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Notations

Subscripts related to fluid phases:

a Air,
w Water,
a Generic fluid phase.

Subscripts related to the components of vectors and tensors (Einstein
summation convention is implied only for these subscripts): i; j; k; l;m; n.

Superscripts related to spatial discretization (in parentheses)

ðiÞ to ðmÞ Indices of grid entities: nodes, elements, volumes or faces,
ðijÞ Average value between nodes i and j,
ðeÞ Average value in a finite element,
ðfcÞ Average value at a finite volume face,
ðsÞ Time step index,
ðmÞ Iteration index.

Superscripts related to components of a heterogeneous medium:

I Fracture system or background material
II Rock matrix or inclusions

Superscripts related to averaged field-scale properties:

eff Effective parameter,
eq Equivalent parameter.

Superscripts related to homogenization analysis:

� Dimensionless variable,
ðcÞ Characteristic value.

xv



Symbols (physical units specified where appropriate):

Uppercase Latin letters:

Aði jÞ
a

Coefficients in spatially discretized flow equations for phase a at
node j,

Bhigh
i j

Geometry-dependent constant for calculating the effective water
permeability in a medium with highly permeable inclusions,

Blow
i j Geometry-dependent constant for calculating the effective water

permeability in a medium with weakly permeable inclusions,
Cdec

it
Coefficient decreasing the time step size,

Cinc
it

Coefficient increasing the time step size,
Cch Specific water capacity in the pressure head based form of the

Richards equation, (m�1),
Cwh Storage coefficient in the pressure head based form of the

Richards equation, (m�1),
Cwp Storage coefficient in the pressure based form of the Richards

equation, (Pa�1),
D Hydraulic diffusivity tensor, (m2 s�1),
De Energy dissipation for fluid flow in porous medium, (Pa2),
DL Characteristic diffusivity at the field scale (m),
Dl Characteristic diffusivity at the Darcy scale (m),
EðnÞ nth finite element,

FðnÞ nth face of a finite volume grid,

GðjÞa
Gravity term in spatially discretized flow equation for phase a at
node j,

Ha Total potential head of fluid phase a, (m),
Ksa Hydraulic conductivity of phase a at apparent saturation,

(m s�1),
Ka Hydraulic conductivity of phase a, (m s�1),
L Characteristic length at the field scale, (m),
Ma Mass density of fluid phase a with respect to the bulk volume of

porous medium, Ma ¼ qa /a Sa;, (kg m�3),

QðfcÞa Total mass flux of phase a at a control volume face, (kg s�1),

Rb Characteristic dimension of a matrix block or inclusion, (m),
Rgas Universal gas constant, (Jðmol �KÞ�1),
Strap

a Effective air saturation for a heterogeneous medium in trapped-
air regime,

Strap
w Effective water saturation for a heterogeneous medium in

trapped-air regime,
Sa Saturation of fluid phase a,
Sea Normalized saturation of phase a,
Smax

a Maximum attainable saturation of phase a,
Smin

a Minimum attainable saturation of phase a,
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Sra Saturation of phase a at residual state,
Tm

a Non-equilibrium mass flow rate between fractures and matrix, or

between background material and inclusions, (kgðm3 sÞ�1 ),
Tv

a Non-equilibrium volumetric flow rate between fractures and
matrix, or between background material and inclusions, (s�1),

U Domain of a representative elementary volume at the pore scale,
Ua Part of a pore-scale representative elementary volume occupied

by phase a,
Vb Matrix block domain,
V ðiÞ ith finite volume,
W Solution domain at the Darcy scale,
Zk Auxiliary parameter in the formula for inter-nodal permeability,
Zs Auxiliary parameter in the formula for relating parameters of the

Brook-Corey and van Genuchten functions.

Calligraphic Latin letters:

DðjÞ Spatial discretization operator for node j,

EðjÞ Set of finite elements sharing node j,

H Relative air humidity,
Ma Mole mass of fluid phase a, (kg mol�1),

N
ðnÞ
elem

Set of nodes belonging to n-th finite element,

N
ðjÞ
nod

Set of nodes connected to node j, including j,

OðuÞ Order of magnitude of number u,
Rc Dimensionless gravity–capillarity ratio,
Rd Dimensionless hydraulic diffusivity ratio between inclusions and

background,
Rk Dimensionless permeability ratio between inclusions and

background,
Ri

t Dimensionless time scale for Darcy-scale flow in porous material
i,

T Kelvin temperature, (�K).

Lowercase Latin letters:

ai Length of the ellipsoidal inclusion in ith spatial direction, (m),
a0; a010; a011; a02 Parameters in the Gasto et al. formula for the inter-nodal

permeability,
b0; b001; b002; b01 Parameters in the Gasto et al. formula for the inter-nodal

permeability,
c0; c00 Parameters in the Gasto et al. formula for the inter-nodal

permeability,
di Ellipsoid depolarisation coefficient in ith spatial direction,
fa Fractional flow function for fluid phase a,
g Magnitude of the gravitational acceleration vector, (m s�2),
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g Gravitational acceleration vector, (m s�2),
ha Pressure head of fluid phase a, (Pa),
hc Capillary pressure head, (Pa),
he Air-entry pressure head, (Pa),
hg Pressure head scaling parameter, (Pa),

kði jÞ
ca

Average relative water permeability for the capillary-driven flow
between nodes i and j,

kði jÞ
gr

Average relative water permeability for the gravity-driven flow
between nodes i and j,

kði jÞ
int

Integrated average relative water permeability between nodes i
and j,

kcpl
ii

Cardwell and Parsons lower bound for the equivalent perme-
ability in ith direction, i ¼ 1; 2; 3, (m2),

kcpu
ii Cardwell and Parsons upper bound for the equivalent perme-

ability in ith direction, i ¼ 1; 2; 3, (m2),

kðelÞ
rw

Average relative water permeability in a finite element,

kfm
rw

Relative water permeability at the fracture–matrix interface,

kði jÞ
rw

Average relative water permeability between nodes i and j,

kra Relative permeability of phase a,
ks Intrinsic permeability tensor, (m2),
keq

s Equivalent intrinsic permeability tensor of heterogeneous
medium, (m2),

keff
s

Effective intrinsic permeability tensor of a heterogeneous
medium, (m2),

kt Total permeability tensor in fractional flow formulation,

(m2ðPa sÞ�1),
ka Permeability tensor of phase a, (m2),
keff

a
Effective permeability tensor of a heterogeneous medium for
phase a, (m2),

khigh
w

Effective water permeability tensor for a heterogeneous medium
with highly permeable inclusions, (m2),

klow
w

Effective water permeability tensor for a heterogeneous medium
with weakly permeable inclusions, (m2),

ktrap
w

Effective water permeability tensor for a heterogeneous medium
in trapped-air regime, (m2),

l Characteristic length at the Darcy scale, (m),
lh Characteristic dimension of Darcy-scale heterogeneities, (m),
lv Characteristic dimension of the averaging volume, (m),
mg Exponent in the van Genuchten capillary function,
nb Exponent in the Brooks–Corey capillary function,
ng Exponent in the van Genuchten capillary function,
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nE Unit vector normal to the boundary of a finite element,
nV Unit vector normal to the boundary of a finite volume,
nW Unit vector normal to the boundary of the porous domain,
n Unit vector normal to the interface separating two porous

materials,
patm Atmospheric pressure, (Pa),
pc Capillary pressure, (Pa),
pe Air-entry pressure, (Pa),
pdrain

e
Air-entry pressure during drainage, (Pa),

pwet
e Air-entry pressure during wetting, (Pa),

pg Capillary pressure scaling parameter in the Gardner and van
Genuchten functions, (Pa),

pa Pressure in fluid phase a, (Pa),
pref

a Reference pressure for fluid phase a, (Pa),
pglob Global pressure in the fractional flow formulation, (Pa),
~pi Fluctuation of the fluid pressure for steady flow in ith spatial

direction, (Pa),
qev Cumulative evaporation flux at the soil surface, (m),
qinf Cumulative infiltration flux at the soil surface, (m),
rb Local spatial coordinate in a matrix block or inclusion, (m),
rc Radius of a capillary tube, (m),
rc1; rc2 Main curvature radii of the air–water interface, (m),
sabs Absolute error tolerance in the solution of nonlinear algebraic

equations,
srel Relative error tolerance in the solution of nonlinear algebraic

equations,
t Time, (s),
tdry Surface drying time in the evaporation simulation, (s),
tpond Surface ponding time in the infiltration simulation, (s),
u Generic variable,
u Vector of unknown nodal values in the numerical solution,
vL Characteristic advective velocity at the field scale, (m s�1),
vl Characteristic advective velocity at the Darcy scale, (m s�1),

vðijÞst
Steady-state volumetric water flux between nodes
i and j, (m s�1),

vtop
w Volumetric water flux at the soil surface, (m s�1),

va Volumetric flux of fluid phase a with respect to the solid phase
(Darcy velocity), (m s�1),

vt Total volumetric flux in the fractional flow formulation, (m s�1),
w Volumetric fraction of a porous material,
x Spatial coordinate vector, (m),
y Spatial coordinate vector associated with a periodic cell, (m),
z Elevation above the reference level, (m).
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Uppercase Greek letters:

C Interface between two porous materials,
Dxði jÞ Distance between nodes i and j, (m),
Dx0 Normalized distance between nodes,
Dt Time step, (s),
H Weighting coefficient in the time discretization scheme,
Kb External surface of a matrix block,

Kðiþ1=2Þ Interface between nested matrix blocks i and iþ 1 in MINC
method,

! Weighting function in the finite element method,
Uh Flux potential with respect to the water pressure head, (m),
Up Flux potential with respect to the water pressure, (Pa),

WðiÞ Shape function for node i in the finite element method,

WðiÞe
Element shape function for node i in the finite element method,

X Domain of a periodic cell,
XI Part of a periodic cell occupied by the background material,

XII Part of a periodic cell occupied by the inclusions.

Lowercase Greek letters:

ag Inverse of the scaling pressure (or pressure head) in the capillary
function, (Pa�1) or (m�1),

ap;q Coefficients in the modified equation,
ba Relative compressibility coefficient for fluid phase a, (Pa�1),
bfm Shape coefficient for the fracture–matrix transfer term,

b0 Parameter in the averaging formula for the inter-nodal
permeability,

bp;q Coefficients in the modified equation,

cfm Scaling coefficient for the fracture–matrix transfer term,
cp;q Coefficients in the modified equation,
du Increment of the vector of unknown values in the iterative solution

procedure,
e Scale parameter,
f Gravity coefficient, cosine of the angle between x axis and the

gravity vector in one-dimensional problems,
f0 Modified gravity coefficient,
ga Exponent in the power-law relative permeability function for phase

a,
g1; g2; g3; g4 Exponents in the Mualem and Burdine relative permeability

functions,
ha Volumetric content of phase a,
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hra Volumetric content of phase at the residual state a,
hsa Volumetric content of phase a at the state of apparent saturation,
htrap

a
Effective volumetric air content for a heterogeneous medium in
trapped-air regime,

htrap
w

Effective volumetric water content for a heterogeneous medium in
trapped-air regime,

j Connectivity parameter in the Mualem and Burdine relative
permeability functions,

ka Mobility of phase a, ðPa sÞ�1,
la Dynamic viscosity coefficient of fluid phase a, (Pa s),
n Local spatial coordinate in the finite element scheme,
pi Weighting coefficient in the generalized power average formula

for the equivalent permeability in ith spatial direction,
qa Intrinsic mass density of fluid phase a, (kg m�3),
qref

a Reference intrinsic mass density of fluid phase a, (kg m�3),
rab Surface tension between phases a and b, (N m�1),
t Small number used in numerical differentiation,
/ Porosity,
vi Auxiliary variable used to define the effective permeability in ith

spatial direction,
Wetting angle,

xk Weighting parameter in the averaging scheme for fracture–matrix
permeability,

xv Weighting parameter in the averaging formula for the inter-nodal
relative permeability,

xw Weighting parameter in the averaging formula for the inter-nodal
relative permeability.
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Chapter 1
Introduction

The unsaturated zone, also called vadose zone, is located between the soil surface
and the groundwater table. Its depth is variable and depends on geological and cli-
matic factors. As the name implies, soils and rocks in the unsaturated zone are only
partially filled with water, the rest of the pore space being occupied by air. The vadose
region constitutes a vital link between groundwater, atmospheric water and surface
water. It is a place of intense human activity of various kinds, including civil and
environmental engineering and agriculture. Therefore, flow and transport phenom-
ena occurring in the unsaturated zone can be studied from different viewpoints, as
shown schematically in Fig. 1.1.

A distinct scientific specialization, soil physics, is entirely devoted to the study
of physical processes in soils, including the water flow in unsaturated conditions,
e.g. [17, 20, 47]. Soil physics developed in a close relationship to agronomy and
hydrology. In agricultural applications, emphasis is put on the availability of water
and dissolved nutrition substances to plants, which motivates the development of
comprehensive models to describe the soil-plant-atmosphere system, e.g. [8, 9].
Accurate evaluation of water infiltration into the soil and evapotranspiration from the
soil is also important for hydrological models. For instance, the infiltration capacity
of soils has a direct influence on the formation of runoff, and thus is an important
factor in predicting the risk of flood. Consequently, a trend towards explicit coupling
of the surface and shallow subsurface flow in hydrological models can be observed,
e.g. [11, 48].

On the other hand, the water flow processes in the unsaturated zone have sig-
nificant impact on groundwater flow in saturated aquifers, which constitute a major
source of drinking water. Even more importantly, the vadose zone is a buffer between
groundwater and various sources of pollutants located at the soil surface or in the
shallow subsurface. Reliable prediction of the fate of contaminants dissolved in water
requires the knowledge of water flow velocities in the unsaturated zone, which are in
general highly variable in space and time. Therefore, increasing attention is paid to
coupled saturated-unsaturated models of groundwater flow and contaminant trans-
port, e.g. [43, 44, 50]. Moreover, accounting for the unsaturated flow allows for

A. Szymkiewicz, Modelling Water Flow in Unsaturated Porous Media, 1
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2 1 Introduction

Fig. 1.1 Typical problems related to water flow in the vadose zone

improved estimation of parameters related to the hydraulics of phreatic aquifers,
such as the recharge rate [18], the specific yield [35] or the height of the seepage
face in wells [5].

Water flow in the vadose zone has important implications also for geotechni-
cal engineering. Traditionally, soil mechanics focused mostly on completely dry or
fully saturated non-cohesive soils, and fully saturated cohesive soils. However, a wide
range of problems can be more accurately modelled, if the variability in the soil water
saturation is taken into account. This is particularly necessary for soils that swell,
shrink or collapse due to the changes in water saturation, but there is an increas-
ing awareness of the importance of unsaturated flow also for other applications,
including soil compaction, slope stability, flow in dams and embankments, protec-
tion of landfills, tunneling or interpretation of penetration tests, e.g. [30, 31, 51].
Unsaturated soil mechanics is still an emerging and very active field of research,
which developed substantially during the last twenty years, e.g. [10, 25, 28].

In all the applications mentioned above a crucial issue is the ability to accurately
model water flow in soils, or—more generally—partially saturated porous media.
This, however, is a challenging task, due to the multi-phase and multi-scale nature of
porous media, especially the ones formed by natural processes. Porous soils and rocks
in the vadose zone consist of several deformable solid and fluid phases, separated
by clearly distinguishable interfaces, representing sharp discontinuities in physical
and chemical properties [16, 33]. In general, each of the phases consists of multi-
ple chemical components, which can move between phases. Pore air, for instance,
is a mixture of gases, including water vapor, while pore water contains many dis-
solved substances, including gases. The number of phases and components included
in the mathematical model depends on the problem under consideration. In many
applications focusing on the water flow, a sufficient accuracy can be achieved with
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Fig. 1.2 Observation scales in a porous medium

a simplified model, where both air and water are considered as immiscible single-
component phases and the deformation of the solid skeleton is neglected. Such an
approach is adopted in the present work.

Modelling of flow in porous media is further complicated by the fact that the
relevant physical processes can be described at various observation scales. Mathe-
matical models applied at each scale typically represent the principles of conservation
of basic quantities such as mass, momentum and energy, but the exact form of the
governing equations may differ substantially between the scales. In some cases the
model describing processes at a larger scale can be derived directly from the equa-
tions relevant at a smaller scale by an appropriate averaging procedure. This process
is known as upscaling. Alternatively, the governing equations can be formulated
directly at the larger scale, based on phenomenological considerations. Two basic
scales, typically distinguished in porous media, are the pore scale and the Darcy
scale, Fig. 1.2. In the former case, the characteristic spatial dimension is the size of a
single pore, which in granular media is approximately proportional to the grain size.
At this scale, each phase occupies a distinct spatial domain, and each point of space
can be associated with a specific phase. On the other hand, it is assumed that each
phase can be regarded as a continuum within its own spatial sub-domain, i.e. the size
of the pores is much larger than the size of fluid molecules. The flow of fluid phases
can be described by the Navier-Stokes equations with appropriate conditions at the
fluid-solid and fluid-fluid interfaces. However, the pore scale description is not suit-
able for practical problems, which involve spatial domains having dimensions larger
than the pore size by many orders of magnitude. Therefore, the governing equations
describing behaviour of various phases are usually formulated at a much larger scale,
which in the present work will be referred to as the Darcy scale, from the name of
H. Darcy, who developed the well-known formula for the water seepage velocity in
a porous medium [7]. At this scale, each spatial point corresponds to a representative
elementary volume (REV), containing a sufficiently large number of pores, occupied
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by multiple fluid phases. Thus, in contrast to the pore scale description, at the Darcy
scale each phase forms a continuum over the entire spatial domain.

The most commonly used two-phase model of air and water flow at the Darcy
scale is a combination of the mass conservation equation for each fluid with the semi-
empirical equation for flow velocity, based on an extension of the Darcy formula for
the case of multi-phase flow. One of key components of the model is the capillary
function, describing the relationship between the water saturation and the capillary
pressure, defined as the difference between pressures in the air and water phases.
A complementary constitutive relationship is given by the relative permeability func-
tion, which describes the ability of each fluid phase to flow in the porous medium
as a function of the phase saturation. Both functions are strongly nonlinear. Their
form depends principally on the geometrical characteristic of the pore space and
on the properties of the fluid-fluid and fluid-solid interfaces (surface tension). The
mathematical model of two-phase flow is often formulated as two coupled partial
differential equations of parabolic type, with the two phase pressures or saturations
as the primary unknown variables.

The two-phase model can be simplified, if one assumes that the air phase is con-
tinuously distributed in pores, it is connected to the atmospheric air and much more
mobile than the water phase. Accordingly, the pressure in the air phase can be con-
sidered constant and equal to the atmospheric pressure, and the equation describing
air flow is eliminated. The remaining equation for the water flow is called the unsat-
urated flow equation or the Richards equation [34]. Similarly to the full two-phase
flow model, the Richards equation is based on semi-empirical concepts of the capil-
lary and relative permeability functions, introduced at the Darcy scale to account for
a number of pore scale phenomena, which at present are not fully understood. These
constitutive relationships are difficult to associate with the Darcy-scale processes in
a manner that is both physically rigorous and easy to implement practically. While
a number of improved formulations for the two-phase and unsaturated flow have
been proposed, e.g. [3, 14, 26, 29, 32, 49], the Richards equation remains a useful
and well-established tool in the unsaturated zone modelling, and is the basis of the
present analysis.

The present book focuses on two aspects of the application of the Richards equa-
tion. The first one is related to its numerical solution. Although significant develop-
ment of the numerical algorithms occurred in the last twenty years, e.g. [4, 27], solu-
tion of the Richards equation remains a challenging task due to the afore-mentioned
strongly nonlinear constitutive relationships, which must be appropriately repre-
sented in the discretized space-time domain. A particularly important issue is the
approximation of the relative permeability between the nodes of a spatial grid, which
is a necessary to estimate water fluxes, according to a discrete version of the Darcy
formula. As the relative permeabilities may differ by several orders of magnitude (for
example, during infiltration in a dry soil, or evaporation), the choice of the averaging
method is often essential for the overall accuracy of the approximate solution. Sev-
eral simple averaging schemes have been proposed, e.g. arithmetic mean, geometric
mean and upstream weighting, but each of them may lead to large errors for partic-
ular combinations of the initial and boundary conditions, grid size and the form of
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functional relationship between the relative permeability and the capillary pressure,
e.g. [1, 2, 15]. On the other hand, more accurate methods often require significantly
larger computational effort, e.g. [46]. In this work an averaging scheme is presented,
that is relatively easy to implement and significantly improves the solution accuracy
for a wide range of one- and two-dimensional problems. The method was proposed
in the paper [36], and further developed in [37, 38]. Extension of the method for
unstructured grids and implications for the solution of the full two-phase model are
also discussed. The analysis is carried out for a simple form of the Richards equa-
tion, which does not account for soil compressibility nor water uptake by plant roots.
While these two factors are very important in many applications related to the unsat-
urated zone and must be properly treated numerically, they have no direct influence
on the development of the averaging schemes for inter-nodal permeabilities.

The second topic considered in this book deals with flow in porous media showing
material heterogeneity at the Darcy scale. Heterogeneity may be related to various
physical and chemical properties of the porous medium. The focus of this work is on
porous formations composed of sub-domains characterized by distinct textural prop-
erties, which imply differences in pore geometry, and consequently in the physical
parameters such as permeability, hydraulic diffusivity or air entry pressure (defined
as the value of the capillary pressure above which the pore air flow is possible).
The important issue of chemical heterogeneity, for instance related to the wettability
and adsorption properties of the solid phase is not considered here. If the number of
heterogeneous regions in the considered spatial domain is large, their explicit rep-
resentation on a numerical grid becomes difficult or even impossible. Therefore, a
new observation scale can be introduced, which for the purposes of this work will
be called the field scale, Fig. 1.2. At this scale the relevant representative elemen-
tary volume encompasses sufficiently large number of Darcy scale heterogeneities
to allow for the development of an upscaled model. The heterogeneous structure can
be described in either deterministic or stochastic terms. In particular the stochas-
tic models for flow and transport in unsaturated heterogeneous porous media have
been a subject of intense research, e.g. [6, 12, 52]. In this book the deterministic
viewpoint is adopted and a specific heterogeneity pattern is considered: a binary
porous medium with disconnected porous inclusions (lenses) embedded in a contin-
uous porous background material. While such a structure is relatively simple, it is
representative of a number of natural porous formations, such as fluvial or coastal sed-
iments, or sandstone-shale sequences, e.g. [19]. On the other hand, this type of pattern
can be conveniently parametrized and analysed from the theoretical point of view,
allowing for a good general understanding of local heterogeneities on the large-scale
behaviour of the medium. The second part of this work presents an extended discus-
sion of several models based on the Richards equation, which were developed for
such type of media using the asymptotic homogenization approach [21–24, 39, 41].
These works showed that the macroscopic behaviour of the medium depends on
the ratio between the permeabilities of the inclusions and the background material.
A generalized model, valid for a wide range of inclusion-to-background permeability
ratio, was proposed [39], and its preliminary experimental verification was carried
out [40]. It can be also shown that the Richards approximation is not valid for media
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characterized by higher value of the air-entry pressure in the matrix than in inclu-
sions. In porous media showing heterogeneity with respect to the air-entry pressure
the assumption of the continuity of air phase in porous medium, which underlies the
Richards equation, may not be satisfied [41]. However, the accuracy of the Richards
equation can be improved, if the large-scale capillary and permeability functions are
appropriately modified [42].

The field scale discussed in this book represents an intermediate level in the hier-
archy of scales relevant to the modeling of water flow in the vadose zone, with the
characteristic length of the order of meters to dekameters. Significant research has
been devoted to the description of unsaturated zone processes at regional scale, cor-
responding to hydrological watersheds, with the horizontal dimensions of many kilo-
meters, e.g. [13, 45]. At such a scale, simplified mathematical models of the black-box
type are routinely used and an important question is how to relate their parameters
to the more detailed characteristics of the porous media available at smaller scales.
While regional-scale hydrological modelling is of high practical importance, it is not
considered in this book.

The book is structured as follows. Chapter 2 presents the mathematical formula-
tion of flow in unsaturated porous medium. The governing equations for the two-
phase model and the Richards model are discussed, together with various analytical
formulae for capillary and permeability functions. In Chap. 3 a numerical algorithm
to solve the governing flow equations is developed. The algorithm is formulated in
general terms and can be applied to both the two-phase model and the Richards
equation. Various methods of spatial discretization are discussed, including the con-
trol volume–finite difference and control volume–finite element approaches. The
approximation of the average permeability in spatially discretized Richards equation
is considered in detail in Chap. 4. Chapter 5 introduces basic concepts of upscaling.
In Chap. 6 the upscaled models developed for flow in binary media without air-entry
pressure effects are presented. The model accounting for air-entry effects is discussed
in Chap. 7. The final chapter summarizes the contents of the book and outlines some
open problems related to the discussed topics.
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