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Preface

Why We Wrote This Book In recent years there has been a significant increase
in interest in continuous-time Principal–Agent models and their applications. Even
though the approach is technical in nature, it often leads to elegant solutions with
clear economic predictions. Our monograph sets out to survey some of the literature
in a systematic way, using a general theoretical framework. The framework we find
natural and general enough to include most of the existing results is the use of the
so-called Stochastic Maximum Principle, in models driven by Brownian Motion.
It is basically the Stochastic Calculus of Variations, used to find first order condi-
tions for optimality. This leads to the characterization of optimal contracts through
a system of Forward-Backward Stochastic Differential Equations (FBSDE’s). Even
though there is no general existence theory for the FBSDE’s that appear in this
context, in a number of special cases they can be solved explicitly, thus leading to
the analytic form of optimal contracts, and enabling derivation of many qualitative
economic conclusions. When assuming Markovian models, we can also identify
sufficient conditions via the standard approach of using Hamilton–Jacobi–Bellman
Partial Differential Equations (HJB PDE’s).

Who Is It For This book is aimed at researchers and graduate students in Eco-
nomic Theory, Mathematical Economics and Finance, and Mathematics. It provides
a general methodological framework, which, hopefully, can be used to develop fur-
ther advances, both in applications and in theory. It also presents, in its last part, a
primer on BSDE’s and FBSDE’s. We have used the material from the book when
teaching PhD courses in contract theory at Caltech and at the University of Zagreb.

Prerequisites A solid knowledge of Stochastic Calculus and the theory of SDE’s
is required, although the reader not interested in the proofs will need more of an
intuitive understanding of the related mathematical concepts, than a familiarity with
the technical details of the mathematical theory. A knowledge of Microeconomics is
also helpful, although nothing more than a basic understanding of utility functions
is required.

vii



viii Preface

Structure of the Book We have divided the book into an introduction, three main
middle parts, and the last part. The introduction describes the three main settings:
risk sharing, hidden actions and hidden types. It also presents a simple example of
each. Then, each middle part presents a general theory for the three settings, with
a variety of special cases and applications. The last part presents the basics of the
BSDE’s theory and the FBSDE’s theory.

Web Page for This Book sites.google.com/site/contracttheorycvitaniczhang/.
This is a link to the book web page that will be regularly updated with material
related to the book, such as corrections of typos.

Acknowledgements Our foremost gratitude goes to our families for the under-
standing and overall support they provided during the times we spent working on
our joint research leading to this book, and for the work on the book itself. We are
grateful for the support from the staff of Springer, especially Catriona Byrne, Ma-
rina Reizakis and Annika Elting. A number of colleagues and students have made
useful comments and suggestions, and pointed out errors in the working manuscript,
including Jin Ma, Ajay Subramanian, Xuhu Wan, Xunyu Zhou, Hualei Chang and
Nikola Sandrić, and anonymous reviewers.
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support of our home institutions, California Institute of Technology, and the Univer-
sity of Southern California.

Of course, we are solely responsible for any remaining errors, and the opinions,
findings and conclusions or suggestions in this book do not necessarily reflect any-
one’s opinions but the authors’.

Final Word We hope that you will find the subject of this book interesting in its
economic content, and elegant in its mathematical execution. We would be grateful
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or any other comments, by sending an e-mail to our current e-mail addresses. Enjoy!
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Chapter 1
Principal–Agent Problem

Abstract A Principal–Agent problem is a problem of optimal contracting between
two parties, one of which, namely the agent, may be able to influence the value
of the outcome process with his actions. What kind of contract is optimal typically
depends on whether those actions are observable/contractable or not, and on whether
there are characteristics of the agent that are not known to the principal. There are
three main types of these problems: (i) the first best case, or risk sharing, in which
both parties have the same information; (ii) the second best case, or moral hazard,
in which the action of the agent is hidden or not contractable; (iii) the third best case
or adverse selection, in which the type of the agent is hidden.

1.1 Problem Formulation

The main topic of this volume is mathematical modeling and analysis of contracting
between two parties, Principal and Agent, in an uncertain environment. As a typ-
ical example of a Principal–Agent problem, henceforth the PA problem, we can
think of the principal as an investor (or a group of investors), and of the agent as a
portfolio manager who manages the investors’ money. Another interesting example
from Finance is that of a company (as the principal) and its chief executive (as the
agent). As may be guessed, the principal offers a contract to the agent who has to
perform a certain task on the principal’s behalf (in our model, it’s only one type of
task).

We will sometimes call the principal P and the agent A, and we will also call the
principal “she” and the agent “he”.

The economic problem is for the principal to construct a contract in such a way
that: (i) the agent will accept the contract; this is called an individual rationality
(IR) constraint, or a participation constraint; (ii) the principal will get the most
out of the agent’s performance, in terms of expected utility. How this should be done
in an optimal way, depends crucially on the amount of information that is available
to P and to A. There are three classical cases studied in the literature, and which
we also focus on in this volume: Risk Sharing (RS) with symmetric information,
Hidden Action (HA) and Hidden Type (HT).

J. Cvitanić, J. Zhang, Contract Theory in Continuous-Time Models, Springer Finance,
DOI 10.1007/978-3-642-14200-0_1, © Springer-Verlag Berlin Heidelberg 2013
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4 1 Principal–Agent Problem

Risk Sharing The case of Risk Sharing, also called the first best, is the case in
which P and A have the same information. They have to agree how to share the risk
between themselves. It is typically assumed that the principal has all the bargaining
power, in the sense that she offers the contract and also dictates the agent’s actions,
which the agent has to follow, or otherwise, the principal will penalize him with a
severe penalty. Mathematically, the problem becomes a stochastic control problem
for a single individual—the principal, who chooses both the contract and the actions,
under the IR constraint. Alternatively, it can also be interpreted as a maximization of
their joint welfare by a social planner. More precisely, but still in informal notation,
if we denote by c the choice of contract and by a the choice of action, and by UA

and UP the corresponding utility functions, the problem becomes

max
c,a

{
E
[
UP (c, a)

]+ λE
[
UA(c, a)

]}
(1.1)

where λ > 0 is a Lagrange multiplier for the IR constraint, or a parameter which
determines the level of risk sharing. The allocations that are obtained in this way are
Pareto optimal.

Hidden Action This is the case in which actions of A are not observable by P .
Because of this, there will typically be a loss in expected utility for P , and she will
only be able to attain the second best reward. Many realistic examples do present
cases of P not being able to deduce A’s actions, either because it may be too costly
to monitor A, or quite impossible. For example, it may be costly to monitor which
stocks a portfolio manager picks and how much he invests in each, and it may be
quite impossible to deduce how much effort he has put into collecting information
for selecting those stocks.

It should be mentioned that the problem is of the same type even if the actions
are observed, but cannot be contracted upon—the contract payoff cannot depend
directly on A’s actions.

Due to unobservable or non-contractable actions, P cannot choose directly the
actions she would like A to perform. Instead, giving a contract c, she has to be aware
which action a = a(c) will be optimal for the agent to choose. Thus, this becomes a
problem of incentives, in which P indirectly influences A to pick certain actions, by
offering an appropriate contract. Because A can undertake actions that are not in the
best interest of the principal, this case also goes under the name of moral hazard.

Mathematically, we first have to solve the agent’s problem for a given fixed con-
tract c:

VA(c) := max
a

E
[
UA(c, a)

]
. (1.2)

Assuming there is one and only one optimal action a(c) solving this problem, we
then have to solve the principal’s problem:

VP := max
c

{
E
[
UP (c, a(c))

]+ λE
[
UA(c, a(c))

]}
. (1.3)

Problem (1.2) can be very hard given that c can be chosen in quite an arbitrary
way. A standard approach which makes this easier is to assume that the agent does
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not control the outcome of the task directly by his actions, but that he chooses the
distribution of the outcome by choosing specific actions. More precisely, this will
be modeled by having A choose probability distributions P a under which the above
expected values will be taken.

Hidden Type In many applications it is reasonable to assume that P does not
know some key characteristics of A. For example, she may not know how capable
an executive is, in terms of how much return he can produce per unit of effort.
Or, P may not know what A’s risk aversion is. Or how rich A is. An even more
fundamental example is of a buyer (agent) and a seller (principal), in which the
buyer may be of a type who cares more or cares less about the quality of the product
(wine, for example). Those hidden characteristics, or types, may significantly alter
A’s behavior, given a certain contract.

It is typically assumed in the HT case, as we also do in this book, that P will offer
a menu of contracts, one for each type, from which A can choose. Under certain
conditions, a so-called revelation principle holds, which says that it is sufficient
to consider contracts which are truth-telling: the agent will reveal his true type
by choosing the contract c(θ) which was meant for his type θ . In particular, the
main assumption needed for the revelation principle is that of full commitment: once
agreed on the contract, the parties cannot change their mind in the future, even if
both are willing to renegotiate. This is an assumption that we make throughout.

If the hidden type case is combined with hidden actions, then, generally, the
principal gets only her third best reward. Since A can pretend to be of a different
type than he really is, which can adversely affect P ’s utility, the hidden type case is
also called a case of adverse selection. An example is the case of a health insurance
company (principal) and an individual (agent) who seeks health insurance, but only
if he already has medical problems, and the insurance company may not know about
it.

Mathematically, we again first have to solve the agent’s problem when he chooses
a contract c(θ ′) and he is of type θ :

VA

(
c
(
θ ′), θ

) := max
a

Eθ
[
UA

(
c
(
θ ′), a, θ

)]
. (1.4)

We assume that the principal’s belief about the distribution of types is given by a
distribution function F(θ). Denote by T the set of truth-telling menus of contracts
c(θ). Assuming there is one and only one optimal action a(c(θ ′), θ) solving the
agent’s problem for each pair (c(θ ′), θ), and denoting a(c(θ)) := a(c(θ), θ) (the
action taken when A reveals the truth) we then have to solve the principal’s problem

VP := max
c∈T

∫ {
Eθ
[
UP

(
c(θ), a

(
c(θ)

))]+ λ(θ)Eθ
[
UA

(
c(θ), a

(
c(θ)

))]}
dF(θ).

(1.5)

Note that the principal faces now an additional, truth-telling constraint, that is,
c ∈ T , which can be written as

max
θ ′ VA

(
c
(
θ ′), θ

)= VA

(
c(θ), θ

)
. (1.6)
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1.2 Further Reading

There are a number of books that have the PA problem as one of the main topics.
We mention here Laffont and Martimort (2001), Salanie (2005), and Bolton and
Dewatripont (2005), which all contain the general theory in discrete-time, more
advanced topics and many applications.
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Chapter 2
Single-Period Examples

Abstract In this chapter we consider simple examples in one-period models, whose
continuous versions will be studied later in the book. Principal–Agent problems in
single-period models become more tractable if exponential utility functions are as-
sumed. However, even then, there are cases in which tractability requires consider-
ing only linear contracts. Optimal contracts which cannot contract upon the agent’s
actions are more sensitive to the output than those that can. When the agents’ type
is unknown to the principal, the agents of “higher” type may have to be paid more
to make them reveal their type.

2.1 Risk Sharing

Assume that the contract payment occurs once, at the final time T = 1, and we
denote it C1. The principal draws utility from the final value of an output process
X, given by

X1 = X0 + a + B1 (2.1)

where B1 is a fixed random variable. The constant a is the action of the agent.
With full information, the principal maximizes the following case of (1.1), with

g(a) denoting a cost function:

E
[
UP (X1 − C1) + λUA

(
C1 − g(a)

)]
. (2.2)

Setting the derivative with respect to C1 inside the expectation equal to zero, we get
the first order condition

U ′
P (X1 − C1)

U ′
A(C1 − g(a))

= λ. (2.3)

This is the so-called Borch rule for risk-sharing, a classical result that says that the
ratio of marginal utilities of P and A is constant at the risk-sharing optimum.

We assume now that the utility functions are exponential and the cost of action
is quadratic:

UA

(
C1 − g(a)

)= − 1

γA

e−γA[C1−ka2/2], (2.4)
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UP (X1 − C1) = − 1

γP

e−γP [X1−C1]. (2.5)

Denote

ρ := 1

γA + γP

. (2.6)

We can compute the optimal C1 from (2.3), and get

C1 = ρ
[
γP X1 + γAka2/2 + logλ

]
. (2.7)

This is a typical result: for exponential utility functions the optimal contract is
linear in the output process. We see that the sensitivity of the contract with respect
to the output is given by γP

γA+γP
≤ 1, and it gets smaller as the agent’s risk aversion

gets larger relative to the principal’s. A very risk-averse agent should not be exposed
much to the uncertainty of the output. In the limit when P is risk-neutral, or A is
infinitely risk-averse, that is, γP = 0 or γA = ∞, the agent is paid a fixed cash
payment. On the other hand, when A is risk-neutral, that is, γA = 0, the sensitivity
is equal to its maximum value of one, and what happens is that at the end of the
period the principal sells the whole firm to the risk-neutral agent in exchange for
cash payment. The risk is completely taken over by the risk-neutral agent.

If we now take a derivative of the objective function with respect to a, and use
the first order condition (2.3) for C1, a simple computation gives us

a = 1/k,

which is the optimal action. We see another typical feature of exponential utilities:
the optimal action does not depend on the value of the output. In fact, here, when
there is also full information, it does not depend on risk aversions either, and this
feature will extend to more general risk-sharing models and other utility functions.

Note that the optimal contract C1, as given in (2.7), explicitly depends on the
action a. Thus, this is not going to be a feasible contract when the action is not
observable. Moreover, if, in the hidden action case, the principal replaced a in (2.7)
with 1/k, and offered such a contract, it can be verified that the agent would not
choose 1/k as the optimal action, and the contract would not attain the first best
utility for the principal. We discuss hidden action next.

2.2 Hidden Action

Even though the above example is very simple, it is hard to deal with examples
like this in the case of hidden action. We will see that it is actually easier to get
more general results in continuous-time models. For example, we will here derive
the contract which is optimal among linear contracts, but we will show later that in
a continuous-time model the same linear contract is in fact optimal even if we allow
general (not just linear) contracts.

Regardless of whether we have a discrete-time or a continuous-time model, for
HA models we suppose that the agent can choose the distribution of X1 by his



2.2 Hidden Action 9

action, in a way which is unobservable or non-contractable by the principal. More
precisely, let us change somewhat the above model by assuming that under some
fixed probability P = P 0,

X1 = X0 + σB1

where X0 is a constant and B1 is a random variable that has a standard normal dis-
tribution. For simplicity of notation set X0 = 0. Given action a we assume that the
probability P changes to P a , under which the distribution of B1 is normal with
mean a/σ and variance one. Thus, under P a , X1 has mean a. We see that by choos-
ing action a the agent influences only the distribution and not directly the outcome
value of X1.

Even with that modification, the agent’s problem is still hard in this single period
model for arbitrary contracts. In fact, Mirrlees (1999) shows that, in general, we
cannot expect the existence of an optimal contract in such a setting. For this reason,
in this example we restrict ourselves only to the contracts which are linear in X1, or,
equivalently, in B1:

C1 = k0 + k1B1.

Denoting by Ea the expectation operator under probability P a , the agent’s prob-
lem (1.2) then is to minimize

Ea
[
e−γA(k0+k1B1−ka2/2)

]= e−γA(k0−ka2/2+k1a/σ− 1
2 k2

1γA)

where we used the fact that

Ea
[
ecB1

]= eca/σ+ 1
2 c2

. (2.8)

We see that the optimal action a is

a = k1

kσ
. (2.9)

That is, it is proportional to the sensitivity k1 of the contract to the output process,
and inversely proportional to the penalty parameter and the uncertainty parameter.

We now use a method which will also prove useful in the continuous-time case.
We suppose that the principal decides to give expected utility of R0 to the agent.
This means that, using C1 = k0 + σkaB1, the fact that the mean of B1 under P a is
a/σ , and using (2.8) and (2.9),

R0 = − 1

γA

Ea
[
e−γA(C1−ka2/2)

]= − 1

γA

e−γA(k0+ka2/2− 1
2 γAσ 2k2a2). (2.10)

Computing e−γAk0 from this and using C1 = k0 + σkaB1 again, we can write

− 1

γA

e−γAC1 = R0e
−γA(−ka2/2+ 1

2 γAσ 2k2a2+σkaB1). (2.11)

This is a representation of the contract payoff in terms of the agent’s promised util-
ity R0 and the source of uncertainty B1, which will be crucial later on, too. Using
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eγP C1 = (e−γAC1)−γP /γA , X1 = σB1 and (2.11), we can write the principal’s ex-
pected utility as

Ea
[
UP (X1 − C1)

]= − 1

γP

(−γAR0)
−γP /γAEa

[
e−γP (σB1+ka2/2− 1

2 γAσ 2k2a2−σkaB1)
]

which can be computed as

− 1

γP

(−γAR0)
−γP /γAe−γP (− 1

2 γP σ 2(ka−1)2−a(ka−1)+ka2/2− 1
2 γAσ 2k2a2).

Setting the derivative thereof with respect to a to zero, we get the optimal a as

a = 1/(kσ 2) + γP

1/σ 2 + k(γA + γP )
. (2.12)

The sensitivity of the contract is k1/σ = ka, that is, we have

C1 = k̃0 + kaX1 = k̃0 + 1/(kσ 2) + γP

1/(kσ 2) + γA + γP

X1

for some constant k̃0. Recall that in the risk-sharing, first best case the optimal action
is a = 1/k and the sensitivity is γP /(γA+γP ), thus both are independent of the level
of uncertainty σ , and the action is even independent of the risk aversions. Here, the
action and the sensitivity depend on the risk aversions. As the level of risk σ goes
to zero, the action approaches the first best action, because then the action becomes,
in the limit, fully observable.

It is easy to check that the sensitivity of the above HA contract is decreasing in
the level of uncertainty σ and always higher than the sensitivity of the RS contract—
when the action is unobservable the principal is forced to try to induce more effort
by offering higher incentives, but less so when the risk is higher. In the limit when
σ goes to infinity, the two sensitivities become equal.

For fixed σ , the induced action now depends on risk aversions. For the risk-
neutral agent, the action is again the first best, and the principal transfers the whole
firm to the agent.

However, as the agent’s risk aversion increases (relative to the principal’s), in
the HA case the principal can optimally induce only lower and lower effort from
the agent, paying him with lower and lower sensitivity to the output. On the other
hand, given A’s risk aversion, as P becomes more risk-averse she offers a higher
percentage of the output to the agent.

As mentioned at the beginning of this section, we will show later that the above
contract is actually optimal among all contracts, linear or not, when we allow con-
tinuous actions by the agent.

2.3 Hidden Type

We now add to the above HA model a parameter θ , unknown to the principal, which
characterizes the agent. More precisely, for agent of type θ , we assume that, given



2.3 Hidden Type 11

action a, the mean of the normal random variable B1 is (θ + a)/σ (the variance is
still equal to one). The interpretation is that θ is the “return” that A can produce
with no effort, due to his individual-specific skills.

We again restrict ourselves only to the contracts which are linear in X1, and P

offers a menu of contracts depending on type θ , from which A can choose:

C1(θ) = k0(θ) + k1(θ)B1.

Denoting by Ea,θ the expectation operator under probability P a and type θ , the
agent’s problem (1.4) is

−γAVA

(
θ, θ ′) := min

a
Ea,θ

[
e−γA(k0(θ

′)+k1(θ
′)B1−ka2/2)

]

= min
a

e−γA(k0(θ
′)−ka2/2+k1(θ

′)(a+θ)/σ− 1
2 k2

1(θ ′)γA).

We see that the optimal action a = a(θ ′) is

a
(
θ ′)= k1(θ

′)
kσ

(2.13)

and

−γAVA

(
θ, θ ′)= e

−γA(k0(θ
′)+ 1

2 k2
1(θ ′)( 1

kσ2 −γA)+ θ
σ

k1(θ
′))

. (2.14)

Denote with ∂/∂θ the derivative with respect to the first argument, and with ∂/∂θ ′
the derivative with respect to the second argument. In order for the contract to be
truth-telling, maxθ ′ VA(θ, θ ′) has to be attained at θ ′ = θ , which leads to the first
order condition

0 = ∂

∂θ ′ VA(θ, θ).

We denote by R(θ) the expected utility of the agent of type θ , given that he was
offered a truth-telling contract. In other words, we have

R(θ) = VA(θ, θ).

Note that then we have, under the above first order condition,

R′(θ) = d

dθ
VA(θ, θ) = ∂

∂θ
VA(θ, θ) + ∂

∂θ ′ VA(θ, θ) = ∂

∂θ
VA(θ, θ).

Using this and taking the latter derivative in (2.14), we get the following conse-
quence of the first order condition (with a slight abuse of notation introduced by the
second term):

k1(θ) = k1
(
R(θ),R′(θ)

)= − 1

γA

σ
R′(θ)

R(θ)
. (2.15)

Using (2.14) with θ = θ ′, we obtain

−γAR(θ) = e
−γA(k0(θ)+ 1

2 k2
1(θ)( 1

kσ2 −γA)+ θ
σ

k1(θ))
. (2.16)
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Computing e−γAk0(θ) from this, and using C1 = k0 + k1B1, we can write

− 1

γA

e−γAC1(θ) = R(θ)e
−γA(− 1

2 k2
1(θ)( 1

kσ2 −γA)− θ
σ

k1(θ)+k1(θ)B1). (2.17)

Using eγP C1 = (e−γAC1)−γP /γA , X1 = σB1 and (2.17), we can write the principal’s
expected utility as

Ea,θ
[
UP

(
X1 − C1(θ)

)]

= − 1

γP

(−γAR(θ)
)−γP /γAEa,θ

[
e
−γP (σB1+ 1

2 k2
1(θ)( 1

kσ2 −γA)+ θ
σ

k1(θ)−k1(θ)B1)
]
.

Assume henceforth that the first order condition (2.15) is also sufficient for truth-
telling (which has to be verified later when a solution is obtained). Then, the princi-
pal’s utility can be computed as, abbreviating k1 = k1(R(θ),R′(θ)),

vP

(
R(θ),R′(θ), θ

)

:= − 1

γP

(−γAR(θ)
)−γP /γAe

−γP (− 1
2 γP (σ−k1)

2+ 1
σ

(
k1
kσ

+θ)(σ−k1)+ 1
2 k2

1( 1
kσ2 −γA)+ θ

σ
k1).

(2.18)

Suppose now that the principal has a prior distribution F(θ) on the interval
[θL, θH ] for θ . Also suppose that the agent of type θ needs to be given expected
utility of at least R0(θ). Then, since we have already taken into account the truth-
telling constraint by expressing k1 in terms of R,R′, her problem (1.5) becomes

max
R(θ)≥R0(θ)

∫ θU

θL

vP

(
R(θ),R′(θ), θ

)
dF(θ).

This is a calculus of variations problem, which is quite hard in general. We sim-
plify further by assuming the risk-neutral principal,

UP (x) = x.

The results are obtained either by repeating the above arguments, or by formally
replacing 1

γP
(1−e−γP x) by x (the limit when γP = 0), and noticing that maximizing

with utility 1
γP

(1 − e−γP x) is the same as maximizing with utility − 1
γP

e−γP x . We
get

vP

(
R(θ),R′(θ), θ

)

= 1

σ
(σ − k1)(a + θ) + 1

γA

log
(−γAR(θ)

)+ 1

2
k2

1

(
1

kσ 2
− γA

)
+ θ

σ
k1

= 1

γA

log
(−γAR(θ)

)− 1

2
k2

1

(
1

kσ 2
+ γA

)
+ k1

kσ
+ θ. (2.19)
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Simplifying further, we assume that F(θ) is the uniform distribution on [θL, θH ].
Introduce a certainty equivalent1 of the agent’s utility

R̃(θ) = − 1

γA

log
(−γAR(θ)

)

so that, by (2.15),

k1(θ) = σR̃′(θ).

Then, the principal’s problem is equivalent to

min
R(θ)≥R0(θ)

∫ θU

θL

[
R̃(θ) + 1

2

(
R̃′)2(θ)

(
σ 2γA + 1/k

)− R̃′(θ)/k

]
dθ. (2.20)

This can be solved using standard calculus of variations techniques, as we prove
later in an analogous continuous-time model. We state here the results without the
proofs. Denote

β = 1/σ 2

1/(kσ 2) + γA

.

We have the following

Theorem 2.3.1 Assume the above setup and that R0(θ) ≡ R0. Then, the principal’s
problem (2.20) has a unique solution as follows. Denote θ∗ := max{θH − 1/k, θL}.
The optimal choice of agent’s certainty equivalent R̃ by the principal is given by

R̃(θ) =

⎧
⎪⎨

⎪⎩

R̃0, θL ≤ θ < θ∗;
R̃0 + βθ2/2 + β(1/k − θH )θ − β(θ∗)2/2 − β(1/k − θH )θ∗,

θ∗ ≤ θ ≤ θH .

(2.21)

The optimal agent’s effort is given by

a(θ) = R̃′(θ)/k =
{

0, θL ≤ θ < θ∗;
β
k
(1/k + θ − θH ), θ∗ ≤ θ ≤ θH .

(2.22)

The optimal contract is of the form

C1(θ) =
{

k0(θ), θL ≤ θ < θ∗;
k0(θ) + β(1/k + θ − θH )(X1 − X0), θ∗ ≤ θ ≤ θH .

(2.23)

We see that if the interval of possible type values is large, more precisely, if
θH − θL > 1/k, a range of lower type agents gets no “rent” above the reservation
value R0, the corresponding contract is not incentive as it does not depend on X1,
and the effort is zero. The higher type agents get certainty equivalent R̃(θ) which
is quadratically increasing in their type θ . This monotonicity is typical for hidden

1Given a utility function U , certainty equivalent CE of a random variable X is a real number such
that U(CE) = E[U(X)].
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action problems: higher type agents may have to be paid an “informational rent”
above the reservation value R0 so that they would not pretend to be of lower type
and try to shirk.

As the volatility σ , or A’s risk aversion γA get larger, the contracts for the high
type agents get closer to the non-incentive contract for the low type agents, as it
gets harder to provide incentives anyway. On the other extreme, as σ 2γA tends to
zero, the incentives and the rent for the high type agents get higher. If the agents are
risk-neutral or σ = 0, the contract for the highest type agent θ = θH is to sell the
whole firm to him.

In the special case when the agent is also risk-neutral, we will show later in
a continuous-time setting that the above contract is optimal among all contracts,
linear or not.

2.4 Further Reading

Early papers discussing risk sharing are Borch (1962) and Wilson (1968). The hid-
den action setting with exponential utilities is thoroughly analyzed in Holmström
and Milgrom (1987), which is also the first paper that considers the continuous-time
setting. The hidden type example is a single-period version of the model in Cvitanić
and Zhang (2007).
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