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Preface
The simplest method of transferring data through the inputs or outputs of a 

silicon chip is to directly connect each bit of the datapath from one chip to the 
next chip. Once upon a time this was an acceptable approach. However, one 
aspect (and perhaps the only aspect) of chip design which has not changed 
during the career of the authors is Moore’s Law, which has dictated substantial 
increases in the number of circuits that can be manufactured on a chip. The pin 
densities of chip packaging technologies have not increased at the same pace 
as has silicon density, and this has led to a prevalence of High Speed Serdes 
(HSS) devices as an inherent part of almost any chip design.

HSS devices are the dominant form of input/output for many (if not most) 
high-integration chips, moving serial data between chips at speeds up to 10 
Gbps and beyond. Chip designers with a background in digital logic design 
tend to view HSS devices as simply complex digital input/output cells. This 
view ignores the complexity associated with serially moving billions of bits of 
data per second. At these data rates, the assumptions associated with digital 
signals break down and analog factors demand consideration. The chip 
designer who oversimplifies the problem does so at his or her own peril.

Despite this, many chip designers who undertake using HSS cores in their 
design do not have a sufficient background to make informed decisions on the 
use of HSS features in their application, and to appreciate the potential pitfalls 
that result from ignoring the analog nature of the application. Databooks 
describe the detailed features of specific HSS devices, but usually assume that 
the reader already understands the fundamentals. This is the equivalent of 
providing detailed descriptions of the trees, but leaving the reader struggling to 
get an overview of the forest. 

This text is intended to bridge this gap, and provide the reader with a broad 
understanding of HSS device usage. Topics typically taught in a variety of 
courses using multiple texts are consolidated in this text to provide sufficient 
background for the chip designer that is using HSS devices on his or her chip. 
This text may be viewed as consisting of four sections as outlined below.

The first three chapters relate to the features, functions, and design of HSS 
devices. Chapter 1 introduces the reader to the basic concepts and the resulting 
features and functions typical of HSS devices. Chapter 2 builds upon these 
concepts by describing an example of an HSS core, thereby giving the reader 
a concrete implementation to use as a framework for topics throughout the 
remainder of the text. Although loosely based on the HSS designs offered in 
IBM ASIC products, this HSS EX10 is a simplified tutorial example and shares 
many features/functions with product offerings from other vendors. Finally, 
Chap. 3 introduces interested readers to the architecture and design of HSS 
cores using the HSS EX10 as an example.

The next two chapters describe the features and functions of protocol logic 
used to implement various network protocol interface standards. Chapter 4 

v
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introduces concepts related to interface standards, as well as design 
architectures for various protocol logic functions. Chapter 5 provides an 
overview of various protocol standards in which HSS cores are used.

The next four chapters cover specialized topics related to HSS cores. 
Chapter 6 describes clock architectures for the reference clock network which 
supplies clocks to the HSS core, as well as floorplanning and signal integrity 
analysis of these networks. Chapter 7 covers various topics related to testing 
HSS cores and diagnostics using HSS cores. Chapter 8 covers basic concepts 
regarding signal integrity, and signal integrity analysis methods. Chapter 9 
covers power dissipation concepts and how these relate to HSS cores.

Finally, any HSS core is not complete without a set of design kit models to 
facilitate integration within the chip design. Chapter 10 discusses various 
topics regarding the design kit models that require special consideration when 
applied to HSS cores.
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Chapter 1
Serdes Concepts
Table 1-1
Eqn 1-1

This chapter describes basic methods of transferring data from one chip to 
another chip, either on the same circuit board or across a cable or backplane to 
another circuit board. After reading this chapter, the reader should have a basic 
understanding of the rationale for using high-speed serializer/deserializer 
(Serdes) devices, and the inherent problems introduced by the high-speed 
operation of such devices.

1.1  The Parallel Data Bus
The simplest method of transferring data through the inputs or outputs of a 

silicon chip is to directly connect the datapath from one chip to the next chip (see 
Fig. 1.1). Since data often consists of more than one bit of information, the datapath 
is more than one-bit wide. In the figure, an n-bit datapath inside Chip #1 is driven 
through chip outputs, across an n bit interconnect, through inputs of Chip #2, to an 
n-bit datapath inside the receiving chip. Synchronous data is transferred between 
the two chips since both chips are clocked by the same clock source.

There are two inherent problems of the parallel data bus shown in Fig. 1.1. The 
first problem is that n input/output (I/O) pins are required on each chip to transfer 
the data. At one point in history this was acceptable. However, Moore’s Law has 
driven substantial increases in the number of circuits that can be manufactured on 
a chip compared to a few decades ago. The pin densities of chip packaging 
technologies have not increased at the same pace as silicon density. Therefore, I/O 
pins are substantially more expensive than silicon circuits, and dedicating n I/O 
pins for the above data bus is not acceptable for most chip applications.

The second inherent problem involves meeting timing requirements. The 
data is launched synchronously by Chip #1 and is captured synchronously in 
Chip #2 using the same clock. The data at the inputs of Chip #2 must meet 
setup and hold times relative to the clock input of the chip. These setup and 
hold times must be calculated with sufficient margin to allow for differences 
in delay of the clock distribution path to the two chips, and through the chips 
to the launch and capture flip-flops. Delays may vary based on chip process, 
voltage, and temperature (PVT) conditions, and margin must be added to 
account for worst case variations. For higher clock frequencies, it may be 
necessary to use phase-locked loops (PLLs) in the chips to adjust the clock 
phase in order to compensate for the clock distribution delay within the chip 
and adapt to changing process, voltage, and temperature conditions. If the 
clock frequency is high enough, it will not be possible to build a system that 
will reliably transfer the data across this data bus.

D. R. Stauffer et al., High Speed Serdes Devices and Applications, 1
© Springer 2008
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1.2  Source Synchronous Interfaces
The two problems with the parallel data bus in Sect.1.1 can be eliminated 

with the modifications to the system which are discussed in this section. These 
approaches are extensions of the parallel data bus. The parallel data bus and all 
of the extensions described in this section are considered to be source 
synchronous interface architectures. Such architectures include any interface 
where a clock input exists that can be used to capture the received data. This 
may be either a reference clock used by both the transmitting and receiving 
chip or the transmitting chip drives a clock to the receiving chip. In either case, 
clock recovery circuits are not required for source synchronous interfaces.

1.2.1 Reducing the Number of I/O Pins
The first issue to be addressed is reducing the number of I/O pins required 

to transfer the data between the chips. This is accomplished by multiplexing 
the n bits of data at the output of Chip #1 onto k bits of interconnect ( k < n ), 
and then demultiplexing the k bits of interconnect at the input of Chip #2 onto 
an n bit internal datapath. This is shown in Fig. 1.2. The resulting system only 
requires k I/O pins on each chip rather than the n pins previously required. 

Chip
#1

Chip
#2

Clock
Source

nn n

Chip
#1

Chip
#2

Clock
Source

kn n

Fig. 1.1 Parallel data bus between two chips

Fig. 1.2 Serializing the data to reduce pin counts



Serdes Concepts  3

Of course, while the pin count requirements have been reduced by the ratio 
of k : n , the required frequency of the reference clock has increased by the 
inverse of this ratio. System designers generally do not like to distribute high- 
speed reference clocks within the system due to noise, electromagnetic 
interference (EMI), and power dissipation concerns. Often, a lower frequency 
clock is distributed, and PLLs in the chips are used to multiply this reference 
clock to a usable frequency. Variability of the phase of the resulting clock, 
along with the higher frequency of data transfer, tends to exacerbate the timing 
issues of the parallel data bus approach. 

1.2.2 Clock Forwarding
In Fig. 1.3, a high-speed clock has been added to the datapath between the 

two chips. This clock source is assumed to supply a clock frequency somewhat 
lower than the frequency required to clock the data flip-flops on the chip 
interconnect. PLLs are used in each chip to generate clocks at a multiple of this 
frequency. The resulting clocks are used to launch and capture data in the 
respective chips. The output clock of the PLL in Chip #1, which is used to 
launch the data from this chip, is also an output of this chip. This clock is used 
by Chip #2 to capture the data. This approach is called clock forwarding.

The advantage of this approach is that the high-speed clock used to launch 
the data at Chip #1 is available to Chip #2 as a reference to capture the data. 
Any variations in delays through clock distribution network driving the two 
chips does not need to be taken into account in timing analysis. Only delay 
variations between the clock path and the data bits are relevant. Variations 
between these paths due to process, voltage, and temperature track each other 
to some extent. The result is that timing analysis of the interface requires less 
margin and setup and hold times are therefore easier to meet.

So far we have not made any distinction or recommendations regarding the 
frequency of the high-speed clock relative to the bit rate of the interface. In 
general, the high-speed clock shown in the figure could be single data rate 
(SDR) or double data rate (DDR) (Fig. 1.4). The receiving chip captures data on 
every rising (or every falling) edge of an SDR clock; while the receiving chip 
captures data on every edge (both rising and falling edges) of a DDR clock. 

Chip
#1

Chip
#2

Clock
Source

kn n

high speed clock

Fig. 1.3 High-speed clock forwarded with the data
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The advantage of DDR clocks over SDR clocks lies in the bandwidth 
requirements for the corresponding I/O drivers and receivers. An I/O cell being 
used at a bit rate of b Mbits per second requires a bandwidth sufficient to 
transmit a 101010... data pattern. This corresponds to a frequency spectrum 
with an upper fundamental frequency limit of b/2 MHz. The corresponding 
frequency of an SDR clock is b MHz, twice the spectral limit of the data. 
However, the frequency of a DDR clock for the same interface is only b/2 
MHz, consistent with the frequency spectrum of the data. Therefore, the same 
I/O drivers and receivers can be used to drive and receive both the data and the 
DDR clock.

Regardless of whether the high-speed clock is a SDR or a DDR clock, the 
receiving chip uses this clock to directly capture the data. This chip also uses 
the reference clock to generate an internal system clock at the same frequency. 
These clocks are mesochronous. While the frequency is the same (given that 
they share a common frequency reference), the phase relationship between the 
clocks is unknown and may vary due to PVT variations. Therefore, the 
receiving chip usually retimes the received data from the interface clock 
domain to the clock domain of the internal chip clock. FIFOs are used to 
perform this retiming function. It is desirable to minimize the number of flip-
flops being clocked by the interface clock in order to minimize delay in the 
clock distribution network; otherwise timing issues will be exacerbated.

1.2.3 Higher Speed Source Synchronous Interfaces
The window of time during which data bits can be assumed to be valid is 

called the eye. This name originates from the shape of the waveform when the 
data signal is monitored on an oscilloscope that is continuously triggered. An 
example of a serial data eye is shown in Fig. 1.5a. Eye closure results from 
process, voltage, and temperature effects, as well as differences between signal 
rise and fall times, slew rates, etc. The more the eye is closed, the more difficult 
it is to find a point at which the signal can be reliability sampled to receive the 
data. The serial data eye shown in Fig. 1.5b is completely closed. 

The largest possible eye opening is desirable. The width and height of an 
open eye can be measured as shown in Fig. 1.5c. The expected bit error rate 
(BER) of the link directly correlates to the amount of eye opening (both width 
and height). This section briefly describes some approaches to minimize eye 
closure of the data signal. Eye waveforms are discussed further in later chapters. 

DDR Clock

 
SDR Clock

Data

Fig. 1.4 Single data rate and double data rate clocks
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1.2.3.1 Differential Signals
Unequal signal rise and fall times of nondifferential signals contribute to 

eye closure. Signals switching on the chip also create current variations on the 
power distribution grid of the chip, which in turn cause variations in voltage 
drop (noise) that can cause variation in delays of surrounding circuits. One 
method of reducing the effects of these phenomenon on the eye width is to 
drive differential signals between chips.

Differential signals represent the data bit using two electrical signals (true 
and complement signals). A logic “0” is represented by the true signal driven 
to its lower voltage limit, and the complement signal driven to its upper voltage 
limit; a logic “1” is represented by the true signal driven to its upper voltage 
limit, and the complement signal driven to its lower voltage limit. A differential 
receiver device interprets the logic bit value based on the difference between 
the two signals, and not based on the level of either signal individually.

 

(a) Open Data Eye (b) Closed Eye

(c) Measuring the Eye Opening

Fig. 1.5 Example of a serial data eye
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Differential driver circuits tend to have linear current draw and generate 
less noise on the power supply than equivalent single-ended drivers. Most 
noise sources induce voltage variation equally on both the true and comple-
ment signals; such common mode noise is ignored by the receiver. Also, since 
one leg of the differential signal is rising while the other is falling, or vice 
versa, unequal rise and fall time effects cancel. 

The drawback of differential signals is that two chip pins are required for 
each data bit. However, this is offset by the higher speeds possible with 
differential signals that are not possible with single-ended signals.
1.2.3.2 Multiple Interface Clocks

The interface clock in Fig. 1.3 is the same clock as is used to launch the data, 
and in general is driven from a point in the clock distribution network as close to 
the actual flip-flops that launch the data as possible. Phase variation is introduced 
by any circuits which are not common to both the data path and clock path. 
Silicon process variables do vary from circuit to circuit on the same chip, the 
power distribution network may have unequal voltage drops to different circuits 
which may vary based on switching currents, and the temperature may vary from 
point to point on the chip. Tolerances and limits for all of these parameters must 
be taken into account when calculating delays, setup times, and hold times 
necessary for correct capture of the received data. At higher bit/baud rates, these 
parameters may significantly reduce the eye opening, and become the dominant 
mechanism for limiting the speed of the interface.

To maximize the eye width, the path through the clock tree to each of the 
data flip-flops and to the clock output should share as many circuits as possible, 
and the output driver for the clock should be similar to the output drivers for 
the data. Ideally, the same clock buffer should drive the clock to the output 
driver and should drive the clock input to all of the data flip-flops. The larger 
the number of bits in the data bus, the more difficult this becomes to 
implement. I/O drivers must be physically distributed based on the groundrules 
for connections to package pins. The greater the distance between circuits, the 
more process, voltage, and temperature variation, and the more circuits in the 
clock distribution network which cannot be shared due to lack of proximity. 

Chip
#1

Chip
#2

Clock
Source

k/2n/2 n/2
high speed clock

k/2n/2 n/2
high speed clock

Fig. 1.6 Multiple sets of data with separate high-speed clocks
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One technique used to improve eye width is to limit the number of data bits 
associated with a given interface clock line. Wider data busses are built by 
using multiple interface clocks, each clock associated with a subset of the data 
bits. An example of this is shown in Fig. 1.6, where the k bit interconnect has 
been subdivided into two groups, each with its own high-speed interface clock. 
Note that the receiving chip must capture each group of data bits in separate 
clock domains, and needs to retime this data to the common clock domain 
internal to the chip.
1.2.3.3 Sample Edge Adaptation

Another technique used to permit higher speed operation of source 
synchronous interfaces is to process the data signal at the receiver and adapt 
the sampling phase of the clock on a per-bit basis. This is done by connecting 
the received interface clock signal to the input of a multitap delay line, and 
capturing the data signal in multiple flip-flops clocked by different clock 
phases. Logic can then be used to determine the clock phases between which 
data transitions are occurring, and select the optimal clock phase to be used to 
capture the data. This scheme is shown in Fig. 1.7.

Schemes, such as shown in Fig. 1.7, may require a training pattern either 
upon initialization of the interface or at regular intervals. If a training pattern 
is used, phase selections remain static between training periods. More complex 
implementations adjust dynamically based on the received data or based on 
training patterns embedded in the data stream. Alternative architectures which 
apply the data to the delay line are also possible. Note, however, that an 
inherent characteristic of most of these schemes is that the phase adjustment is 
less than plus/minus one bit time, and there must be a sufficient eye opening 
such that an optimal sampling phase exists.

Given the advanced schemes discussed above, data rates for source 
synchronous interfaces can be extended to several Gigabits per second (Gbps) 
per interconnect bit. However, PVT variations make further increases in 
interface speeds prohibitively complex. Beyond these speeds, High-Speed 
Serdes devices that extract the clock from edge transitions in the data stream 
become the preferred solution.

D

D

D

D

edge
select
logic

data

clock

data out

Fig. 1.7 Adapting the sampling clock phase in the receiver
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1.3  High-Speed Serdes
High-Speed Serializer/Deserializer (HSS) devices are the dominant 

implementation of I/O interfaces at speeds of 2.5Gbps and higher. Such 
devices are differentiated from source−synchronous interfaces in that the 
receiver device contains a clock and data recovery (CDR) circuit which 
dynamically determines the optimal sampling point of the data signal based 
upon the transition edges of the signal. In other words, clock information is 
extracted directly from the data rather than relying on a separate clock. 

Figure 1.8 illustrates the basic block diagram of the transmit and receive 
channels of an HSS device. The transmitter serializes parallel data, equalizes it 
for reasons that will be explained shortly, and then drives the serial data onto a 
differential signal pair of interconnect wires. Feed forward equalizers (FFE) 
are commonly used in High-Speed Serdes devices, as discussed in Sect. 1.3.2. 
The receiver consists of a differential receiver, a CDR circuit which may also 
integrate an equalizer, and deserializes the data based upon the sample point 
established by the CDR. Peaking amplifiers and/or decision feedback 
equalizers (DFE) are commonly used for equalization in High-Speed Serdes 
receiver devices. 

Note that Serdes cores are often designed to group multiple transmit and/or 
receive channels into a single device. The individual channels generally 
operate independently. Grouping channels allow some circuits to be shared 
across channels (for example the PLL noted below), and therefore the resulting 
block is more efficient in terms of chip area, cost, and power.

Serdes cores which contain only transmit or only receive channels are 
called simplex cores; Serdes cores which contain both transmit and receive 
channels are called full duplex cores. Note that the terminology “full duplex” 
does not imply that the electrical interface is bidirectional. Any given electrical 
interconnect channel has a fixed direction of data transmission. If a protocol 
application requires “full duplex” communication, then independent transmit 
and receive channels with independent interconnections are used to implement 
the interface. Rationale for using simplex vs. full duplex cores may include 

Serializer
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Deserializer

Clock and 

Receiver
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n

Equalization

Data Recovery
& Receive
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Fig. 1.8 Basic block diagram of typical high-speed serdes 
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(1) chip floorplan to minimize wiring crossings in the package design or circuit 
board design; (2) signal integrity concerns due to near-end crosstalk from 
transmit signals onto receive signals; (3) or applications where the number of 
transmit and receive channels is not equal.

The remainder of this section generically describes various circuits 
mentioned above in more detail, as well as providing generic descriptions of 
other circuits and functions commonly found in High-Speed Serdes cores.

1.3.1 Serializer/Deserializer Blocks
Conceptually, the input to the serializer transmit stage is an n-bit datapath 

which is serialized to a one-bit serial data signal for application to the FFE and 
Driver stages. Generally the value of n is a multiple of 8 or 10, and may be 
programmable on some implementations. Values of n which are multiples of 8 
are useful for sending unencoded and/or scrambled data bytes; values of n 
which are multiples of 10 are useful for protocols which use 8B/10B coding, 
as discussed further in Sect. 4.2.2.1. (The 8B/10B encoder is generally 
implemented by logic outside the Serdes core.) 

For simplicity, the block diagram in Fig. 1.8 illustrates the serializer 
feeding one-bit data into the transmit equalization block. Actual 
implementations may vary, and this datapath may be one or more bits wide. A 
wider datapath through the equalizer block results in a more complex design, 
but requires a lower operating frequency. Some implementations may initially 
multiplex the n-bit input to an m-bit datapath ( m < n ) prior to the equalizer, 
and perform the remainder of the serialization at the driver stage.

The serializer stage latches data on the n-bit input at the frequency of 
baud rate/n. The high-speed clock in the Serdes is divided down to generate a 
sample clock for the parallel data. Because the phase of this clock is 
determined by the internal state of the serializer, the Serdes channel generally 
provides this clock as an output for use by logic driving data to the transmit 
channel.

Conceptually, the deserializer receive block performs the inverse function 
of the serializer block. Serial data is deserialized onto an n-bit databus of 
similar width to the serializer. A sample clock is generated by dividing down 
the internal high-speed clock, and this clock is supplied as an output for use by 
logic latching the parallel data. In a similar manner to the serializer, actual 
implementations may perform partial deserialization in a prior stage. 

Many Serdes receivers also include a feature to assist with data alignment 
of the output. Most applications organize data into bytes or words (groups of 
bytes). For 8B/10B encoded applications, data is organized into 10-bit encoded 
symbols. The initialization of the clock divider in the deserializer is arbitrary, 
and the data received on the parallel data bus will have an arbitrary alignment 
that is unlikely to match the byte or symbol boundaries of the protocol. This 
can be corrected by downstream logic to steer data onto the appropriate byte, 
symbol, or word boundary. Alternatively, many Serdes receivers provide an 
input which forces the deserializer to “slip” one bit. Downstream logic detects 
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that data is not aligned to the appropriate boundary, and repeatedly 
pulses the deserializer control until the data “slips” to the desired 
alignment. 

1.3.2 Equalizers
The interconnect between the transmitter and receiver device (known as the 

channel ) acts as a filter at typical baud rates, and distorts the serial data signal 
to varying extents. Figure 1.9 illustrates this distortion: The input waveform is 
a clean digital signal, but the output waveform is significantly distorted. The 
illustrated frequency response function for the channel is characteristic of a 
low-pass filter. Signal distortion occurs because the signal baud rate is above 
the cut-off frequency for this filter.

Signal integrity concerns frequently dictate that the data signal be equalized 
at the transmitter and/or receiver in order to counter the effects of the channel 
and decode the signal properly. Many variations on filter architectures are 
possible, all of which accomplish this. Fig. 1.10 illustrates the addition of an 
equalizer at the transmitter with a transfer function that is roughly the inverse 
of the channel’s frequency response. This equalizer distorts the signal at the 
transmitter output such that the resulting signal at the receiver input is a clean 
waveform. 

Most Serdes transmitter implementations include a FFE. The block 
diagram for a three-tap FFE is shown in Fig. 1.11. The serial data signal is 
delayed by several flip-flops which implement the taps for the filter. Each tap 
is multiplied by a tap weight value (also called a filter coefficient), and the 
results are summed and driven to the serial data output. FFE operation is 
described further in Sect. 3.2.1.

The number of FFE taps on the filter, the spacing of these taps relative to 
the baud rate, and the granularity of these tap weight values vary based on 
implementation. The terminology preemphasis or deemphasis refer to the FFE 
architecture, and indicate whether the data signal amplitude is increased or 
decreased as compared to the nonemphasized value by the FFE tap. The 
terminology precursor taps and postcursor taps refer to whether the FFE filter 
taps operate on an advanced or delayed signal (respectively) relative to the 
t = 0 tap. Baud-spaced taps are defined as taps where the delay from one filter 
tap to the adjacent tap is one-bit time interval; fractional spacing of the taps is 
also possible.

The FFE tap weights are selected to generate a filter with the inverse 
transfer function of the channel transfer function. Various algorithms 
exist for determining optimal FFE coefficient values; some select filter 
coefficients to maximize signal amplitude at the receiver, while others 
optimize eye width (i.e., minimizing jitter). More complex algorithms may 
search for an optimal trade-off between amplitude and jitter in order to 
optimize a more complex parameter (such as projected BER). FFE tap weights 
are determined for many applications by design and coded as fixed values 
within system software, however, there are some applications where FFE tap 
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weights are adjusted dynamically by the protocol based on signal 
characteristics at the receiver. 
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Fig. 1.11 Three-tap feed forward equalizer operation

Fig. 1.10 Typical channel application with equalization at the transmitter

Fig. 1.9 Signal distortion for a typical channel application
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Fig. 1.12 Typical channel application with equalization at the receiver

Fig. 1.13 Receiver frequency response for peaking amplifier settings

Fig. 1.14 Decision feedback equalizer architecture
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Equalization may also be performed at the receiver as illustrated in 
Fig. 1.12. Despite the signal distortion at the input of the receiver, this 
equalizer corrects for the distortion and produces a clean waveform. For lower 
speed or lower loss links, the most prevalent approach is to use some variant 
of a peaking amplifier. Peaking amplifier circuits amplify the higher frequency 
signal components more than the lower frequency components. If the peaking 
amount is matched to the high frequency loss (difference between high 
frequency and low frequency), then the channel is equalized and the eye is 
opened up. Some Serdes devices allow programmable peaking levels; the 
frequency response of such a peaking amplifier for various provisioned 
settings is shown in Fig. 1.13.

For higher baud rates, the transfer function of the channel can cause 
jitter exceeding the bit width of the data and significant loss of signal 
amplitude at higher frequencies. A DFE stage is often included in receivers 
for these baud rates in order to recover data despite the otherwise 
“closed” eye. 

A conceptual block diagram of a DFE circuit is shown in Fig. 1.14. The 
serial data signal is applied to a slicer circuit which makes decisions as to 
whether the incoming signal is a “0” or a “1”. The received serial data is then 
delayed by a number of flip-flops which implement the filter taps. Each tap is 
multiplied by a corresponding tap weight value, and the results are summed. 
This sum is then used to correct the amplitude of the incoming signal, affecting 
the decisions made by the slicer circuit. Slicer decisions are thus affected by 
feedback based on prior data received. Although not shown in Fig. 1.14, some 
DFE architectures use feedback to affect both the amplitude and the sample 

Fig. 1.15 Virtual eye after equalization
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time of the slicer circuit. Such architectures adjust the CDR sample time from 
bit to bit based on feedback regarding the last several bits received.

As was the case for FFE circuits, the number of DFE taps on the filter, the 
spacing of these taps relative to the baud rate, and the granularity of these tap 
weight values vary. DFE implementations usually also contain logic which 
trains the DFE and sets DFE tap weights to optimal values dynamically. 

Using a DFE, the closed eye shown in Fig. 1.5b is cleaned up to produce 
the virtual eye shown in Fig. 1.15. Note that the eye in this illustration is 
produced by a DFE architecture which corrects the CDR sample time from bit 
to bit. The DFE correction is valid for only one instance in time (based on the 
history of the previous bits). As such, once the DFE makes a decision as to 
whether the bit is “0” or “1”, the DFE then proceeds to make adjustments for 
the next bit time which are different for the various signal traces of the 
composite waveform. For this reason, the signal eye shown in the figure is 
open for the bit of interest, but does not appear open for adjacent bits.

Many variations on equalizer architectures exist. As the baud rate increases, 
equalizer architectures become increasing complex. In some cases, protocol 
standards specify a base level of required equalizer functionality.

1.3.3 Clock and Data Recovery (CDR)
Conceptually, CDR circuits monitor transitions of the data signal and select 

an optimal sampling phase for the data at the mid-point between edges. Since 
the timing of data transitions includes a jitter component, the CDR must 
perform some averaging to provide stability of this sampling point from one bit 
to the next. Intersymbol interference (ISI) and other components of 
deterministic jitter (DJ) are dependent on the spectral content of the data signal, 
and this frequency spectrum does change based on the data content. Shifts in 
this frequency spectrum sustained for hundreds of bits or more cause the CDR 
to adjust the optimal sampling phase dynamically.

CDR architecture is discussed further in Sect. 3.3.1. Features of the CDR 
may be of some significance to the Serdes user are discussed below.
1.3.3.1 Maximum Run Length

A significant parameter for the Serdes which is primarily the result of the 
CDR design is the maximum number of consecutive “0” or “1” bits which can 
be received before the sampling point of the CDR risks incorrectly sampling 
the bits. An excessively long run of consecutive bits of the same value means 
that the CDR is not detecting any data transitions, and therefore cannot recover 
any clock information to ensure the data continues to be sampled in the center 
of the eye. A small drift in the sampling point relative to the baud rate of the 
data may cause the CDR to sample more “0” or more “1” bits than were 
actually transmitted. Also, the sampling point may require recentering when 
data transitions resume, and additional bits may be sampled incorrectly as this 
adjustment occurs. Some CDR implementations drive the receive data to a 
PLL and use the output of the PLL as the sample clock; clock outputs of the 
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receiver may change frequency or stop when such CDRs do not receive data 
transitions for a sustained length of time.

The maximum run length of consecutive “0” or “1” bits which must be 
tolerated depends on the protocol application and the data encoding defined for 
a given protocol. For example, protocols which use 8B/10B encoding are 
guaranteed to have no more than 5 bit times between data transitions. Protocols 
using another common encoding, 64B/66B, are guaranteed to see run lengths 
no longer than 66 bit times. Scrambled protocols may encounter much longer 
run lengths, and must determine requirements using statistical analysis. For 
example, Sonet/SDH is a scrambled protocol which specifies systems must 
meet a BER of 1 x 10−12. It is generally accepted that run lengths of scrambled 
Sonet/SDH data longer than 80 bits statistically occur less frequently than the 
specified BER. Therefore, a Serdes used to receive Sonet/SDH data must 
tolerate a run length of 80 bits.

The run length which can be tolerated by a CDR design is related to the 
frequency tolerance between the two clock sources. In a system using 
plesiosynchronous clocks, the reference clock used by the receiver (and the 
CDR circuit) may be running at a slightly different frequency from the 
reference clock used by the transmitter, as is described further in Sect. 4.1.3.1. 
The frequency tolerance between the two clock sources is generally specified 
in parts per million (ppm). In a plesiosynchronous system, the CDR must 
continually correct the phase of the sample clock to remain in the center of the 
data eye. During periods where no data transitions are being received, the error 
in phase position builds up. Therefore, as the frequency tolerance of the system 
is increased (corresponding to larger allowed frequency difference between the 
clock sources), the run length which can be tolerated by the CDR design is 
reduced for a given performance (BER) target.
1.3.3.2 Clock Operation During System Initialization

In the above discussion, it was noted that some CDR architectures derive the 
sample clock from the received data using a PLL. During system initialization or 
during system operation when cables are unplugged, etc., no data transitions are 
received for a substantial period of time. For some Serdes, this results in clock 
outputs of the receiver changing frequency or stopping. Any downstream logic 
clocked by these clock outputs must be designed to be tolerant of this frequency 
change or to assume logic is not clocked during these periods.

1.3.4 Differential Driver
The differential driver stage is an analog circuit which drives the true and 

complement legs of the differential signal. Output data must be driven such that 
jitter is minimized. In some architectures, data is latched in a flip-flop clocked 
at the baud rate, and the output of this flop is driven onto the differential output. 
Such implementations require an internal high-speed clock running at the baud 
rate. This is illustrated in Fig. 1.16.
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Fig. 1.16 Driver stage architectures

Fig. 1.17 Single-ended complementary signals

Fig. 1.18 Differential peak-to-peak signal
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An alternative architecture, also shown in Fig. 1.16, uses an internal high- 
speed clock running at a frequency equal to half of the baud rate. Data is 
latched in two flip-flops on alternate edges of the high-speed clock. The high- 
speed clock also controls a multiplexor which alternately selects which of the 
flops drives the differential driver. Depending on the characteristics of the 
silicon technology, this architecture may result in lower jitter than the full-rate 
architecture.

Figure 1.17 illustrates typical voltage swings for the two legs of the 
differential signal, assuming a termination voltage of approximately 1.8V. The 
average voltage on the signal is the common mode voltage (Vcm ). For this 
example:

Vcm = (1.5V + 0.9V) / 2 = 1.2V.
The differential voltage (Vdiff ) is calculated by taking the voltage of the 

true leg and subtracting the voltage of the complement leg. Figure 1.18 
illustrates the differential waveform corresponding to the single-ended signals 
from Fig. 1.17. 

This differential voltage swings between the following limits:
Vdiff = 1.5V −  0.9V = +0.6V
Vdiff = 0.9V −  1.5V = 0.6V

This waveform has a total peak-to-peak differential voltage of 1.2Vppd. 
Note that the peak-to-peak voltage of the differential signal is twice the peak-
to-peak voltage of either single-ended signal considered individually.

1.3.5 Differential Receiver
The differential receiver stage is an analog comparator circuit which 

compares the true and complement legs of the differential signal and outputs a 
“0” or “1” logic level based on the relative signal voltages. Differential receiver 
stages used with DFEs are linear amplifiers; the comparator circuit is incorpo-
rated into the DFE.

1.3.6 Diagnostic Functions
Additional logic is often incorporated into the transmitter and receiver 

designs to provide diagnostic capabilities for chip manufacturing test, circuit 
board manufacturing test, and system diagnostic tests. Typical functions 
include:
1. Pseudo random Bit Sequence (PRBS) Checker. PRBS sequences can be 
checked by comparing received data to the output of a local linear feedback 
shift register implementing the corresponding characteristic polynomial. 
Receiver devices often include a PRBS checker capable of checking one or 
more PRBS test patterns. 
2. Loopback or Wrap Paths. Full duplex Serdes devices often provide the 
capability to wrap transmitter outputs to receiver inputs in order to self-check 
the functionality of the Serdes. Simplex cores do not have this capability, 
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although some simplex transmitters include a test receiver, and some simplex 
receivers include a test transmitter to perform self-test. 
3. JTAG 1149.1 and JTAG 1149.6. These JTAG standards are used for 
manufacturing test of circuit boards, and require insertion of boundary scan 
cells on all chip I/O to support this testing. Since such logic cannot be inserted 
on high-speed I/O without impacting signal integrity, the Serdes core must 
provide appropriate hooks to drive differential outputs from boundary scan 
cells at the transmitter device, and sample inputs in boundary scan cells at the 
receiver device. JTAG 1149.6 expands the capabilities of JTAG 1149.1 to 
permit testing through decoupling capacitors and support independent testing 
of the true and complement legs of differential signals. JTAG 1149.1 and 
1149.6 are covered in detail in Sect. 7.1.

Fig. 1.19 Clock distribution example using an ASIC IF PLL
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