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Dedication

 We dedicate this book to those who labored over many years to take the 
hot dry rock concept from simply a novel idea to a proven reality. Their 
imagination, creativity, long-term commitment, and hard work led to the 
outstanding technical achievements that are described in detail herein. 
Those achievements have laid a solid foundation for the development of 
HDR geothermal energy as a major energy resource for the 21st century and 
beyond.
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Preface

 The hot dry rock (HDR) geothermal energy concept was born of the 
recognition that the heat of the earth represents an almost inexhaustible 
source of clean, thermal energy for mankind. It was the pioneering efforts of 
Bob Potter and Mort Smith, two visionary scientists at Los Alamos National 
Laboratory in New Mexico, that led to the development of an effective 
and robust method of recovering useful energy from the vast regions of 
hot rock in the earth's upper crust. The heat from that rock—as Smith put 
it—"represents the largest and most broadly distributed supply of directly 
usable thermal energy that is accessible to man." In the ensuing years, other 
researchers at Los Alamos would help to make Potter and Smith's dream 
a reality. 
 This book tells the story of the pioneering experiments at Fenton Hill, 

HDR reservoirs. They were created in deep regions of jointed basement rock 
that had subsequently been tightly resealed by the deposition of secondary 

the period of deformation that produced the jointing). 
 As manager of the Hot Dry Rock Project during a period that 

particularly well positioned for the task of analyzing and synthesizing the 

past twelve years, the demands of writing this book have led me to carry 

them as called for—in light of present knowledge concerning the behavior 

man-made HDR reservoirs in particular. 

excessive. But it should be noted that this book is intended not only to 
provide information useful to future exploiters of heat from the deep earth, 

HDR operations at Fenton Hill—written from the perspective of one who 

"Executive Summary." 

Donald W. Brown
Los Alamos, New Mexico
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PART I

Hot Dry Rock 
Geothermal Energy: 
History and Potential of 
the Newest and Largest 
Renewable Energy Resource



Chapter 1
Serendipity—A Brief History of Events  
Leading to the Hot Dry Rock Geothermal Energy 
Program at Los Alamos
How far back in our past did humans begin to use hot water and steam 
coming from vents in the earth's surface to improve their lives? Did they 
make stops at such sites while moving from place to place, bathing in 
the warm pools or using the waters for cooking, and eventually construct 

availed himself of the earth's heat; but we can assume that human popu-
lations in various areas sooner or later encountered hot waters that were 
bubbling up to the surface after having been raised to high temperatures by 
circulation through deep, hot rock—and that they made use of the heated 
water.
 In modern times, geothermal energy has been exploited through drilling 
into permeable zones within the earth's crust that are characterized by high 

depths are accessible to drilling, the temperatures are high enough, and the 

conversion to electrical power or for direct-heating use. But areas possessing 

have been commercially exploited for electricity generation since the early 
1900s) are rare. In many regions, exploratory boreholes have been drilled 

other words, the rock was hot, but essentially dry. The next logical step, 
then, was to consider  geothermal reservoirs in the far more 
numerous regions of the earth where rock at drilling-accessible depths was 
hot but contained no open, interconnected joints or faults. 
 The concept of extracting heat from man-made geothermal reservoirs 

the Los Alamos National Laboratory) in New Mexico.1 Established by the 

1Much of this early history of hot dry rock (HDR) geothermal energy has been 
abstracted from the many papers written by HDR pioneer Morton C. Smith. 
His untimely death in 1997 brought an end to the detailed history of the HDR 
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U. S. Army, then transferred to the Atomic Energy Commission (AEC) in 
the mid 1940s, the Laboratory2 had as its primary mission the design and 
testing of nuclear weapons. So how did the scientists working there become 

serendipitous circumstance was the truly multidisciplinary character of the 
Laboratory and the uniquely "research-friendly" environment it offered. To 
design and test weapons required the efforts not only of weapons experts, 
but also of engineers, chemists, physicists, geologists, geophysicists, 
hydrologists, and health scientists. And to stay in the lead technologically 
required the "campus" atmosphere of freedom for creative thinking that was 
then the Laboratory's hallmark, as well as the kind of dedication for which 
Los Alamos scientists were known.

Developments at Los Alamos

Under the directorship (1945–1970) of Norris Bradbury, Los Alamos 
researchers were openly encouraged to "come up with ideas"—a challenge 
that was taken up by, among others, a group of chemists led by Eugene S. 
("Robbie") Robinson. Robinson's group was interested in new techniques 
for drilling deep holes into the earth; it was not only the possible practical 
applications that sparked their interest (the "Mohole" deep earth sampling 
project was under consideration at the time), but also a kind of fascination 
about what could be done, what could be found, "down there."
 Conventional drilling was based on the use of drill bits made of very 
hard materials that could break and grind solid rock. In 1960, members of 
Robinson's group conceived the notion that if the rock could be rendered 
liquid—melted—its penetration might be easier and faster (particularly as 
depth, and therefore rock temperature, increased), as well as cheaper. In 
early experiments, refractory metals such as tungsten and molybdenum, 
electrically heated to incandescence, were readily pushed through samples 

melt rock is similar to the energy required to break and pulverize it (on the 
order of 1 kcal/cm3). The group then embarked on the developmental work 
that led to the creation of a rock-melting penetrator.
 The new device proved capable of steady-state drilling through basalt 
boulders (the debris—glass particles—being pneumatically ejected as drilling 
progressed). In porous volcanic rocks, such as ash-fall tuffs, the penetrator was 
able to consolidate the rock as it advanced, creating a high-density glass lining 
for the hole—which eliminated the need to eject debris. The coupled heat-
transfer and hydrodynamic behavior of the rock-melting process was analyzed 
through a new solution of the Navier–Stokes equations that was developed by 
B. B. McInteer, a member of Robinson's group (Armstrong et al., 1965).

2In this book we use "Los Alamos" and "the Laboratory" interchangeably to refer to 
the Los Alamos National Laboratory. 
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 Although lack of funding terminated the rock-melting project in early 
1963, the ensuing years saw considerable private speculation within the 
group about possible new advances in this area. In early 1970, at Norris 
Bradbury's direction, Robinson assembled an interdisciplinary ad hoc 
committee (Fig. 1-1) to study a rock-melting drill based on a new concept. 

a compact nuclear reactor instead of by electricity; it would transmit 
thermal energy via heat pipes to a refractory metal shell surrounding the 
reactor (Robinson et al., 1971). Such a device would be capable of much 

diameter) than the electrically powered rock-melting penetrator—opening 
up numerous applications for which smaller-scale drilling and excavating 
was costly and time-consuming (such as bores and tunnels for underground 
transport of gases, liquids, cargo, and people; large underground cavities 
for waste disposal or for storage and preservation of various materials; 
underground chambers for high-temperature and high-pressure processing 
operations; shafts for mining and exploration; underground laboratories for 

energy systems).

Fig. 1-1. The Ad Hoc Committee on Rock-Melting Drills (clockwise from 
left): Don Brown, Bob Potter, Bob Mills, B. B. McInteer, John Rowley, 
Mort Smith (behind Rowley), and Dale Armstrong. 
Source: , 1971 
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 In addition to most of the original members of the rock-melting 
project, the committee included experts in needed disciplines, and outside 
consultants were called upon for assistance with specialized matters. The 
committee conducted its study through most of 1970 and summarized its 
conclusions—how the Subterrene would be constructed, how it would 
work, and its principal applications—in a report for submission to Harold  
Agnew, the new Laboratory Director. The report would essentially be a 
proposal for the establishment of a major program to develop the Subterrene.
 It was as part of this process that another link in the serendipitous chain 

team, had long been interested in the application of deep-drilling technology 
to the recovery of geothermal energy, which would involve accessing the 
hot crystalline rock typically found deep in the earth's crust. Potter's imagi-
nation was sparked by an article in the 
describing hydraulic fracturing experiments carried out at the Oak Ridge 
National Laboratory (Sun, 1969). Using the hydraulic fracturing tech-
nology developed by the petroleum industry to access "tight" hydrocarbon 
reservoirs, Oak Ridge was investigating whether fracture systems could 
be created in the sedimentary layers of the earth's crust for the disposal of 
radioactive waste. Potter reasoned that if hydraulic fracturing could be used 
to develop fracture systems in sedimentary rock, the technology could also 
be used to fracture3 crystalline rock.
 The Oak Ridge experiments provided other insights that were pivotal as 
Potter's aspirations for the Subterrene became more and more drawn in the 
direction of geothermal applications. The experiments involved two rela-
tively shallow wells: an injection well, down which water was pumped at a 
pressure that would induce fracturing of the surrounding rock (through slots 
cut in the casing); and an observation well, located about 30 ft (9 m) to the 
west. By the time about 9000 gal. (34 000 L) of water had been pumped into 
the injection well, a sudden rise in pressure was noted in the observation 
well, indicating that the hydraulically induced fracture (or fractures) had 
intersected that well. It became clear that such fractures could extend tens 

-
tion with the knowledge that rocks become progressively hotter with depth, 
made it only a short step to the next realization: the idea began to jell that, at 
depths where rock temperatures were hot enough for commercial applica-

3Today, we often use the more accurate term "pressure-stimulate"—it now being 
clear that crystalline rock is characterized by pre-existing networks of joints 
or fractures that have become sealed by mineral deposition and are reopened 
through hydraulic pressurization.
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means of recovering geothermal heat. The hot dry rock geothermal energy 
concept was born.
 Building on Potter's concept, Mort Smith postulated that (owing to the 
combined effect of increasing temperature, increasing overburden stress, 
mineral alterations, and deposition of secondary minerals) both the porosity 
and permeability of crustal rock would diminish progressively with depth. 
He believed this geologic situation—the presence of low-porosity hot rock 
at depth—to be extremely common throughout the world, in contrast to 
the rarity of natural hydrothermal systems. If HDR was exploitable, then, 
nearly every area of the world could, given adequately deep boreholes, be 
considered to possess an abundant geothermal resource at depth. 
 Mort Smith and Don Brown, who were knowledgeable in conventional 

-
dipitous events: they reasoned that the development and testing of an HDR 
system need not wait for success in the Subterrene Program, but could 

of the committee—and especially Potter, McInteer, Smith, and Brown—
concurred that HDR was at least as important as the Subterrene. When the 
proposal was submitted to Director Agnew in November 1970, therefore, 
it contained (as Appendix F) a detailed presentation of Bob Potter's HDR 
concept and the suggestion that once the Subterrene Program was under 
way, a second major program be instituted to develop HDR geothermal 
energy systems. (The document was reproduced by Mort Smith in a more 
polished form the following April, for use as a "sales tool" [Robinson et 
al., 1971].)

 Note: The Nuclear Subterrene would never be developed. In 1973, under 
the leadership of John Rowley, the Program would be redirected from an 
emphasis on large-diameter tunneling and boring applications to support of 
geothermal drilling and exploration. With the approach of a worldwide oil 
crisis (the Arab oil embargo of 1973), which was driving renewed interest 

of developing HDR geothermal systems as soon as possible. Moreover, 
anticipated major cutbacks in the Laboratory's multimillion-dollar Rover 
Program—to develop a hydrogen-cooled nuclear rocket engine for space 
exploration—was creating a need for new programs at the Laboratory.  
(By 1976, lack of interest in Washington would lead to a withdrawal of 
funding and cancellation of the Subterrene Program. Fortunately, the HDR 
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Hot Dry Rock in Its Infancy 

In March 1971, the Laboratory's newly appointed Associate Director for 
Research, Richard Taschek, launched the Hot Dry Rock Geothermal Energy 
Development Project—as yet unfunded—under the leadership of Mort 
Smith and with Eugene Robinson as coordinator. The HDR concept would 
be patented three years later (Potter et al., 1974).4 
 In those early years, the HDR Project at Los Alamos was very informal. 
The "geothermal group" began by gathering and studying available infor-
mation on the geology and geophysics of geothermal areas, as well as on 
hydrology, drilling, rock mechanics, reservoir management, and hydraulic 

heat extraction from an HDR reservoir (Harlow and Pracht, 1972). Early 
on, a closed-loop earth circulation system was envisioned that would 
incorporate heat exchangers at the surface to transfer the heat from the hot 

cycle. Such a system would have the advantages of being simple, safe, and 
environmentally benign, and could be designed on the basis of existing 
technology.
 The Los Alamos team believed that man-made geothermal systems 
could be created in the deep crystalline "basement" almost anywhere that 
geothermal gradients were high enough for heat mining to be commercially 
attractive—the principal economic issue being the cost of drilling. Without 
the means to explore far and wide, they went looking "just over the hill" 
west of Los Alamos, in the Jemez Mountains. The major feature of this area 
is the Valles Caldera, formed only about 1 million years ago. 
 Along the trace of the bounding ring-fracture, post-caldera eruptions of 
rhyolitic lavas occurred as recently as about 50 000 years ago. Primarily 
inside the physiographic rim, hot springs and a few fumaroles were surface 
indicators of a large thermal resource (magma body) underlying a portion of 
the caldera; and extensive faulting suggested subsurface joint permeability, 
making the caldera a prime target for hydrothermal geothermal exploration 
and development. In the 1970s and 1980s, in an independent effort (funded 
mainly by the U. S. Department of Energy [DOE] and the Public Service 
Company of New Mexico), the Union Oil Company of California carried 

4The HDR patent was written by Don Brown, with the able assistance of 
Paul Gaetjens, a Laboratory patent attorney. Almost the entire HDR concept 
was Bob Potter's; Mort Smith added a section on the augmentation of heat 
production through thermal stress cracking, and Don Brown contributed 
a section on a single-well heat production concept using insulated, coaxial 

in the early days, who was suffering from terminal cancer—Don Brown 
replaced his name as third author with that of Robinson.)
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out extensive drilling and testing along a major northeast-trending fault 

system, but its power-generation potential was only about 25 MWe , half that 
required (at that time) to make a commercial venture feasible.
 The Los Alamos team reasoned that recent volcanic activity along the 
ring-fracture would have produced a region of elevated temperature that 
would extend radially outward from the caldera at least several miles. In 
late 1971, the measurement of geothermal gradients in a number of shallow, 

In early 1972, four deeper holes were drilled in that area for measuring 

roughly along an arc parallel to and 2–3 miles (3–5 km) west of the ring-
fracture; the fourth was located 4.5 miles due west of the ring-fracture. 

the caldera (A, B, and C) were found to be uniformly high—in the range of 
5–6 cal/cm2 2

Table 1-1.
Hole A Hole B Hole C Hole D

Date completed 10 Apr 1972 13 Apr 1972 16 Apr 1972 18 Apr 1972
Distance from ring fault 
(mi)

2.0 2.4 3.0 4.5

Depth (ft) 590 650 750 500
2  sec) 5.13 × 10–6 5.50 × 10–6 5.88 × 10–6 2.20 × 10–6

 The Precambrian-age crystalline basement rocks of the area were thought 
to lie about 2600 ft below the surface. Similar rocks, when tested at univer-
sity laboratories, had proved to be nearly impermeable, indicating that a 
basement-rock environment such as that found in the Jemez Mountains 
could be ideal for testing and development of the HDR concept. On the 

of the Valles Caldera (Fig. 1-2). An essentially nonvolcanic terrain, Fenton 
Hill exhibited elevated thermal gradients; the crystalline basement rock 
lay at reasonable depths; and the entire region was public land, part of the 
Santa Fe National Forest.
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Fig. 1-2. The region west of Los Alamos. The Fenton Hill area is shown 
west of the Valles Caldera. 

holes A, B, and C, was picked. It was decided to drill in the canyon bottom, 
which would reduce the amount of drilling by some 300 ft, thereby saving 
considerable time and money (but this would later prove to be a mistake, 
when thawing of the very heavy snowfall of the winter of 1972–73 turned 
the work area into a muddy bog).

Granite5 Test No. 1 (GT-1), was begun. Precambrian crystalline basement 
rocks were encountered at 2105 ft (642 m), and by June 1 the hole had 
reached a depth of 2430 ft (741 m), some 325 ft into the basement. After 

2575 feet (785 m), 470 ft into the crystalline basement. An examination of 

the casing was set) showed that the rock was primarily augen gneiss. The 

5Although the term "Geothermal Test Hole" appears in numerous HDR publica-
tions and reports, the original term—and the one that was used in the permits 
and original paperwork—was "Granite Test Hole."
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rocks penetrated during the continuous-coring phase were 50 ft of true 
-

atory borehole exhibited a bottom-hole temperature of 100.4°C and a mean 
gradient of over 100°C/km—outstanding for any geothermal area.6 
 Figure 1-3, an enlarged view of the Valles Caldera and the region to the 
west, shows the location of GT-1 in relation to the caldera and the four heat-

currently the Valles Caldera National Preserve.) 
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6 -
ments made in the Fenton Hill area were strongly affected by the hot aquifer 

surface.
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The First Experiments in Hydraulic Fracturing

In early 1973, a series of hydraulic fracturing experiments were conducted—

interval of GT-1.7

testing of an HDR reservoir. 
 In conventional hydraulic fracturing of sedimentary formations containing 
petroleum or natural gas, a "packed-off" interval8 of the borehole is pres-
surized until the overpressure fractures the borehole wall. According to 
the then-accepted theory of hydraulic fracturing in unjointed sedimentary 
formations ("homogeneous" isotropic rock) in regions where the earth 
stresses are typical (i.e., the maximum earth stress is vertical), the induced 
fracture should be vertical, planar, and normal to the axis of the least prin-
cipal earth stress, which acts horizontally. With continued pressurization, 
the fracture should extend radially outward from the borehole for hundreds 
of feet, forming what is referred to as a "penny-shaped vertical fracture." 
This theory, which had its origin in the classic 1946 paper by I. N. Sneddon, 
formed the basis for the original HDR system design (Fig. 1-4).
 But when the Los Alamos team applied this simple theory to the hydraulic 
fracturing of the Precambrian crystalline rocks penetrated by GT-1—as 
though this melange of ancient metamorphic and igneous rocks were 

Worse, that error would be perpetuated in HDR geothermal programs carried 
out later in other countries and in HDR research conducted by several univer-
sities (much of which, at least initially, was supported by Los Alamos). The 
investigators all assumed that a single fracture would be created and that it 
would be penny-shaped and vertical, providing a large area for the transfer 

 It is important to note that this concept was not abandoned until the 
early 1980s (even later in Japan). Eventually, both the British HDR team 
working at Rosemanowes9 and the Los Alamos team realized that, except 
for possibly a short distance immediately adjacent to the borehole wall, 
hydraulic fracturing was not actually breaking open intact crystalline rock 
against its inherent tensile strength. Rather, perhaps with one exception (see 

7These experiments are more thoroughly covered in Mort Smith's excellent report 
on the early days of HDR, (Smith, 1995).

8The interval to be fractured is isolated between a pair of removable seals called 
"packers." This "straddle" packer assembly is connected by a pressure line 
("frac" string) to high-pressure pumps on the surface.

9From 1977 to 1988, personnel from the Camborne School of Mines carried out 

granite (Cornubian Batholith) of a former granite quarry at Rosemanowes, in 
the southwestern Cornwall peninsula.


