
High Speed Serdes Devices and Applications

David R. Stauffer • Jeanne Trinko Mechler
Michael Sorna • Kent Dramstad
Clarence R. Ogilvie • Amanullah Mohammad

High Speed Serdes Devices
and Applications

James Rockrohr

iv High Speed Serdes Devices and Applications

Jeanne T. Mechler
IBM Corporation
Essex Junction, VT
USA

Clarence R. Ogilvie
IBM Corporation
Essex Junction, VT
USA

James D. Rockrohr
IBM Microelectronics
Hopewell Junction, NY
USA

David R. Stauffer
IBM Corporation
Essex Junction, VT
USA

Kent Dramstad
IBM Corporation
Essex Junction, VT
USA

Amanullah Mohammad
IBM Corporation
Research Triangle Park, NC
USA

Michael A. Sorna
IBM Microelectronics
Hopewell Junction, NY
USA

ISBN 978-0-387-79833-2

Library of Congress Control Number: 2008925643

© 2008 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written per-
mission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any
form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or heareafter developed is forbidden. The use in this publication of trade names,
trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an
expression of opinion as to whether or not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of going to
press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors
or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

e-ISBN 978-0-387-79834-9

 v

Preface
The simplest method of transferring data through the inputs or outputs of a

silicon chip is to directly connect each bit of the datapath from one chip to the
next chip. Once upon a time this was an acceptable approach. However, one
aspect (and perhaps the only aspect) of chip design which has not changed
during the career of the authors is Moore’s Law, which has dictated substantial
increases in the number of circuits that can be manufactured on a chip. The pin
densities of chip packaging technologies have not increased at the same pace
as has silicon density, and this has led to a prevalence of High Speed Serdes
(HSS) devices as an inherent part of almost any chip design.

HSS devices are the dominant form of input/output for many (if not most)
high-integration chips, moving serial data between chips at speeds up to 10
Gbps and beyond. Chip designers with a background in digital logic design
tend to view HSS devices as simply complex digital input/output cells. This
view ignores the complexity associated with serially moving billions of bits of
data per second. At these data rates, the assumptions associated with digital
signals break down and analog factors demand consideration. The chip
designer who oversimplifies the problem does so at his or her own peril.

Despite this, many chip designers who undertake using HSS cores in their
design do not have a sufficient background to make informed decisions on the
use of HSS features in their application, and to appreciate the potential pitfalls
that result from ignoring the analog nature of the application. Databooks
describe the detailed features of specific HSS devices, but usually assume that
the reader already understands the fundamentals. This is the equivalent of
providing detailed descriptions of the trees, but leaving the reader struggling to
get an overview of the forest.

This text is intended to bridge this gap, and provide the reader with a broad
understanding of HSS device usage. Topics typically taught in a variety of
courses using multiple texts are consolidated in this text to provide sufficient
background for the chip designer that is using HSS devices on his or her chip.
This text may be viewed as consisting of four sections as outlined below.

The first three chapters relate to the features, functions, and design of HSS
devices. Chapter 1 introduces the reader to the basic concepts and the resulting
features and functions typical of HSS devices. Chapter 2 builds upon these
concepts by describing an example of an HSS core, thereby giving the reader
a concrete implementation to use as a framework for topics throughout the
remainder of the text. Although loosely based on the HSS designs offered in
IBM ASIC products, this HSS EX10 is a simplified tutorial example and shares
many features/functions with product offerings from other vendors. Finally,
Chap. 3 introduces interested readers to the architecture and design of HSS
cores using the HSS EX10 as an example.

The next two chapters describe the features and functions of protocol logic
used to implement various network protocol interface standards. Chapter 4

v

vi High Speed Serdes Devices and Applications

introduces concepts related to interface standards, as well as design
architectures for various protocol logic functions. Chapter 5 provides an
overview of various protocol standards in which HSS cores are used.

The next four chapters cover specialized topics related to HSS cores.
Chapter 6 describes clock architectures for the reference clock network which
supplies clocks to the HSS core, as well as floorplanning and signal integrity
analysis of these networks. Chapter 7 covers various topics related to testing
HSS cores and diagnostics using HSS cores. Chapter 8 covers basic concepts
regarding signal integrity, and signal integrity analysis methods. Chapter 9
covers power dissipation concepts and how these relate to HSS cores.

Finally, any HSS core is not complete without a set of design kit models to
facilitate integration within the chip design. Chapter 10 discusses various
topics regarding the design kit models that require special consideration when
applied to HSS cores.

 vii

Acknowledgments
The authors wish to thank the following IBM colleagues without whose

contributions and reviews this text would not be possible: William Clark,
Nanju Na, Stephen Kessler, Ed Pillai, M. Chandrika, Peter Jenkins, Douglas
Massey, Suzanne Granato, Della Budell, and Jack Smith.

In addition, the authors would like to thank Thucydides Xanthopoulos of
Cavium Networks for his detailed and insightful review of this text, and
Andrea Kosich for making it possible to utilize material from Optical
Internetworking Forum Interoperability Agreements.

vii

Table of Contents ix

Table of Contents
Preface v
Acknowledgments vii

Chapter 1: Serdes Concepts. 1
1.1 The Parallel Data Bus 1
1.2 Source Synchronous Interfaces 2

Reducing the Number of I/O Pins 2
Clock Forwarding 3
Higher Speed Source Synchronous Interfaces 4

1.3 High-Speed Serdes 8
Serializer / Deserializer Blocks 9
Equalizers 10
Clock and Data Recovery (CDR) 14
Differential Driver 15
Differential Receiver 17
Diagnostic Functions 17
Phase-Locked Loop 19

1.4 Signal Integrity 19
The Channel 19
Package Models 21
Jitter 21
Channel Analysis Tools 23

1.5 Signaling Methods 24
1.6 Exercises 27

Chapter 2: HSS Features and Functions 31
2.1 HSS Core Example: HSS EX10 10-Gbps Core 31

HSS EX10 Input/Output Pin Descriptions 32
HSS EX10 Register Descriptions 41

2.2 HSS EX10 Transmitter Slice Functions 53
Transmitter Parallel Data 54
Transmitter Signal Characteristics 56
Transmitter FFE Programming 58
Transmitter Power Control 59
Half-Rate/Quarter-Rate/Eighth-Rate Operation 60
JTAG 1149.1 and Bypass Mode Operation 62
PRBS / Loopback Diagnostic Features 64
Out of Band Signalling Mode (OBS) 65
Features to Support PCI Express 65

2.3 HSS EX10 Receiver Slice Functions 66
Receiver Data Interface 68
DFE and Non-DFE Receiver Modes 70

ix

x Table of Contents

Serial Data Termination and AC/DC Coupling 71
Signal Detect 71
Receiver Power Control 72
JTAG 1149.1/1149.6 and Bypass Mode Operation 73
Half-Rate/Quarter-Rate/Eight-Rate Operation 76
PRBS / Loopback Diagnostic Features 77
Phase Rotator Control/Observation 78
Support for Spread Spectrum Clocking 78
Eye Quality 79
SONET Clock Output 80
Features to Support PCI Express 80

2.4 Phase-Locked Loop (PLL) Slice 80
Reference Clock 81
Clock Dividers 82
Power On Reset 82
VCO Coarse Calibration 83
PLL Lock Detection 83
Reset Sequencer 84
HSS Resynchronization 84
PCI Express Power States 87

2.5 Reset and Reconfiguration Sequences 87
Reset and Configuration 87
Changing the Transmitter Configuration 90
Changing the Receiver Configuration 92

2.6 References and Additional Reading 93
2.7 Exercises 94

Chapter 3: HSS Architecture and Design. 99
3.1 Phase Locked Loop (PLL) Slice 100

PLL Macro 101
Clock Distribution Macro 102
Reference Circuits 103
PLL Logic Overview 105

3.2 Transmitter Slice 107
Feed Forward Equalizer (FFE) Operation 109
Serializer Operation 112

3.3 Receiver Slice 114
Clock and Data Recovery (CDR) Operation 116
Decision Feedback Equalizer (DFE) Architectures 118
Data Alignment and Deserialization 121

3.4 References and Additional Reading 122
3.5 Exercises 123

Table of Contents xi

Chapter 4: Protocol Logic and Specifications 125
4.1 Protocol Specifications 125

Protocol Layers 125
Serial Data Specifications 126
Basic Concepts 132

4.2 Protocol Logic Functions 134
Bit/Byte Order and Striping/Interleaving 134
Data Encoding and Scrambling 136
Error Detection and Correction 143
Parallel Data Interface 147
Bit Alignment 152
Deskewing Multiple Serial Data Links 153

4.3 References and Additional Reading 158
4.4 Exercises 159

Chapter 5: Overview of Protocol Standards 165
5.1 SONET/SDH Networks 168

System Reference Model 169
STS-1 Frame Format 170
STS-N Frame Format 174
Clock Distribution and Stratum Clocks 176

5.2 OIF Protocols 177
System Reference Model 177
SFI-5.2 Implementation Agreement 180
SPI-S Implementation Agreement 184
CEI-P Implementation Agreement 188
Electrical Layer Implementation Agreements 190

5.3 Ethernet Protocols 197
Physical Layer Reference Model 198
Media Access Control (MAC) Layer 201
XGMII Extender Sublayer (XGXS) 204
10-Gb Serial Electrical Interface (XFI) 207
Backplane Ethernet 213
PMD Sublayers for Electrical Variants 218

5.4 Fibre Channel (FC) Storage Area Networks 220
Storage Area Networks (SANs) 220
Fibre Channel Protocol Layers 222
Framing and Signaling 222
Physical Interfaces 229
10-Gbps Fibre Channel 236

5.5 PCI Express 237
PCI Express Architecture 238
Physical Layer Logic 241
Electrical Physical Layer 246
Power States 249
PCI Express Implementation Example 250

xii Table of Contents

5.6 References and Additional Reading 251
5.7 Exercises 254

Chapter 6: Reference Clocks . 263
6.1 Clock Distribution Network 263

Single-Ended vs. Differential Reference Clocks 263
Reference Clock Sources 265
Special Timing Requirements 268
Special Test Requirements 270

6.2 Clock Jitter 270
Jitter Definitions 271
Jitter Effects 276
PLL Jitter 277

6.3 Clock Floorplanning 281
Clock Tree Architecture 281
Clock Tree Wiring 282

6.4 Signal Integrity of the Clock Network 283
Analog Signal Levels and Slew Rates 283
Duty Cycle Distortion 286
Differential Clock Analysis Methodology 288

6.5 References and Additional Reading 293
6.6 Exercises 293

Chapter 7: Test and Diagnostics 297
7.1 IEEE JTAG 1149.1 and 1149.6 298

JTAG 1149.1 Overview 299
HSS Core Support for JTAG 1149.1 302
HSS Core Support for JTAG 1149.6 303

7.2 PRBS Testing and Loopback Paths 306
Loopback Paths 306
PRBS Circuits and Data Patterns 309
PRBS Test Sequence 314

7.3 Logic Built-In-Self-Test (LBIST) 317
LBIST Architecture 317
LBIST Considerations for HSS Cores 319

7.4 Manufacturing Test 320
Chip Level Test 320
HSS Macro Test 324

7.5 Characterization and Qualification Testing 327
Transmitter Tests 328
Receiver Tests 335
General Tests 338

7.6 References and Additional Reading 340
7.7 Exercises 340

Table of Contents xiii

Chapter 8: Signal Integrity . 345
8.1 Probability Density Functions 345

Gaussian Distribution 345
Dual-Dirac Distribution 348

8.2 Jitter 349
Jitter Components 349
Deterministic Jitter 352
Random Jitter 356
Total Jitter and Mathematical Models 358
Jitter Budgets 362
Jitter Tolerance 364

8.3 Spice Models 365
Traditional Spice Models 365
Hybrid Spice/Behavioral Models 367
Spice Simulation Matrices 369

8.4 Statistical Approach to Signal Integrity 372
Analysis Approach 373
HSSCDR Software 388

8.5 References and Additional Reading 393
8.6 Exercises 394

Chapter 9: Power Analysis. 397
9.1 Digital Logic Circuits 397

Digital Logic Active or AC Power 397
Digital Logic Leakage or DC Power 402

9.2 Non Digital Logic Circuits 410
AC (Active) Power 410
DC (Leakage) Power 410
Quiescent Power 410

9.3 HSS Power 411
HSS Power Equation 411
Multiple Power Supplies 412
Chip Fabrication Process 413
Mode-Dependent Power 414
Power Dissipation Breakdown 416

9.4 Reducing Power Dissipation 417
Power Concerns for the HSS Core Design 417
Power Dissipation Concerns for the Chip Designer 420

9.5 References and Additional Reading 421
9.6 Exercises 421

xiv Table of Contents

Chapter 10: Chip Integration . 425
10.1 Simulation Models 427

Reset and Initialization Short Cuts 427
Simulation ‘X’ States 429
Modeled and Unmodeled Behavior 432

10.2 Test Synthesis 434
Scan Test Support 435
Macro Test Support 436
JTAG Logic Connections 440
Automation of Test Requirements 442
Running Macro Test using the JTAG Interface 444

10.3 Static Timing Analysis 445
Clock Timing 445
Receiver Parallel Data Outputs 450
Register Interface 452
Transmitter Synchronization 454
Serial Data Timing 456
Skew Management 457
Timing Backannotation for Simulation 458

10.4 Chip Floorplan and Package Considerations 459
Packages 459
Chip Physical Design 466

10.5 References 471
10.6 Exercises 472

Index. 475

Serdes Concepts 1

Chapter 1
Serdes Concepts
Table 1-1
Eqn 1-1

This chapter describes basic methods of transferring data from one chip to
another chip, either on the same circuit board or across a cable or backplane to
another circuit board. After reading this chapter, the reader should have a basic
understanding of the rationale for using high-speed serializer/deserializer
(Serdes) devices, and the inherent problems introduced by the high-speed
operation of such devices.

1.1 The Parallel Data Bus
The simplest method of transferring data through the inputs or outputs of a

silicon chip is to directly connect the datapath from one chip to the next chip (see
Fig. 1.1). Since data often consists of more than one bit of information, the datapath
is more than one-bit wide. In the figure, an n-bit datapath inside Chip #1 is driven
through chip outputs, across an n bit interconnect, through inputs of Chip #2, to an
n-bit datapath inside the receiving chip. Synchronous data is transferred between
the two chips since both chips are clocked by the same clock source.

There are two inherent problems of the parallel data bus shown in Fig. 1.1. The
first problem is that n input/output (I/O) pins are required on each chip to transfer
the data. At one point in history this was acceptable. However, Moore’s Law has
driven substantial increases in the number of circuits that can be manufactured on
a chip compared to a few decades ago. The pin densities of chip packaging
technologies have not increased at the same pace as silicon density. Therefore, I/O
pins are substantially more expensive than silicon circuits, and dedicating n I/O
pins for the above data bus is not acceptable for most chip applications.

The second inherent problem involves meeting timing requirements. The
data is launched synchronously by Chip #1 and is captured synchronously in
Chip #2 using the same clock. The data at the inputs of Chip #2 must meet
setup and hold times relative to the clock input of the chip. These setup and
hold times must be calculated with sufficient margin to allow for differences
in delay of the clock distribution path to the two chips, and through the chips
to the launch and capture flip-flops. Delays may vary based on chip process,
voltage, and temperature (PVT) conditions, and margin must be added to
account for worst case variations. For higher clock frequencies, it may be
necessary to use phase-locked loops (PLLs) in the chips to adjust the clock
phase in order to compensate for the clock distribution delay within the chip
and adapt to changing process, voltage, and temperature conditions. If the
clock frequency is high enough, it will not be possible to build a system that
will reliably transfer the data across this data bus.

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 1
© Springer 2008

2 High Speed Serdes Devices and Applications

1.2 Source Synchronous Interfaces
The two problems with the parallel data bus in Sect.1.1 can be eliminated

with the modifications to the system which are discussed in this section. These
approaches are extensions of the parallel data bus. The parallel data bus and all
of the extensions described in this section are considered to be source
synchronous interface architectures. Such architectures include any interface
where a clock input exists that can be used to capture the received data. This
may be either a reference clock used by both the transmitting and receiving
chip or the transmitting chip drives a clock to the receiving chip. In either case,
clock recovery circuits are not required for source synchronous interfaces.

1.2.1 Reducing the Number of I/O Pins
The first issue to be addressed is reducing the number of I/O pins required

to transfer the data between the chips. This is accomplished by multiplexing
the n bits of data at the output of Chip #1 onto k bits of interconnect (k < n),
and then demultiplexing the k bits of interconnect at the input of Chip #2 onto
an n bit internal datapath. This is shown in Fig. 1.2. The resulting system only
requires k I/O pins on each chip rather than the n pins previously required.

Chip
#1

Chip
#2

Clock
Source

nn n

Chip
#1

Chip
#2

Clock
Source

kn n

Fig. 1.1 Parallel data bus between two chips

Fig. 1.2 Serializing the data to reduce pin counts

Serdes Concepts 3

Of course, while the pin count requirements have been reduced by the ratio
of k : n , the required frequency of the reference clock has increased by the
inverse of this ratio. System designers generally do not like to distribute high-
speed reference clocks within the system due to noise, electromagnetic
interference (EMI), and power dissipation concerns. Often, a lower frequency
clock is distributed, and PLLs in the chips are used to multiply this reference
clock to a usable frequency. Variability of the phase of the resulting clock,
along with the higher frequency of data transfer, tends to exacerbate the timing
issues of the parallel data bus approach.

1.2.2 Clock Forwarding
In Fig. 1.3, a high-speed clock has been added to the datapath between the

two chips. This clock source is assumed to supply a clock frequency somewhat
lower than the frequency required to clock the data flip-flops on the chip
interconnect. PLLs are used in each chip to generate clocks at a multiple of this
frequency. The resulting clocks are used to launch and capture data in the
respective chips. The output clock of the PLL in Chip #1, which is used to
launch the data from this chip, is also an output of this chip. This clock is used
by Chip #2 to capture the data. This approach is called clock forwarding.

The advantage of this approach is that the high-speed clock used to launch
the data at Chip #1 is available to Chip #2 as a reference to capture the data.
Any variations in delays through clock distribution network driving the two
chips does not need to be taken into account in timing analysis. Only delay
variations between the clock path and the data bits are relevant. Variations
between these paths due to process, voltage, and temperature track each other
to some extent. The result is that timing analysis of the interface requires less
margin and setup and hold times are therefore easier to meet.

So far we have not made any distinction or recommendations regarding the
frequency of the high-speed clock relative to the bit rate of the interface. In
general, the high-speed clock shown in the figure could be single data rate
(SDR) or double data rate (DDR) (Fig. 1.4). The receiving chip captures data on
every rising (or every falling) edge of an SDR clock; while the receiving chip
captures data on every edge (both rising and falling edges) of a DDR clock.

Chip
#1

Chip
#2

Clock
Source

kn n

high speed clock

Fig. 1.3 High-speed clock forwarded with the data

4 High Speed Serdes Devices and Applications

The advantage of DDR clocks over SDR clocks lies in the bandwidth
requirements for the corresponding I/O drivers and receivers. An I/O cell being
used at a bit rate of b Mbits per second requires a bandwidth sufficient to
transmit a 101010... data pattern. This corresponds to a frequency spectrum
with an upper fundamental frequency limit of b/2 MHz. The corresponding
frequency of an SDR clock is b MHz, twice the spectral limit of the data.
However, the frequency of a DDR clock for the same interface is only b/2
MHz, consistent with the frequency spectrum of the data. Therefore, the same
I/O drivers and receivers can be used to drive and receive both the data and the
DDR clock.

Regardless of whether the high-speed clock is a SDR or a DDR clock, the
receiving chip uses this clock to directly capture the data. This chip also uses
the reference clock to generate an internal system clock at the same frequency.
These clocks are mesochronous. While the frequency is the same (given that
they share a common frequency reference), the phase relationship between the
clocks is unknown and may vary due to PVT variations. Therefore, the
receiving chip usually retimes the received data from the interface clock
domain to the clock domain of the internal chip clock. FIFOs are used to
perform this retiming function. It is desirable to minimize the number of flip-
flops being clocked by the interface clock in order to minimize delay in the
clock distribution network; otherwise timing issues will be exacerbated.

1.2.3 Higher Speed Source Synchronous Interfaces
The window of time during which data bits can be assumed to be valid is

called the eye. This name originates from the shape of the waveform when the
data signal is monitored on an oscilloscope that is continuously triggered. An
example of a serial data eye is shown in Fig. 1.5a. Eye closure results from
process, voltage, and temperature effects, as well as differences between signal
rise and fall times, slew rates, etc. The more the eye is closed, the more difficult
it is to find a point at which the signal can be reliability sampled to receive the
data. The serial data eye shown in Fig. 1.5b is completely closed.

The largest possible eye opening is desirable. The width and height of an
open eye can be measured as shown in Fig. 1.5c. The expected bit error rate
(BER) of the link directly correlates to the amount of eye opening (both width
and height). This section briefly describes some approaches to minimize eye
closure of the data signal. Eye waveforms are discussed further in later chapters.

DDR Clock

SDR Clock

Data

Fig. 1.4 Single data rate and double data rate clocks

Serdes Concepts 5

1.2.3.1 Differential Signals
Unequal signal rise and fall times of nondifferential signals contribute to

eye closure. Signals switching on the chip also create current variations on the
power distribution grid of the chip, which in turn cause variations in voltage
drop (noise) that can cause variation in delays of surrounding circuits. One
method of reducing the effects of these phenomenon on the eye width is to
drive differential signals between chips.

Differential signals represent the data bit using two electrical signals (true
and complement signals). A logic “0” is represented by the true signal driven
to its lower voltage limit, and the complement signal driven to its upper voltage
limit; a logic “1” is represented by the true signal driven to its upper voltage
limit, and the complement signal driven to its lower voltage limit. A differential
receiver device interprets the logic bit value based on the difference between
the two signals, and not based on the level of either signal individually.

(a) Open Data Eye (b) Closed Eye

(c) Measuring the Eye Opening

Fig. 1.5 Example of a serial data eye

6 High Speed Serdes Devices and Applications

Differential driver circuits tend to have linear current draw and generate
less noise on the power supply than equivalent single-ended drivers. Most
noise sources induce voltage variation equally on both the true and comple-
ment signals; such common mode noise is ignored by the receiver. Also, since
one leg of the differential signal is rising while the other is falling, or vice
versa, unequal rise and fall time effects cancel.

The drawback of differential signals is that two chip pins are required for
each data bit. However, this is offset by the higher speeds possible with
differential signals that are not possible with single-ended signals.
1.2.3.2 Multiple Interface Clocks

The interface clock in Fig. 1.3 is the same clock as is used to launch the data,
and in general is driven from a point in the clock distribution network as close to
the actual flip-flops that launch the data as possible. Phase variation is introduced
by any circuits which are not common to both the data path and clock path.
Silicon process variables do vary from circuit to circuit on the same chip, the
power distribution network may have unequal voltage drops to different circuits
which may vary based on switching currents, and the temperature may vary from
point to point on the chip. Tolerances and limits for all of these parameters must
be taken into account when calculating delays, setup times, and hold times
necessary for correct capture of the received data. At higher bit/baud rates, these
parameters may significantly reduce the eye opening, and become the dominant
mechanism for limiting the speed of the interface.

To maximize the eye width, the path through the clock tree to each of the
data flip-flops and to the clock output should share as many circuits as possible,
and the output driver for the clock should be similar to the output drivers for
the data. Ideally, the same clock buffer should drive the clock to the output
driver and should drive the clock input to all of the data flip-flops. The larger
the number of bits in the data bus, the more difficult this becomes to
implement. I/O drivers must be physically distributed based on the groundrules
for connections to package pins. The greater the distance between circuits, the
more process, voltage, and temperature variation, and the more circuits in the
clock distribution network which cannot be shared due to lack of proximity.

Chip
#1

Chip
#2

Clock
Source

k/2n/2 n/2
high speed clock

k/2n/2 n/2
high speed clock

Fig. 1.6 Multiple sets of data with separate high-speed clocks

Serdes Concepts 7

One technique used to improve eye width is to limit the number of data bits
associated with a given interface clock line. Wider data busses are built by
using multiple interface clocks, each clock associated with a subset of the data
bits. An example of this is shown in Fig. 1.6, where the k bit interconnect has
been subdivided into two groups, each with its own high-speed interface clock.
Note that the receiving chip must capture each group of data bits in separate
clock domains, and needs to retime this data to the common clock domain
internal to the chip.
1.2.3.3 Sample Edge Adaptation

Another technique used to permit higher speed operation of source
synchronous interfaces is to process the data signal at the receiver and adapt
the sampling phase of the clock on a per-bit basis. This is done by connecting
the received interface clock signal to the input of a multitap delay line, and
capturing the data signal in multiple flip-flops clocked by different clock
phases. Logic can then be used to determine the clock phases between which
data transitions are occurring, and select the optimal clock phase to be used to
capture the data. This scheme is shown in Fig. 1.7.

Schemes, such as shown in Fig. 1.7, may require a training pattern either
upon initialization of the interface or at regular intervals. If a training pattern
is used, phase selections remain static between training periods. More complex
implementations adjust dynamically based on the received data or based on
training patterns embedded in the data stream. Alternative architectures which
apply the data to the delay line are also possible. Note, however, that an
inherent characteristic of most of these schemes is that the phase adjustment is
less than plus/minus one bit time, and there must be a sufficient eye opening
such that an optimal sampling phase exists.

Given the advanced schemes discussed above, data rates for source
synchronous interfaces can be extended to several Gigabits per second (Gbps)
per interconnect bit. However, PVT variations make further increases in
interface speeds prohibitively complex. Beyond these speeds, High-Speed
Serdes devices that extract the clock from edge transitions in the data stream
become the preferred solution.

D

D

D

D

edge
select
logic

data

clock

data out

Fig. 1.7 Adapting the sampling clock phase in the receiver

8 High Speed Serdes Devices and Applications

1.3 High-Speed Serdes
High-Speed Serializer/Deserializer (HSS) devices are the dominant

implementation of I/O interfaces at speeds of 2.5Gbps and higher. Such
devices are differentiated from source−synchronous interfaces in that the
receiver device contains a clock and data recovery (CDR) circuit which
dynamically determines the optimal sampling point of the data signal based
upon the transition edges of the signal. In other words, clock information is
extracted directly from the data rather than relying on a separate clock.

Figure 1.8 illustrates the basic block diagram of the transmit and receive
channels of an HSS device. The transmitter serializes parallel data, equalizes it
for reasons that will be explained shortly, and then drives the serial data onto a
differential signal pair of interconnect wires. Feed forward equalizers (FFE)
are commonly used in High-Speed Serdes devices, as discussed in Sect. 1.3.2.
The receiver consists of a differential receiver, a CDR circuit which may also
integrate an equalizer, and deserializes the data based upon the sample point
established by the CDR. Peaking amplifiers and/or decision feedback
equalizers (DFE) are commonly used for equalization in High-Speed Serdes
receiver devices.

Note that Serdes cores are often designed to group multiple transmit and/or
receive channels into a single device. The individual channels generally
operate independently. Grouping channels allow some circuits to be shared
across channels (for example the PLL noted below), and therefore the resulting
block is more efficient in terms of chip area, cost, and power.

Serdes cores which contain only transmit or only receive channels are
called simplex cores; Serdes cores which contain both transmit and receive
channels are called full duplex cores. Note that the terminology “full duplex”
does not imply that the electrical interface is bidirectional. Any given electrical
interconnect channel has a fixed direction of data transmission. If a protocol
application requires “full duplex” communication, then independent transmit
and receive channels with independent interconnections are used to implement
the interface. Rationale for using simplex vs. full duplex cores may include

Serializer
Transmit Driver

Transmitter

n

Deserializer

Clock and

Receiver

Receiver

n

Equalization

Data Recovery
& Receive

Equalization

Fig. 1.8 Basic block diagram of typical high-speed serdes

Serdes Concepts 9

(1) chip floorplan to minimize wiring crossings in the package design or circuit
board design; (2) signal integrity concerns due to near-end crosstalk from
transmit signals onto receive signals; (3) or applications where the number of
transmit and receive channels is not equal.

The remainder of this section generically describes various circuits
mentioned above in more detail, as well as providing generic descriptions of
other circuits and functions commonly found in High-Speed Serdes cores.

1.3.1 Serializer/Deserializer Blocks
Conceptually, the input to the serializer transmit stage is an n-bit datapath

which is serialized to a one-bit serial data signal for application to the FFE and
Driver stages. Generally the value of n is a multiple of 8 or 10, and may be
programmable on some implementations. Values of n which are multiples of 8
are useful for sending unencoded and/or scrambled data bytes; values of n
which are multiples of 10 are useful for protocols which use 8B/10B coding,
as discussed further in Sect. 4.2.2.1. (The 8B/10B encoder is generally
implemented by logic outside the Serdes core.)

For simplicity, the block diagram in Fig. 1.8 illustrates the serializer
feeding one-bit data into the transmit equalization block. Actual
implementations may vary, and this datapath may be one or more bits wide. A
wider datapath through the equalizer block results in a more complex design,
but requires a lower operating frequency. Some implementations may initially
multiplex the n-bit input to an m-bit datapath (m < n) prior to the equalizer,
and perform the remainder of the serialization at the driver stage.

The serializer stage latches data on the n-bit input at the frequency of
baud rate/n. The high-speed clock in the Serdes is divided down to generate a
sample clock for the parallel data. Because the phase of this clock is
determined by the internal state of the serializer, the Serdes channel generally
provides this clock as an output for use by logic driving data to the transmit
channel.

Conceptually, the deserializer receive block performs the inverse function
of the serializer block. Serial data is deserialized onto an n-bit databus of
similar width to the serializer. A sample clock is generated by dividing down
the internal high-speed clock, and this clock is supplied as an output for use by
logic latching the parallel data. In a similar manner to the serializer, actual
implementations may perform partial deserialization in a prior stage.

Many Serdes receivers also include a feature to assist with data alignment
of the output. Most applications organize data into bytes or words (groups of
bytes). For 8B/10B encoded applications, data is organized into 10-bit encoded
symbols. The initialization of the clock divider in the deserializer is arbitrary,
and the data received on the parallel data bus will have an arbitrary alignment
that is unlikely to match the byte or symbol boundaries of the protocol. This
can be corrected by downstream logic to steer data onto the appropriate byte,
symbol, or word boundary. Alternatively, many Serdes receivers provide an
input which forces the deserializer to “slip” one bit. Downstream logic detects

10 High Speed Serdes Devices and Applications

that data is not aligned to the appropriate boundary, and repeatedly
pulses the deserializer control until the data “slips” to the desired
alignment.

1.3.2 Equalizers
The interconnect between the transmitter and receiver device (known as the

channel) acts as a filter at typical baud rates, and distorts the serial data signal
to varying extents. Figure 1.9 illustrates this distortion: The input waveform is
a clean digital signal, but the output waveform is significantly distorted. The
illustrated frequency response function for the channel is characteristic of a
low-pass filter. Signal distortion occurs because the signal baud rate is above
the cut-off frequency for this filter.

Signal integrity concerns frequently dictate that the data signal be equalized
at the transmitter and/or receiver in order to counter the effects of the channel
and decode the signal properly. Many variations on filter architectures are
possible, all of which accomplish this. Fig. 1.10 illustrates the addition of an
equalizer at the transmitter with a transfer function that is roughly the inverse
of the channel’s frequency response. This equalizer distorts the signal at the
transmitter output such that the resulting signal at the receiver input is a clean
waveform.

Most Serdes transmitter implementations include a FFE. The block
diagram for a three-tap FFE is shown in Fig. 1.11. The serial data signal is
delayed by several flip-flops which implement the taps for the filter. Each tap
is multiplied by a tap weight value (also called a filter coefficient), and the
results are summed and driven to the serial data output. FFE operation is
described further in Sect. 3.2.1.

The number of FFE taps on the filter, the spacing of these taps relative to
the baud rate, and the granularity of these tap weight values vary based on
implementation. The terminology preemphasis or deemphasis refer to the FFE
architecture, and indicate whether the data signal amplitude is increased or
decreased as compared to the nonemphasized value by the FFE tap. The
terminology precursor taps and postcursor taps refer to whether the FFE filter
taps operate on an advanced or delayed signal (respectively) relative to the
t = 0 tap. Baud-spaced taps are defined as taps where the delay from one filter
tap to the adjacent tap is one-bit time interval; fractional spacing of the taps is
also possible.

The FFE tap weights are selected to generate a filter with the inverse
transfer function of the channel transfer function. Various algorithms
exist for determining optimal FFE coefficient values; some select filter
coefficients to maximize signal amplitude at the receiver, while others
optimize eye width (i.e., minimizing jitter). More complex algorithms may
search for an optimal trade-off between amplitude and jitter in order to
optimize a more complex parameter (such as projected BER). FFE tap weights
are determined for many applications by design and coded as fixed values
within system software, however, there are some applications where FFE tap

Serdes Concepts 11

weights are adjusted dynamically by the protocol based on signal
characteristics at the receiver.

PCB, connectors, cables
Driver Receiver

Output
Waveform

Input
Bits

PCB, connectors, cables

Driver with
Receiverintegrated FFE

Equalized
WaveformPreemphasis

Example Using
Integrated FFE

z-1 z-1

+

X
ct-1 X

ct X
ct+1

serial
data

driver
output

3-tap FFE

Fig. 1.11 Three-tap feed forward equalizer operation

Fig. 1.10 Typical channel application with equalization at the transmitter

Fig. 1.9 Signal distortion for a typical channel application

Typical Backplane Application

12 High Speed Serdes Devices and Applications

Fig. 1.12 Typical channel application with equalization at the receiver

Fig. 1.13 Receiver frequency response for peaking amplifier settings

Fig. 1.14 Decision feedback equalizer architecture

PCB, connectors, cables
Driver

Input
Bits

Output Waveform

Receiver
with Equalization

Equalized
Waveform

Rx Frequency Response for Peaking Amplifier Settings
20

15

10

5

0

-5

G
ai

n
(d

B
)

108 109 1010

Frequency (Hz)

Peak 0

Peak 7

z-1

X
kn-4

serial
data

5-tap DFE

z-1 z-1 z-1 z-1_

X
kn X

kn-1 X
kn-2 X

kn-3

+

Serdes Concepts 13

Equalization may also be performed at the receiver as illustrated in
Fig. 1.12. Despite the signal distortion at the input of the receiver, this
equalizer corrects for the distortion and produces a clean waveform. For lower
speed or lower loss links, the most prevalent approach is to use some variant
of a peaking amplifier. Peaking amplifier circuits amplify the higher frequency
signal components more than the lower frequency components. If the peaking
amount is matched to the high frequency loss (difference between high
frequency and low frequency), then the channel is equalized and the eye is
opened up. Some Serdes devices allow programmable peaking levels; the
frequency response of such a peaking amplifier for various provisioned
settings is shown in Fig. 1.13.

For higher baud rates, the transfer function of the channel can cause
jitter exceeding the bit width of the data and significant loss of signal
amplitude at higher frequencies. A DFE stage is often included in receivers
for these baud rates in order to recover data despite the otherwise
“closed” eye.

A conceptual block diagram of a DFE circuit is shown in Fig. 1.14. The
serial data signal is applied to a slicer circuit which makes decisions as to
whether the incoming signal is a “0” or a “1”. The received serial data is then
delayed by a number of flip-flops which implement the filter taps. Each tap is
multiplied by a corresponding tap weight value, and the results are summed.
This sum is then used to correct the amplitude of the incoming signal, affecting
the decisions made by the slicer circuit. Slicer decisions are thus affected by
feedback based on prior data received. Although not shown in Fig. 1.14, some
DFE architectures use feedback to affect both the amplitude and the sample

Fig. 1.15 Virtual eye after equalization

14 High Speed Serdes Devices and Applications

time of the slicer circuit. Such architectures adjust the CDR sample time from
bit to bit based on feedback regarding the last several bits received.

As was the case for FFE circuits, the number of DFE taps on the filter, the
spacing of these taps relative to the baud rate, and the granularity of these tap
weight values vary. DFE implementations usually also contain logic which
trains the DFE and sets DFE tap weights to optimal values dynamically.

Using a DFE, the closed eye shown in Fig. 1.5b is cleaned up to produce
the virtual eye shown in Fig. 1.15. Note that the eye in this illustration is
produced by a DFE architecture which corrects the CDR sample time from bit
to bit. The DFE correction is valid for only one instance in time (based on the
history of the previous bits). As such, once the DFE makes a decision as to
whether the bit is “0” or “1”, the DFE then proceeds to make adjustments for
the next bit time which are different for the various signal traces of the
composite waveform. For this reason, the signal eye shown in the figure is
open for the bit of interest, but does not appear open for adjacent bits.

Many variations on equalizer architectures exist. As the baud rate increases,
equalizer architectures become increasing complex. In some cases, protocol
standards specify a base level of required equalizer functionality.

1.3.3 Clock and Data Recovery (CDR)
Conceptually, CDR circuits monitor transitions of the data signal and select

an optimal sampling phase for the data at the mid-point between edges. Since
the timing of data transitions includes a jitter component, the CDR must
perform some averaging to provide stability of this sampling point from one bit
to the next. Intersymbol interference (ISI) and other components of
deterministic jitter (DJ) are dependent on the spectral content of the data signal,
and this frequency spectrum does change based on the data content. Shifts in
this frequency spectrum sustained for hundreds of bits or more cause the CDR
to adjust the optimal sampling phase dynamically.

CDR architecture is discussed further in Sect. 3.3.1. Features of the CDR
may be of some significance to the Serdes user are discussed below.
1.3.3.1 Maximum Run Length

A significant parameter for the Serdes which is primarily the result of the
CDR design is the maximum number of consecutive “0” or “1” bits which can
be received before the sampling point of the CDR risks incorrectly sampling
the bits. An excessively long run of consecutive bits of the same value means
that the CDR is not detecting any data transitions, and therefore cannot recover
any clock information to ensure the data continues to be sampled in the center
of the eye. A small drift in the sampling point relative to the baud rate of the
data may cause the CDR to sample more “0” or more “1” bits than were
actually transmitted. Also, the sampling point may require recentering when
data transitions resume, and additional bits may be sampled incorrectly as this
adjustment occurs. Some CDR implementations drive the receive data to a
PLL and use the output of the PLL as the sample clock; clock outputs of the

Serdes Concepts 15

receiver may change frequency or stop when such CDRs do not receive data
transitions for a sustained length of time.

The maximum run length of consecutive “0” or “1” bits which must be
tolerated depends on the protocol application and the data encoding defined for
a given protocol. For example, protocols which use 8B/10B encoding are
guaranteed to have no more than 5 bit times between data transitions. Protocols
using another common encoding, 64B/66B, are guaranteed to see run lengths
no longer than 66 bit times. Scrambled protocols may encounter much longer
run lengths, and must determine requirements using statistical analysis. For
example, Sonet/SDH is a scrambled protocol which specifies systems must
meet a BER of 1 x 10−12. It is generally accepted that run lengths of scrambled
Sonet/SDH data longer than 80 bits statistically occur less frequently than the
specified BER. Therefore, a Serdes used to receive Sonet/SDH data must
tolerate a run length of 80 bits.

The run length which can be tolerated by a CDR design is related to the
frequency tolerance between the two clock sources. In a system using
plesiosynchronous clocks, the reference clock used by the receiver (and the
CDR circuit) may be running at a slightly different frequency from the
reference clock used by the transmitter, as is described further in Sect. 4.1.3.1.
The frequency tolerance between the two clock sources is generally specified
in parts per million (ppm). In a plesiosynchronous system, the CDR must
continually correct the phase of the sample clock to remain in the center of the
data eye. During periods where no data transitions are being received, the error
in phase position builds up. Therefore, as the frequency tolerance of the system
is increased (corresponding to larger allowed frequency difference between the
clock sources), the run length which can be tolerated by the CDR design is
reduced for a given performance (BER) target.
1.3.3.2 Clock Operation During System Initialization

In the above discussion, it was noted that some CDR architectures derive the
sample clock from the received data using a PLL. During system initialization or
during system operation when cables are unplugged, etc., no data transitions are
received for a substantial period of time. For some Serdes, this results in clock
outputs of the receiver changing frequency or stopping. Any downstream logic
clocked by these clock outputs must be designed to be tolerant of this frequency
change or to assume logic is not clocked during these periods.

1.3.4 Differential Driver
The differential driver stage is an analog circuit which drives the true and

complement legs of the differential signal. Output data must be driven such that
jitter is minimized. In some architectures, data is latched in a flip-flop clocked
at the baud rate, and the output of this flop is driven onto the differential output.
Such implementations require an internal high-speed clock running at the baud
rate. This is illustrated in Fig. 1.16.

16 High Speed Serdes Devices and Applications

Fig. 1.16 Driver stage architectures

Fig. 1.17 Single-ended complementary signals

Fig. 1.18 Differential peak-to-peak signal

D Q

Baud-Rate

Low Jitter Path

D Q

Half-Rate

D Q

0

1

MUX

Low Jitter Path

Clock

Clock

-2-4-6 0 642

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.7

0.8

0.9

A

B

-2-4-6 0 642

-0.6

-0.4

-0.2

0.2

0.4

0.6

2*(A-B)

Serdes Concepts 17

An alternative architecture, also shown in Fig. 1.16, uses an internal high-
speed clock running at a frequency equal to half of the baud rate. Data is
latched in two flip-flops on alternate edges of the high-speed clock. The high-
speed clock also controls a multiplexor which alternately selects which of the
flops drives the differential driver. Depending on the characteristics of the
silicon technology, this architecture may result in lower jitter than the full-rate
architecture.

Figure 1.17 illustrates typical voltage swings for the two legs of the
differential signal, assuming a termination voltage of approximately 1.8V. The
average voltage on the signal is the common mode voltage (Vcm). For this
example:

Vcm = (1.5V + 0.9V) / 2 = 1.2V.
The differential voltage (Vdiff) is calculated by taking the voltage of the

true leg and subtracting the voltage of the complement leg. Figure 1.18
illustrates the differential waveform corresponding to the single-ended signals
from Fig. 1.17.

This differential voltage swings between the following limits:
Vdiff = 1.5V − 0.9V = +0.6V
Vdiff = 0.9V − 1.5V = 0.6V

This waveform has a total peak-to-peak differential voltage of 1.2Vppd.
Note that the peak-to-peak voltage of the differential signal is twice the peak-
to-peak voltage of either single-ended signal considered individually.

1.3.5 Differential Receiver
The differential receiver stage is an analog comparator circuit which

compares the true and complement legs of the differential signal and outputs a
“0” or “1” logic level based on the relative signal voltages. Differential receiver
stages used with DFEs are linear amplifiers; the comparator circuit is incorpo-
rated into the DFE.

1.3.6 Diagnostic Functions
Additional logic is often incorporated into the transmitter and receiver

designs to provide diagnostic capabilities for chip manufacturing test, circuit
board manufacturing test, and system diagnostic tests. Typical functions
include:
1. Pseudo random Bit Sequence (PRBS) Checker. PRBS sequences can be
checked by comparing received data to the output of a local linear feedback
shift register implementing the corresponding characteristic polynomial.
Receiver devices often include a PRBS checker capable of checking one or
more PRBS test patterns.
2. Loopback or Wrap Paths. Full duplex Serdes devices often provide the
capability to wrap transmitter outputs to receiver inputs in order to self-check
the functionality of the Serdes. Simplex cores do not have this capability,

18 High Speed Serdes Devices and Applications

although some simplex transmitters include a test receiver, and some simplex
receivers include a test transmitter to perform self-test.
3. JTAG 1149.1 and JTAG 1149.6. These JTAG standards are used for
manufacturing test of circuit boards, and require insertion of boundary scan
cells on all chip I/O to support this testing. Since such logic cannot be inserted
on high-speed I/O without impacting signal integrity, the Serdes core must
provide appropriate hooks to drive differential outputs from boundary scan
cells at the transmitter device, and sample inputs in boundary scan cells at the
receiver device. JTAG 1149.6 expands the capabilities of JTAG 1149.1 to
permit testing through decoupling capacitors and support independent testing
of the true and complement legs of differential signals. JTAG 1149.1 and
1149.6 are covered in detail in Sect. 7.1.

Fig. 1.19 Clock distribution example using an ASIC IF PLL

ASIC
IF PLL

OSC

800 MHz

Tx(1)

Clock Tree

PLL (Mult by 8, 10,16, or 20)

Serializer Driver +
-

20

BIST

CH A Out

Serializer Driver +
-

20
CH D Out

Serializer Driver +
-

20
CH C Out

Serializer Driver +
-

20
CH B Out

200 MHz

Tx(n)
PLL (Mult by 8, 10,16, or 20)

Serializer Driver +
-

20

BIST

CH A Out

Serializer Driver +
-

20
CH D Out

Serializer Driver +
-

20
CH C Out

Serializer Driver +
-

20
CH B Out

PLL (Mult by 8, 10,16, or 20)

DeserializerReceiver+
-

20

BIST

CH B In

DeserializerReceiver+
-

20
CH A In

DeserializerReceiver+
-

20
CH C In

DeserializerReceiver+
-

20
CH D In

Rx(1)

Card

Rx(m)
PLL (Mult by 8, 10,16, or 20)

DeserializerReceiver+
-

20

BIST

CH B In

DeserializerReceiver+
-

20
CH A In

DeserializerReceiver+
-

20
CH C In

DeserializerReceiver+
-

20
CH D In

ASIC

ASIC Logic

