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Preface

During the World’s Exposition in Chicago in 1893, Frederick Turner Jackson
delivered a talk entitled ‘‘The Significance of the Frontier in American History’’.
As the frontier of new land to be explored was coming to an end, he raised the
question of how American society might change in response to its end. The severe
convection ‘‘frontier’’ in the U. S. is steadily disappearing now because—with the
advent of the Internet, cellphone technology, and cable television channels devoted
exclusively to the weather—severe convective storms and tornadoes are being ob-
served and documented all the time, even in remote places, by both meteorologists
and non-meteorologists alike, and made available for mass viewing. Observing a
tornado used to be a very rare occurrence.

While the observational severe convection frontier is disappearing, the
knowledge frontier is still with us, as is the beauty of severe convective phenonmena.
I wrote this book in response to a need for updated material for a graduate course on
convective clouds and storms, with an emphasis on severe convective storms and
tornadoes, that I have taught at the University of Oklahoma roughly once every
other year for the past three decades. It has become very difficult for students to
learn just from my class lectures and journal articles covering more than three
decades. This course has evolved considerably, especially in the last decade and a
half, with the advent of mobile Doppler radars and more sophisticated numerical
models. It is hoped that this text will be useful not only to students, but also as a
reference for researchers and forecasters.

The contents of this book are heavily influenced by an introductory course on
convection taught by Prof. Norm Phillips at MIT in 1970, but not fully appreciated
by the author then, and by the American Meteorological Society’s (AMS) 1963
monograph on Severe Local Storms, edited by Dave Atlas, which contains seminal
contributions by the editor, Ted Fujita, Chester Newton, and Frank Ludlam, among
others. While there have been more recent contributions such as the latest, updated
AMS monograph on severe local storms, which contains disparate contributions
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from many authors, Kerry Emanuel’s textbook on many types of convection (but
without an emphasis on severe convection or tornadoes), and Bob Houze’s textbook
on clouds (which covers a very broad range of topics), I felt compelled to produce a
work from my own perspective as an avid observationalist and participant in over
three decades of storm chasing, mainly with mobile instruments. This text should be
considered a work in progress; since the pace of research in severe convective storms
and tornadoes is rapid, I encourage the student and other readers to keep abreast of
more recent journal articles. Despite this book’s assured obsolescence in a relatively
short time, I hope that most of the core dynamical issues addressed herein will be
‘‘current’’ for much longer.

No attempt has been made to be all inclusive; some topics have been ignored
altogether and the student/reader must look elsewhere for detailed treatments on, for
example, moist thermodynamics, cloud and precipitation microphysics, numerical
modeling techniques for convective clouds, data assimilation techniques for cloud
models, objective analysis of data, lightning and other electrical phenomena, radar
meteorology, and shallow convection. By doing so it is hoped that the topics dis-
cussed herein will be adequate for a one-semester course. Students can take more
specialized courses on the topics not covered in detail or ignored altogether. It is also
recognized that there may be some overlap between the topics covered in this text
and some topics covered in mesoscale meteorology courses (e.g., density currents
and gravity waves may also be considered purely mesoscale phenomena and not
exclusively associated with convection). Density currents are most frequently
driven by water phase changes in convective clouds, so they are detailed here;
gravity waves, on the other hand, frequently occur in the absence of convection,
so we do not detail their dynamics.

To a better understanding of the wind and rain and hail . . .

Howie ‘‘Cb’’ Bluestein
Norman, OK and Boulder, CO

December 2011

xii Preface
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1

Introduction

‘‘. . . oh now feel it comin’ back again

like a rollin’ thunder chasing the wind

forces pullin’ from the center of the earth again

I can feel it.’’

Lyrics from Lighting Crashes by Live

1.1 BASIC DEFINITION OF SEVERE CONVECTIVE STORMS AND

SCOPE OF THE MATERIAL

Severe convective storms worldwide inflict damage to property and crops, disrupt
air, sea, and ground travel and outdoor activity, and, in the most extreme cases,
inflict injuries and even death. While the adjective ‘‘severe’’ generally refers to
weather phenomena that produce damage, what is damaging to one type of struc-
ture may not be damaging to another, owing to differences in the integrity of
construction and the nature of the underlying surface. In the U. S., ‘‘severe’’
weather associated with local storms (as opposed to storms that are much larger
in scale such as extratropical and tropical cyclones) is defined more precisely by
the Storm Prediction Center (SPC) of the National Weather Service (NWS) as
having one or more of the following: tornadoes, winds equal to or in excess of
25.8m s�1 (58mph), or hail 2.5 cm (1 inch) or greater in diameter, regardless of
whether or not there is actual damage; it is noted that prior to January 5, 2010
the minimum hail size criterion was only 1.9 cm (3/4 inch).

It is perhaps a shortcoming of the U. S. definition of severe weather that
flooding and lightning are not included, even though each of these also may be
responsible for damage, injuries, and death. To maintain a manageable focus,
however, this textbook discusses only the physics of the airflow and cloud and

. , 1H.B Bluestein Severe Convective Storms and Tornadoes: Observations and Dynamics,
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precipitation distribution (with little regard for cloud particle type or precipitation
type) in severe convective storms. The reader is directed elsewhere for detailed dis-
cussions of cloud microphysics and precipitation formation, including the
formation of large hail (e.g., Knight and Knight, 2001), the hydrological con-
sequences of excessive rainfall (i.e., flooding), and cloud electrification and its
consequences (e.g., Williams, 2001). Forecasting techniques using numerical
models initialized by observational data are also not covered in much detail, in
part because at the time of this writing there is a flurry of activity using data
assimilation techniques that is in a state of rapid flux and, consequently, attempts
to detail them might not be useful, since the art and science of data assimilation
are changing so rapidly.

The purpose of this textbook is to summarize what we have learned in
approximately the last half-century about the kinematics and dynamics and, to a
lesser extent, the thermodynamics of severe convective storms. I do not use the term
‘‘thunderstorm’’, because it is possible that a severe convective storm does not
produce lightning and I would not want to exclude this class of storms from dis-
cussion. In addition, while the adjective ‘‘convective’’ simply denotes the
movement of air in general, we generally use the adjective ‘‘convective’’ to denote
small-scale movements of air in deep cumulus clouds or cumulonimbus clouds.

Advances in observing systems, particularly in radars, and advances in
computer technology and numerical modeling techniques have stimulated and
made possible fruitful studies of the structure and dynamics of severe convective
storms. Through the analysis of observational data (from both quantitative meas-
urements and from visual observations) and the results of controlled numerical
experiments, the fundamental processes responsible for determining the convective
storm type and the severe weather associated with each type of convective storm
have been identified.

After a brief history in this chapter of the major field programs and numerical
simulation experiments aimed at understanding the physical processes responsible
for severe convective storms is given, the dynamical and, to a much lesser extent,
the thermodynamic frameworks used to diagnose the behavior of severe convective
storms are discussed mathematically and explained physically in Chapter 2.
Thermodynamics is given short shrift because the details are mostly important for
numerical modelers and numerical modeling is not a major focus of this book.
Students and readers are referred elsewhere (e.g., Emanuel, 1994) and to many
journal articles (see the reference lists for specific works) for further discussions on
thermodynamics. Also, it is assumed that the reader has some knowledge of radar
meteorology. Some additional information, however, is embedded within the main
body of the text on the maturing area of polarimetric radar technology and its
applications to severe convective storm studies.

The author believes that students will gain an increased appreciation for the
theory after they have become aware of some of the major problems and solutions
to them that have been grappled with and proposed by scientists, engineers, com-
puter scientists, and amateur meteorologists and have become more acquainted
with the actors involved in the scenes of the theater of severe storm meteorology.

2 Introduction [Ch. 1


