomechanically scanned the whole field of view (FOV)
in both the vertical and horizontal directions (see sub-section 3.1.2). In fact, they
were also called infrared scanning radiometers.

The infrared detector employed in these radiometers was the photon type (see
sub-section 3.2.2), where the release of electrons is directly associated with photon
absorption, its main features being a quite short response time and a limited
spectral response. However, such a detector required cooling, well below ambient
environment temperature, to allow for rapid scanning, high sensitivity and low
noise. In fact, the sensor was often located in the wall of a Dewar vessel filled with
liquid nitrogen (at 77K, see Fig. 3.6). Subsequent scanning radiometers used
various types of cooled photon detectors, with lower time constants, allowing
frame rates of 15730Hz and improved sensitivity.

All real-time commercial cameras used single cooled photon detectors with
optomechanical scanning well into the 1980s, at which point infrared (staring) Focal
Plane Array (FPA) detectors, having time constants enabling 30760Hz frame rates,
were introduced. By using these staring arrays, the infrared camera, long restricted to
a point-sensing detector, became an effective two-dimensional transducer.

Infrared cameras based on non-cooled FPA thermal detectors (such as micro-
bolometers, see sub-section 3.2.1) emerged in the mid-1990s and led to the
development and diffusion of thermal imagers requiring no cooling.

The earliest attempts to measure convective heat transfer coefficients originated
in the hypersonic regime and were performed by using scanners operating in the
middle IR band (376lm) of the infrared spectrum, at that time called the short
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wave IR band and now named the middle wavelength infrared band (MWIR). In
particular, the AGA Thermovision 680SWB camera was employed by Thomann
and Frisk (1967) to measure temperature distributions over the surface of an
elastomeric paraboloid in a hypersonic wind tunnel at Mach number M = 7. The
unsteady thin film sensor (see section 4.2) was used to determine convective heat
transfer coefficients, which showed a good agreement with data already obtained
with different techniques and was encouraging in view of using infrared systems
for heat flux measurements.

Once the method had been shown to work effectively, efforts were mainly
oriented towards the comprehension of potential error sources, which could affect
measurement accuracy, and especially towards the development of devices that
could facilitate the use of the IR camera.

Compton (1972), at NASA Ames, realized that the bottleneck of IR thermog-
raphy was data acquisition, storage and processing. In fact, each heat flux map had
to be computed on a pixel-by-pixel basis from temperature readings, which, at the
time, were generated at rates of about 88,000 data points per second. The solution
was devised in the automation of data processing and the development of this
concept finally brought to the systems currently in use.

In 1976, the Arnold Engineering Development Center (AEDC) was embarked
on a large-scale research program to develop IR cameras with capability to per-
form extensive heat transfer testing in the hypersonic regime (Bynum et al., 1976).
In particular, the von Karman facility was dedicated to hosting an infrared imaging
system for test series that extended over a long period. To assess the usefulness of
the method, calibration procedures and a measurement error model were
developed, while in addition further automated data processing was implemented
(Noble and Boylan, 1978). The camera displayed a blur effect at high temperature
gradients, not completely understood at the time, which presently is ascribed to the
concurrent low scanner spatial resolution.

Meanwhile, the infrastructure and expertise developed at AEDC were used to
measure convective heating rates on a Space Shuttle model, under flow conditions
prevailing in the re-entry phase, to aid in the design of the orbiter’s thermal
protection system (Stalling and Carver, 1978).

All the previously mentioned experiments were generally carried out by
applying the infrared camera to the thin film sensor, but this was not feasible at
very high Mach number values, under rarefied flow conditions, because of resul-
tant low heat flux values. Some years later, Allegre et al. (1988) used the thin skin
sensor (see section 4.3) to overcome this drawback.

Apart from heat flux evaluation, the characterization of flow field behaviour,
with location of boundary layer transition to turbulence, as well as of separation
and reattachment zones, constituted a subject of great interest to aerodynamicists
and efforts were devoted to acquiring information on the infrared camera capa-
bility required to deal with these phenomena.

In fact, IR thermography allows evaluation of the laminarity of the airflow over
a wing profile both in laboratory tests (see section 7.4) as well as during flight
(Brandon et al., 1990).
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To look for transition to turbulence, the boundary layer over a flat plate was
examined by Peake et al. (1977) who carried out measurements on a stainless steel
plate with a Bakelite (low thermal inertia material) insert. In the thermograms,
they observed a hot front to be attributed to the different adiabatic wall temper-
atures (see chapter 4), which occur among laminar and turbulent flows, and were
able to detect the location of the transition.

Solicited by the late professor Wen-Jei Yang of Ann Arbour, Carlomagno and
de Luca (1989) developed a first comprehensive analysis of convective heat
transfer measurements with IR thermography and reviewed a circumscribed
number of applications. Three years later, Gartenberg and Roberts (1992a)
reported an extensive retrospective on aerodynamic research with infrared cam-
eras. In 2001, Carlomagno and de Luca produced an updated version of their 1989
paper.

More recently, Carlomagno and Cardone (2010) presented a detailed review on
infrared thermography for convective heat transfer measurements, in which they
considered some of the topics examined in greater detail, along with other relevant
subjects, in this monograph.
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2 Physical background

In this chapter, first the basic radiation heat transfer theory of a black body is
analysed from the user point of view (readers interested in a more rigorous analysis
may refer to more specialized books, e.g. Siegel and Howell, 1992). Then, some
specific information on the behaviour of real bodies is given including a differ-
entiation between dielectric and electrically conducting materials. Finally, a brief
description of the atmospheric absorption of radiation is presented.

2.1 Basic radiation heat transfer theory

Heat transfer by radiation (or radiative heat transfer) is an energy transport
mechanism that occurs by means of electromagnetic waves. Atoms and molecules
constituting a body contain charged particles (protons and electrons) and their
movement results in the emission of electromagnetic radiation, which carries
energy away from the body surface.

Contrary to the case of heat conduction (and consequently convection), energy
can be transmitted by thermal radiation also in the absence of a medium and,
therefore, radiation is the only mechanism that enables the exchange of energy
between two unconnected bodies placed in a vacuum.

If a medium is present in between the two exchanging bodies, the transferred
energy may be partially or completely absorbed and/or reflected, or may even pass
through the medium without downgrading. In the latter case, the medium is called
fully transparent and this practically enables an IR scanner to view the temperature
of a body without touching it. A medium can also be partially transparent, i.e. if it
allows only a fraction of the transmitted energy to pass through.

Thermal radiation can originate from a solid, a liquid or even a gas since all
materials at a temperature above absolute zero emit energy by means of electro-
magnetic waves. At the same time, all materials also absorb electromagnetic
waves; both emission and absorption behaviours are possible because materials
change their internal energy state at a molecular level.

The amount of thermal radiation which is absorbed or emitted, as well as its
propagation, depend not only on the nature of the material and surface finish but
also on its thermodynamic state and on the specific wavelength of the considered
electromagnetic wave.

The wavelength k [m] is linked to the frequency of the wave m [s-1] by the
wave speed of propagation (speed of light) c [m/s] in the material (medium):
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k ¼ c

m
ð2:1Þ

The speed of propagation in a generic medium is related to the propagation
speed in vacuum co (2.998 9 108m/s, independent of k) by the relationship:

c ¼ co

n
ð2:2Þ

where n is the dimensionless index of refraction (or refractive index) of the
medium, which generally depends also on the wavelength.

While both c and k depend on the nature of the medium through which the wave
travels and its thermodynamic state, m is a constant dependent only on the source of
the electromagnetic wave.

A different approach based on quantum theory, where the radiation is seen as a
collection of discrete particles termed photons or quanta, is quite useful. In this
approach, each photon is considered to have an energy e [J] given by:

e ¼ �hm ¼ �hc

k
ð2:3Þ

where �h = 6.626 9 10-34Js is named Planck’s constant.
From the previous equation, it is clear that, while both c and k depend on the

medium through which the wave travels, m is constant because the energy of the
photon must be conserved.

The entire electromagnetic spectrum is quite roughly divided into a number of
wavelength intervals, called spectral bands or more simply bands, and extends
from very small wavelength values (k?0) to extremely large ones (k??).

On inspection of the relevant portion of the electromagnetic spectrum shown in
Fig. 2.1, the thermal radiation band is conventionally defined as a relatively small
fraction of the complete spectrum, positioned between 0.1lm and 1000lm, which
includes part of the ultraviolet and all of the visible and IR bands.

In particular, when a body is at ambient temperature most of the energy is
radiated in the infrared spectral band. This band is generally sub-divided into four

Fig. 2.1 - Electromagnetic spectrum (wavelength k in micrometres).
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