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Foreword

This book is the successor of Cardinal functions on Boolean algebras (Birkhäuser
1990) and Cardinal invariants on Boolean algebras (Birkhäuser 1996). It contains
most of the material of these books, and adds the following:

(1) Indication of the progress made on the open problems formulated in the
earlier versions, with detailed solutions in many cases.

(2) Inclusion of some new cardinal functions, mainly those associated with con-
tinuum cardinals.

The material on sheaves, Boolean products, and Boolean powers has been omitted,
since these no longer play a role in our discussion of the cardinal invariants.

Although many problems in the earlier versions have been solved, many of
them are still open. In this edition we repeat those unsolved problems, and add
several new ones.

J. Donald Monk

Boulder, Colorado
don.monk@colorado.edu

vii

mailto:don.monk@colorado.edu


0 Introduction

This book is concerned with the theory of certain natural functions k which assign
to each infinite Boolean algebra A a cardinal number k(A) or a set k(A) of cardinal
numbers. The purpose of the book is to survey this area of the theory of BAs, giving
proofs for a large number of results, some of which are new, mentioning most of
the known results, and formulating open problems. Some of the open problems are
somewhat vague (“Characterize. . . ” or something like that), but frequently these
are even more important than the specific problems we state; so we have opted to
enumerate problems of both sorts in order to focus attention on them.

The framework that we shall set forth and then follow in investigating car-
dinal functions seems to us to be important for several reasons. First of all, the
functions themselves seem intrinsically interesting. Many of the questions which
naturally arise can be easily answered on the basis of our current knowledge of
the structure of Boolean algebras, but some of these answers require rather deep
arguments of set theory, algebra, or topology. This provides another interest in
their study: as a natural source of applications of set-theoretical, algebraic, or
topological methods. Some of the unresolved questions are rather obscure and
uninteresting, but some of them have a general interest. Altogether, the study of
cardinal functions seems to bring a unity and depth to many isolated investigations
in the theory of BAs.

There are several surveys of cardinal functions on Boolean algebras, or, more
generally, on topological spaces: See Arhangelskĭı [78], Comfort [71], van Douwen
[89], Hodel [84], Juhász [75], Juhász [80], Juhász [84], Monk [84], Monk [90], and
Monk [96]. We shall not assume any acquaintance with any of these. On the other
hand, we shall frequently refer to results proved in Part I of the Handbook of
Boolean Algebras, Koppelberg [89]. One additional bit of terminology: in a weak
product

∏w
i∈I Ai, we call an element a of type 1 iff {i ∈ I : ai �= 0}, the 1-support

of a, is finite, and of type 2 iff {i ∈ I : ai �= 1}, called the 2-support of a, is finite.

We have not attempted to give a complete history of the results mentioned
in this book. The references can be consulted for a detailed background.

, , 1
OI 10.1007/978-3- - - _1, 
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2 Chapter 0. Introduction

Definition of the main cardinal functions considered

We defer until later the discussion of the existence of some of these functions; they
do not all exist for every BA.

Cellularity. A subset X of a BA A is called disjoint if its members are pairwise
disjoint. The cellularity of A, denoted by c(A), is

sup{|X | : X is a disjoint subset of A}.

Depth. Depth(A) is

sup{|X | : X is a subset of A well ordered by the Boolean ordering}.

Topological density. The density of a topological space X , denoted by d(X), is
the smallest cardinal κ such that X has a dense subspace of cardinality κ. The
topological density of a BA A, also denoted by d(A), is the density of its Stone
space Ult(A).

π-weight. A subset X of a BA A is dense in A if for all a ∈ A+ there is an x ∈ X+

such that x ≤ a. The π-weight of a BA A, denoted by π(A), is

min{|X | : X is dense in A}.

This could also be called the algebraic density of A. (Recall that for any subset X
of a BA, X+ is the collection of nonzero elements of X .)

Length. Length(A) is
sup{|X | : X is a chain in A}.

Irredundance. A subset X of a BA A is irredundant if for all x ∈ X , x /∈ 〈X\{x}〉.
(Recall that 〈Y 〉 is the subalgebra generated by Y .) The irredundance ofA, denoted
by Irr(A), is

sup{|X | : X is an irredundant subset of A}.

Cardinality. This is just |A|. Sometimes we denote it by card(A).

Independence. A subset X of A is called independent if X is a set of free generators
for 〈X〉. Then the independence of A, denoted by Ind(A), is

sup{|X | : X is an independent subset of A}.

π-character. For any ultrafilter F on A, let πχ(F ) = min{|X | : X is dense in F}.
Note here that it is not required that X ⊆ F . Then the π-character of A, denoted
by πχ(A), is

sup{πχ(F ) : F is an ultrafilter of A}.
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Tightness. For any ultrafilter F on A, let t(F ) = min{κ : if Y is contained in
Ult(A) and F is contained in

⋃
Y , then there is a subset Z of Y of power at most

κ such that F is contained in
⋃
Z}. Then the tightness of A, denoted by t(A), is

sup{t(F ) : F is an ultrafilter on A}.

Spread. The spread of A, denoted by s(A), is

sup{|D| : D ⊆ Ult(A), and D is discrete in the relative topology}.

Character. The character of A, denoted by χ(A), is

min{κ : every ultrafilter on A can be generated by at most κ elements}.

Hereditary Lindelöf degree. For any topological space X, the Lindelöf degree of
X is the smallest cardinal L(X) such that every open cover of X has a subcover
with at most L(X) elements. Then the hereditary Lindelöf degree of A, denoted
by hL(A), is

sup{L(X) : X is a subspace of Ult(A)}.

Hereditary density. The hereditary density of A, hd(A), is

sup{d(S) : S is a subspace of Ult(A)}.

Incomparability. A subset X of A is incomparable if for any two distinct elements
x, y ∈ X we have x �≤ y and y �≤ x. The incomparability of A, denoted by Inc(A), is

sup{|X | : X is an incomparable subset of A}.

Hereditary cofinality. This cardinal function, h-cof(A), is

min{κ : for all X ⊆ A there is a C ⊆ X with |C| ≤ κ and C cofinal in X}.

Number of ultrafilters. Of course, this is the same as the cardinality of the Stone
space of A, and is denoted by |Ult(A)|.

Number of automorphisms. We denote by Aut(A) the set of all automorphisms of
A. So this cardinal function is |Aut(A)|.

Number of endomorphisms. We denote by End(A) the set of all endomorphisms
of A, and hence this cardinal function is |End(A)|.

Number of ideals of A. We denote by Id(A) the set of all ideals of A, so here we
have the cardinal function |Id(A)|.

Number of subalgebras of A. We denote by Sub(A) the set of all subalgebras of
A; |Sub(A)| is this cardinal function.
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Some classifications of cardinal functions

Some theorems which we shall present, especially some involving unions or ultra-
products, are true for several of our functions, with essentially the same proof. For
this reason we introduce some rather ad hoc classifications of the functions. Some
of the statements below are proved later in the book.

A cardinal function k is an ordinary sup-function with respect to P if P is
a function assigning to every infinite BA A a subset P (A) of P(A) so that the
following conditions hold for any infinite BA A:

(1) k(A) = sup{|X | : X ∈ P (A)};
(2) If B is a subalgebra of A, then P (B) ⊆ P (A) and X ∩ B ∈ P (B) for any

X ∈ P (A).

(3) For each infinite cardinal κ there is a BA C of size κ such that there is an
X ∈ P (C) with |X | = κ.

Table 0.1 lists some ordinary sup-functions.

Table 0.1: ordinary sup-functions

Function The subset P (A)

c(A) {X : X is disjoint}

Depth(A) {X : X is well ordered by the Boolean ordering of A}

Length(A) {X : X is linearly ordered by the Boolean ordering of A}

Irr(A) {X : X is irredundant}

Ind(A) {X : X is independent}

s(A) {X : X is ideal-independent}

Inc(A) {X : X is incomparable}

Given any ordinary sup-function k with respect to a function P and any infinite
cardinal κ, we say that A satisfies the κ−k-chain condition provided that |X | < κ
for all X ∈ P (A).

A cardinal function k is an ultra-sup function with respect to P if P is a func-
tion assigning to each infinite BA a subset P (A) of P(A) such that the following
conditions hold:

(1) k(A) = sup{|X | : X ∈ P (A)}.
(2) If 〈Ai : i ∈ I〉 is a sequence of BAs, F is an ultrafilter on I, and Xi ∈ P (Ai)

for all i ∈ I, then {f/F : f(i) ∈ Xi for all i ∈ I} ∈ P
(∏

i∈I Ai/F
)
.

All of the above ordinary sup-functions except Depth are also ultra-sup functions.
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For the next classification, extend the first-order language for BAs by adding
two unary relation symbols F and P. Then we say that k is a sup-min function if
there are sentences ϕ(F,P) and ψ(F) in this extended language such that:

(1) k(A) = sup{min{|P | : (A,F, P ) |= ϕ} : A is infinite and (A,F ) |= ψ}. In
particular, for any BA A there exist F, P ⊆ A such that (A,F, P ) |= ϕ.

(2) ϕ has the form ∀x ∈ P(x �= 0 ∧ ϕ′(F, x)) ∧ ∀x ∈ F ∃y ∈ Pϕ′′(F, x, y).

(3) (A,F ) |= ψ(F)→ ∃x(x �= 0 ∧ ϕ′(F, x)).

Some sup-min functions are listed in Table 0.2, where μ(F) is the formula
saying that F is an ultrafilter.

Table 0.2: sup-min functions

Function ψ(F) ϕ(F,P)

π ∀xFx ∀x ∈ P(x �= 0) ∧ ∀x ∈ F ∃y ∈ P(x �= 0→ y ≤ x)

πχ μ(F) ∀x ∈ P(x �= 0) ∧ ∀x ∈ F ∃y ∈ P(y ≤ x)

χ μ(F) ∀x ∈ P(x �= 0 ∧ x ∈ F) ∧ ∀x ∈ F ∃y ∈ P(y ≤ x)

h-cof x = x ∀x ∈ P(x �= 0 ∧ x ∈ F) ∧ ∀x ∈ F ∃y ∈ P(y ≥ x)

A cardinal function k is an order-independence function if there exists a sentence
ϕ in the language of (ω,<, ω, ω) such that the following two conditions hold:

(1) For any infinite BA A we have k(A) = sup{λ : there exists a sequence
〈aα : α < λ〉 of elements of A such that for all finite G,H ⊆ λ such that
(λ,<,G,H) |= ϕ we have

∏
α∈G aα ·

∏
α∈H −aα �= 0}.

(2) If λ is an infinite cardinal, (λ,<,G,H) |= ϕ, G′, H ′ ⊆ λ, and f is a one-to-one
function from G ∪H onto G′ ∪H ′ such that for all α, β ∈ G ∪H , if α < β
then f(α) < f(β), then (λ,<,G′, H ′) |= ϕ.

Some order-independence functions are listed in Table 0.3.

Table 0.3: order-independence functions

Function ϕ

t ∀x ∈ G ∀y ∈ H (x < y)

hd ∃x ∈ G ∀y ∈ G (x = y) ∧ ∀x ∈ G ∀y ∈ H (x < y)

hL ∃x ∈ H ∀y ∈ H (x = y) ∧ ∀x ∈ G ∀y ∈ H (x < y)
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Algebraic properties of a single function

Now we go into more detail on the properties of a single function which we shall
investigate. From the point of view of general algebra, the main questions are:
what happens to the cardinal function k under the passage to subalgebras, ho-
momorphic images, products, and free products? There are natural problems too
about more special operations on algebras in general, or on Boolean algebras in
particular: what happens to k under weak products, amalgamated free products,
unions of well-ordered chains of subalgebras, ultraproducts, dense subalgebras,
subdirect products, moderate products, one-point gluing, Alexsandroff duplica-
tion, and the exponential? The mentioned operations which are not discussed in
the Handbook will be explained in Chapter 1. There are also several special kinds
of subalgebras where one can ask what happens to the functions when passing
to such a special subalgebra. Many of these special subalgebras are discussed in
Heindorf, Shapiro [94]. For ease of reference, we list here ones which we consider
to be worthwhile to investigate in this context:

A ≤reg B: A is a regular subalgebra of B. (Handbook, page 21.)

A ≤rc B; A is relatively complete in B. (Handbook, page 123.)

A ≤π B: A is a dense subalgebra of B.

A ≤s B: B is a simple extension of A. (See Chapter 2.)

A ≤m B: B is a minimal extension of A. (See Chapter 2.)

A ≤mg B: B is minimally generated over A. (See Chapter 2.)

A ≤free B: B is a free extension of A. This means that B = A ⊕ F for some free
BA F .

A ≤σ B: A is σ-embedded in B. This means that A ≤ B, and for every b ∈ B, the
ideal {a ∈ A : a ≤ b} of A is countably generated.

A ≤proj B: A is projectively embedded in B. This means that there is a free BA C
and homomorphisms e : B → A⊕C and q : A⊕C → B such that q ◦e = IdB
and e � A = q � A = IdA. See Koppelberg [89b], page 752. This is illustrated
by the following diagram:

A ≤u B: every ultrafilter on A has at least two different extensions to ultrafilters
on B.
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One may notice that several of the above functions, such as depth and spread,
are defined as supremums of the cardinalities of sets satisfying some property P .
So, a natural question is whether such sups are attained, that is, with depth as an
example, whether for every BA A there always is a subset X well ordered by the
Boolean ordering, with |X | = Depth(A). Of course, this is only a question in case
Depth(A) is a limit cardinal. For such functions k defined by sups, we can define a
closely related function k′; k′(A) is the least cardinal such that there is no subset
of A with the property P . So k′(A) = (k(A))+ if k is attained, and k′(A) = k(A)
otherwise.

Derived functions

From a given cardinal function one can define several others; part of our work is
to see what these new cardinal functions look like; frequently it turns out that
they coincide with others of our basic functions, but sometimes we arrive at a new
function in this way:

kH+(A) = sup{k(B) : B is a homomorphic image of A}.
kH−(A) = inf{k(B) : B is an infinite homomorphic image of A}.
kS+(A) = sup{k(B) : B is a subalgebra of A}.
kS−(A) = inf{k(B) : B is an infinite subalgebra of A}.
kh+(A) = sup{k(Y ) : Y is a subspace of UltA}.
kh−(A) = inf{k(Y ) : Y is an infinite subspace of UltA}.

dkS+(A) = sup{k(B) : B is a dense subalgebra of A}.
dkS−(A) = inf{k(B) : B is a dense subalgebra of A}.

Note that kh+(A) and kh−(A) make sense only if k is a function which naturally
applies to topological spaces in general as well as BAs. Any infinite Boolean space
has a denumerable discrete subspace, and frequently kh− will take its value on
such a subspace. Also note with respect to dkS+(A) and dkS−(A) that one could
consider other kinds of subalgebras, as in the previous list of them.

Given a function defined in terms of ultrafilters, like character above, there
is usually an associated function l assigning a cardinal number to each ultrafilter
on A. Then one can introduce two cardinal functions on A itself:

lsup(A) = sup{l(F ) : F is an ultrafilter on A}.
linf(A) = inf{l(F ) : F is a non-principal ultrafilter on A}.

Another kind of derived function applies to cases where the function is defined
as the sup of cardinalities of sets X with a property P , where P is such that
maximal families with the property P exist (usually seen by Zorn’s lemma). For
such a function k, we define

kmm(A) = min{|X | : X is an infinite maximal family satisfying P};
kspect(A) = {|X | : X is an infinite maximal family satisfying P}.
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We also consider the following two spectrum functions, which assign to each BA
a set of cardinal numbers:

kHs(A) = {k(B) : B is an infinite homomorphic image of A}
(the homomorphic spectrum of A)

kSs(A) = {k(B) : B is an infinite subalgebra of A}
(the subalgebra spectrum of A)

It is also possible to define a caliber notion for many of our functions, in analogy
to the well-known caliber notion for cellularity. Given a property P associated
with a cardinal function, a BA A is said to have κ, λ,P-caliber if among any set
of λ elements of A there are κ elements with property P. The property P is not
necessarily one used to define the function; thus for cellularity P is the finite
intersection property, while for independence it is, indeed, independence.

Comparing two functions

Given two cardinal functions k and l, one can try to determine whether k(A) ≤
l(A) for every BA A or l(A) ≤ k(A) for every BA A. Given that one of these cases
arises, it is natural to consider whether the difference can be arbitrarily large (as
with cellularity and spread, for example), or if it is subject to restrictions (as
with depth and length). If no general relationship is known, a counterexample is
needed, and again one can try to find a counterexample with an arbitrarily large
difference between the two functions. Of course, the known inequalities between
our functions help in order to limit the number of cases that need to be considered
for constructing such counterexamples; here the diagrams at the end of the book
are sometimes useful. For example, knowing that πχ can be greater than c, we
also know that χ can be greater than c.

Other considerations

In addition to the above systematic goals in discussing cardinal functions, there
are some more ideas which we shall not explore in such detail. One can compare
several cardinal functions, instead of just two at a time. Several deep theorems
of this sort are known, and we shall mention a few of them. There is also a
large number of relationships between cardinal functions which involve cardinal
arithmetic; for example, Length(A) ≤ 2Depth(A) for any BA A. We mention a few
of these as we go along.

One can compare two cardinal functions while considering algebraic oper-
ations; for example, comparing functions k, l with respect to the formation of
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subalgebras. We shall investigate just two of the many possibilities here:

kSr(A) = {(κ, λ) : there is an infinite subalgebra B of A

such that |B| = λ and k(B) = κ};
kHr(A) = {(κ, λ) : there is an infinite homomorphic image B of A

such that |B| = λ and k(B) = κ}.

These are called, respectively, the subalgebra k relation and the homomorphic k
relation.

For each function k, it would be nice to be able to characterize the possible
relations kSr and kHr in purely cardinal number terms.

Another general idea applies to several functions that are defined somehow
in terms of finite sets; the idea is to take bounded versions of them. For example,
independence has bounded versions: for any positive integer n, a subset X of a BA
A is called n-independent if for every subset Y of X with at most n elements and
every ε ∈ Y 2 we have

∏
y∈Y yεy �= 0. (Here x1 = x, x0 = −x for any x.) And then

we define Indn(A) = sup{|X | : X is n-independent}. It is interesting to investigate
this notion and its relationship to actual independence; and similar things can be
done for various other functions.

Special classes of Boolean algebras

We are interested in all of the above ideas not only for the class of all BAs, but
also for various important subclasses: complete BAs, interval algebras, tree alge-
bras, and superatomic algebras, which are discussed in the Handbook. To a lesser
extent we give facts about cardinal functions for other subclasses like all atomic
BAs, atomless BAs, initial chain algebras, minimally generated algebras, pseudo-
tree algebras, semigroup algebras, and tail algebras. In Chapter 2 we describe
some properties of the special classes mentioned which are not discussed in the
Handbook, partly to establish notation.



1 Special Operations on
Boolean Algebras

We give the basic definitions and facts about several operations on Boolean alge-
bras which were not discussed in the Handbook.

We begin with some elementary but useful results concerning products.

Proposition 1.1. C is a homomorphic image of A×B iff C is isomorphic to A′×B′

for some homomorphic images A′ and B′ of A and B respectively.

Proof. We may assume that A and B are non-trivial.

⇐: obvious. ⇒: suppose that f is a homomorphism from A × B onto C.
It suffices to show that C � f(1, 0) is a homomorphic image of A. Let I be a
maximal ideal in A, and for any a ∈ A let g(a) = f(a, a/I) · f(1, 0). Clearly g is a
homomorphism from A into C � f(1, 0). To show that it is onto, let x ∈ C � f(1, 0).
Say f(a, b) = x. Then

g(a) = f(a, a/I) · f(1, 0) = f(a, b) · f(1, 0) = x. �

Proposition 1.2. Let 〈Ai : i ∈ I〉 be a system of non-trivial BAs, with I infinite.
Then C is a homomorphic image of

∏w
i∈I Ai iff there is a system 〈Bi : i ∈ I〉 of

BAs such that ∀i ∈ I[Bi is a homomorphic image of Ai], and C ∼=
∏w

i∈I Bi.

Proof. For brevity let D =
∏w

i∈I Ai.

For ⇐, suppose that fi : Ai → Bi is a surjective homomorphism for each
i ∈ I. Define g : D →

∏w
i∈I Bi by setting, for each a ∈ D, (g(a))i = fi(ai).

Clearly g is a homomorphism from D into
∏w

i∈I Bi. To show that it is surjective,
let b ∈

∏w
i∈I Bi. For each i ∈ I choose ai ∈ Ai such that fi(ai) = bi, with ai = 0 if

bi = 0 and ai = 1 if bi = 1. Clearly a ∈ D and g(a) = b. Thus
∏w

i∈I Bi
∼= D/ker(g).

For ⇒, suppose that K is a proper ideal in D. For each i ∈ I let Li = {bi :
b ∈ K}. Clearly Li is an ideal in Ai.

Case 1. There is an a ∈ K of type 2. Let F be the 2-support of a. Define f([b]K) =
〈[bi]Li : i ∈ F 〉 for each b ∈ D. Clearly f is well defined, and is a homomorphism
from D/K into

∏
i∈F Ai/Li. It is one-one, for suppose that bi ∈ Li for all i ∈ F .

For each i ∈ F choose ci ∈ K such that bi = cii. Then b ≤ a+
∑

i∈F ci ∈ K, and so

, ,
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b ∈ K. It maps onto
∏

i∈F Ai/Li; for suppose that xi ∈ Ai for each i ∈ F . Extend
to a function x ∈ D. Then f([x]K) = 〈[xi]Li : i ∈ F 〉, as desired. Let Bi = Ai/Li

for all i ∈ F , and let Bi be trivial for all i ∈ I\F .

Case 2. Every a ∈ K is of type 1. For each i ∈ I define χi ∈ D by setting, for each
j ∈ I,

χi(j) =

{
1 if i = j,

0 otherwise.

Let J = {i ∈ I : χi /∈ K}. If J = ∅, thenK is a maximal ideal inD, and |D/K| = 2,
giving the desired result, letting one Bi be a two element homomorphic image of
Ai, the other Bis trivial.

Suppose that ∅ �= J and J is finite. Let M be the maximal ideal of D consist-
ing of all elements of type 1. For each b ∈ D define f([b]K) = (〈[bi]Li : i ∈ J〉, [b]M ).
Clearly f is a well-defined homomorphism from D/K into (

∏
i∈J (Ai/Li)) × 2. f

is one-one: suppose that bi ∈ Li for all i ∈ J and b ∈ M . For each i ∈ J choose
ci ∈ K such that bi = cii. Let F be the 1-support of b. Define d ∈ D by

d(i) =

⎧⎨
⎩
cii if i ∈ J ,

1 if i ∈ F\J ,
0 otherwise.

Then d ∈ K and b ≤ d, so b ∈ K. Also, f maps onto (
∏

i∈J Ai/Li) × 2. For,
suppose that c ∈

∏
i∈J Ai and ε ∈ 2. If ε = 1, extend c to b ∈ D by defining

b(i) = 1 for all i ∈ I\J . Clearly f([b]K) = (〈[ci]Li : i ∈ J〉, 1). If ε = 0, extend c to
b ∈ D by defining b(i) = 0 for all i ∈ I\J . Clearly f([b]K) = (〈[ci]Li : i ∈ J〉, 0).
Now we can let Bi = A/Li for all i ∈ J , Bi a two-element homomorphic image of
Ai for some i ∈ I\J , and all other Bis trivial.

Suppose that J is infinite. For each b ∈ D define f([b]K) = 〈[bi]Li : i ∈ J〉.
Clearly f is a well-defined homomorphism from D/K into

∏w
i∈J Ai/Li. f is one-

one: suppose that bi ∈ Li for all i ∈ J . For each i ∈ J choose ci ∈ K such that
bi = cii. Since J is infinite, 1 /∈ Li for each i ∈ J , and bi ∈ Li for each i ∈ J , it
follows that b is of type 1. Let F be the 1-support of b. Define d ∈ D by

d(i) =

⎧⎨
⎩
cii if i ∈ J ,

1 if i ∈ F\J ,
0 otherwise.

Then d ∈ K and b ≤ d, so b ∈ K. Also, f maps onto
∏w

i∈J Ai/Li. For, suppose
that c ∈

∏w
i∈J Ai. If c is of type 2, extend c to b ∈ D by defining b(i) = 1 for all

i ∈ I\J . Clearly f([b]K) = 〈[ci]Li : i ∈ J〉. If c is of type 1, extend c to b ∈ D by
defining b(i) = 0 for all i ∈ I\J . Clearly f([b]K) = 〈[ci]Li : i ∈ J〉. Now we can
define Bi = Ai/Li for all i ∈ J , with the other Bis trivial. �

Concerning arbitrary products, we have the following simple result.
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Proposition 1.3. Let 〈Ak : k ∈ K〉 be a system of BAs, and 〈Ik : k ∈ K〉 a system
such that Ik is an ideal in Ak for all k ∈ K. Let J = {a ∈

∏
k∈K Ak : ∀k ∈ K[ak ∈

Ik]}. Then J is an ideal in
∏

k∈K Ak, and (
∏

k∈K Ak)/J ∼=
∏

k∈K(Ak/Ik).

Proof. Clearly J is an ideal in
∏

k∈K Ak. Now for each a ∈
∏

k∈K Ak and each
k ∈ K let (f(a))k = [ak]Ik . Clearly f is a homomorphism from

∏
k∈K Ak onto∏

k∈K(Ak/Ik) with kernel J , so the result follows by the homomorphism theorem.
�

However, the property of Proposition 1.2 does not extend to arbitrary products.
In the following example we use the notation Finco(I) for the BA of finite and
cofinite subsets of I.

Example 1.4. For each k ∈ ω let Ak = Finco(ω). Then ω2 is a subalgebra of∏
k∈ω Ak. Let f be a homomorphism from ω2 onto P(ω)/fin, and extend f to a

homomorphism g from
∏

k∈ω Ak into the completion of P(ω)/fin. Then there is
an ideal J on

∏
k∈ω Ak such that (

∏
k∈ω Ak)/J is isomorphic to rng(g). Note that

rng(g) is atomless. But if 〈Ik : k ∈ ω〉 is any sequence of ideals on Finco(ω), then∏
k∈ω(Ak/Ik) is atomic. Thus (

∏
k∈ω Ak)/J is not isomorphic to

∏
k∈ω(Ak/Ik).

Moderate products

This operation, due to Weese [80] and Gurevich [82] independently, is extensively
studied in Heindorf [92], to whom the name is due. Suppose that 〈Ai : i ∈ I〉
is a system of BAs; we assume that Ai is a field of subsets of some set Ji, and
that the Ji’s are pairwise disjoint. Furthermore, let B be an algebra of subsets
of I containing all of the finite subsets of I. For each b ∈ B let b̄ =

⋃
i∈b Ji. Set

K =
⋃

i∈I Ji. For each b ∈ B, each finite F ⊂ I, and each a ∈
∏

i∈F Ai, the set

b̄ ∪
⋃
i∈F

ai

will be denoted by h(b, F, a). If F ∩ b = ∅ and 0 ⊂ ai ⊂ Ji for every i ∈ F , then
we call (b, F, a) normal.

Proposition 1.5. Assume the above notation.

(i) For any b ∈ B, F ∈ [I]<ω, and a ∈
∏

i∈F Ai we have h(b, F, a) = h(b′, F ′, a′),
where b′ = b ∪ {i ∈ F : ai = Ji}, F ′ = {i ∈ F\b : ∅ ⊂ ai ⊂ Ji}, and
a′ = a � F ′; moreover, (b′, F ′, a′) is normal.

(ii) If (b, F, a) is normal, then K\h(b, F, a) = h(I\(b∪F ), F, a′), where a′i = Ji\ai
for all i ∈ F ; and (I\(b ∪ F ), F, a′) is normal.

(iii) h(b, F, a) ∩ h(b′, F ′, a′) = h(b′′, F ′′, a′′) for normal (b, F, a) and (b′, F ′, a′),
where b′′ = b ∩ b′, F ′′ = (F ′ ∩ b) ∪ (F ∩ b′) ∪ {i ∈ F ∩ F ′ : ai ∩ a′i �= ∅}, and
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for any i ∈ F ′′,

a′′i =

⎧⎨
⎩
a′i if i ∈ F ′ ∩ b,

ai if i ∈ F ∩ b′,
ai ∩ a′i if i ∈ F ∩ F ′ and ai ∩ a′i �= ∅;

and (b′′, F ′′, a′′) is normal.

(iv) If (b, F, a) and (b′, F ′, a′) are normal, then h(b, F, a) ⊆ h(b′, F ′, a′) iff b ⊆ b′,
F ′ ∩ b = ∅, F ⊆ b′ ∪ F ′, and ∀i ∈ F ∩ F ′[ai ⊆ a′i].

(v) If (b, F, a) and (b′, F ′, a′) are normal and h(b, F, a) = h(b′, F ′, a′), then b = b′,
F = F ′, and a = a′.

Proof. It is straightforward to check (i)–(iii). For (iv), suppose that (b, F, a) and
(b′, F ′, a′) are normal.

First suppose that h(b, F, a) ⊆ h(b′, F ′, a′). Clearly b ⊆ b′ and F ′ ∩ b = ∅.
Next, suppose that i ∈ F\b′. Then ai ⊆ h(b′, F ′, a′), so i ∈ F ′. Now suppose that
i ∈ F ∩ F ′. Then ai ⊆ h(b, F, i) and i /∈ b′, so ai ⊆ a′i.

Second, suppose that b ⊆ b′, F ′∩b = ∅, F ⊆ b′∪F ′, and ∀i ∈ F ∩F ′[ai ⊆ a′i].
Take any x ∈ h(b, F, a). If x ∈ b, then x ∈ b′ and hence x ∈ h(b′, F ′, a′). Suppose
that i ∈ F and x ∈ ai. If i ∈ b′, then x ∈ h(b′, F ′, a′). Suppose that i /∈ b′.
So i ∈ F\b′, and so i ∈ F ′. Since then i ∈ F ∩ F ′, we have ai ⊆ a′i, and so
x ∈ h(b′, F ′, a′).

(v) follows from (iv). �

The BA of all sets h(b, F, a) is the moderate product of the Ai’s over B, and is

denoted by
∏B

i∈I Ai.

Theorem 1.6. Suppose that 〈Ai : i ∈ I〉 is a system of BAs; each Ai is a field of
subsets of some set Ji; the Ji’s are pairwise disjoint, and Finco(I) ≤ B ≤ P(I).

(i) For every i ∈ I we have Ji ∈
∏B

i∈I Ai and Ai =
(∏B

i∈I Ai

)
� Ji.

(ii) B is isomorphic to a subalgebra of
∏B

i∈I Ai; in fact, 〈b : b ∈ B〉 is an isomor-
phic embedding.

(iii) If Finco(I) ≤ B ≤ C ≤ P(I), then
∏B

i∈I Ai ≤
∏C

i∈I Ai.

(iv)
∏B

i∈I Ai can be embedded in
∏

i∈I Ai.

(v)
∏w

i∈I Ai
∼=
∏Finco(I)

i∈I Ai.

(vi) If I is finite, then B = P(I), and
∏B

i∈I Ai
∼=
∏

i∈I Ai.

(vii) For each i ∈ I and each x ∈
∏B

i∈I Ai let f(x) = x ∩ Ji. Then f is a homo-

morphism from
∏B

i∈I Ai onto Ai.

(viii) Let g be the natural isomorphism of P(I) onto I2. Then

B∏
i∈I

Ai
∼=
〈

w∏
i∈I

Ai ∪ g[B]

〉
∏

i∈I Ai

.
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(ix) If b ∈ [I]<ω, then
∏

i∈b Ai
∼=
(∏B

i∈I Ai

)
� b.

(x) Suppose that U ⊆
∏B

i∈I Ai. Then U is an ultrafilter on
∏B

i∈I Ai iff one of the
following holds:

(a) There exist an i ∈ I and an ultrafilter V on Ai such that U={h(b,F,a) :
(b,F,a) is normal, and i ∈ b or (i /∈ b and i ∈ F and ai ∈ V )}.

(b) There is a nonprincipal ultrafilter W on B such that U = {h(b, F, a) :
(b, F, a) is normal and b ∈ W}.

Proof. (i)–(iii) are clear by Proposition 1.5. For (iv), define (f(x))i = x ∩ Ji for

any x ∈
∏B

i∈I Ai and each i ∈ I. We show that f is the desired embedding. For
·, let normal (b, F, a), (b′, F ′, a′) be given, and let (b′′, F ′′, a′′) be as in Proposition
1.5(iii). If i ∈ b′′, then

[h(b, F, a) ∩ h(b′, F ′, a′)] ∩ Ji = Ji = [h(b, F, a) ∩ Ji] ∩ [h(b′, F ′, a′) ∩ Ji].

If i ∈ F ′ ∩ b, then

[h(b, F, a) ∩ h(b′, F ′, a′)] ∩ Ji = Ji ∩ a′i = [h(b, F, a) ∩ Ji] ∩ [h(b′, F ′, a′) ∩ Ji].

If i ∈ F ∩ b′, then

[h(b, F, a) ∩ h(b′, F ′, a′)] ∩ Ji = ai ∩ Ji = [h(b, F, a) ∩ Ji] ∩ [h(b′, F ′, a′) ∩ Ji].

Finally, if i ∈ F ∩ F ′ and ai ∩ a′i �= ∅, then

[h(b, F, a) ∩ h(b′, F ′, a′)] ∩ Ji = ai ∩ a′i = [h(b, F, a) ∩ Ji] ∩ [h(b′, F ′, a′) ∩ Ji].

For −, recall Proposition 1.5(ii). If i ∈ b, then

[K\h(b, F, a)] ∩ Ji = ∅ = Ji\Ji = Ji\[h(b, F, a) ∩ Ji].

If i ∈ F , then

[K\h(b, F, a)] ∩ Ji = Ji\ai = Ji\[h(b, F, a) ∩ Ji].

Finally, if i ∈ I\(b ∪ F ), then

[K\h(b, F, a)] ∩ Ji = Ji = Ji\∅ = Ji\[h(b, F, a) ∩ Ji].

Clearly f is one-one; this finishes the proof of (iv).

In case B = Finco(I), this mapping is easily seen to be onto
∏w

i∈I Ai, prov-
ing (v).

(vi) clearly follows from (v).

For (vii), clearly f is a homomorphism from
∏B

i∈I Ai into Ai. For each x ∈ Ai

we have x ∈
∏B

i∈I Ai and f(x) = x. So f maps onto Ai.
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For (viii), we use the function f defined in the proof of (iv). Note that if
b ∈ B, then f(b) = g(b), and if F is a finite subset of I and a ∈

∏
i∈I Ai, then

f(h(∅, F, a) = k, where

k(i) =

{
ai if i ∈ F ,

∅ otherwise.

If (b, F, a) is normal, then h(b, F, a) = b∪h(∅, F, a). Hence {b : b ∈ B}∪{h(∅, F, a) :
F ∈ [I]<ω, a ∈

∏
i∈I Ai} generates

∏B
i∈I Ai. Clearly also the image of this set under

f generates the right side of the equation in (viii). Hence (viii) follows.

For (ix), define f(x) =
⋃

i∈b xi for any x ∈
∏

i∈b Ai; clearly this is the desired
isomorphism.

Finally, we consider (x). First suppose that U is an ultrafilter on
∏B

i∈I Ai.

Case 1. There is an i ∈ I such that h({i}, ∅, ∅) ∈ U . Let V = {x ∈ A+
i :

h(∅, {i}, {(i, x)}) ∈ U . Suppose that x ∈ V and x ⊆ y ⊆ Ji. Then

h(∅, {i}, {(i, x)}) ⊆ h(∅, {i}, {(i, y)}),

so h(∅, {i}, {(i, y)}) ∈ U . It follows that y ∈ V . Next suppose that x, y ∈ V . Now
h(∅, {i}, {(i, x)})∩ h(∅, {i}, {(i, y)}) = h(∅, {i}, {(i, x∩ y)}). Thus h(∅, {i}, {(i, x∩
y)}) ∈ U , hence x ∩ y ∈ V . So V is a filter. Now let x ∈ Ai, and suppose that
x /∈ V . Thus K\h(∅, {i}, {(i, x)}) ∈ U . Now

K\h(∅, {i}, {(i, x)}) = h(I\{i}, {i}, {(i, Ji\x)}),

and
h({i}, ∅, ∅) ∩ h(I\{i}, {i}, {(i, Ji\x)}) = h(∅, {i}, {(i, Ji\x)}),

so h(∅, {i}, {(i, Ji\x)}) ∈ U . It follows that Ji\x ∈ V . So V is an ultrafilter on Ai.

Now suppose that h(b, F, a) ∈ U with (b, F, a) normal. Suppose that i /∈ b.
Now h(b, F, a) ∩ h({i}, ∅, ∅) ∈ U and hence this set is nonempty, so it follows that
i ∈ F , and hence

h(b, F, a) ∩ h({i}, ∅, ∅) = h(∅, {i}, {(i, ai)});

hence ai ∈ V .

Conversely, suppose that (b, F, a) is normal. Suppose first that i ∈ b. Then we
have h({i}, ∅, ∅) ⊆ h(b, F, a), so h(b, F, a) ∈ U . Second, suppose that i /∈ b, i ∈ F ,
and ai ∈ V . Then h(∅, {i}, {(i, ai)}) ∈ U . Then h(∅, {i}, {(i, ai)}) ⊆ h(b, F, a), so
h(b, F, a) ∈ U .

Thus we have shown that Case 1 implies (a).

Case 2. There is no i ∈ I such that h({i}, ∅, ∅) ∈ U . Let W = {b ∈ B : h(b, ∅, ∅) ∈
U}. Clearly W is a nonprincipal ultrafilter on B. Suppose that h(b, F, a) ∈ U with
(b, F, a) normal. For each i ∈ F we have K\h({i}, ∅, ∅) = h(I\{i}, ∅, ∅) ∈ U , and
hence

h(b, F, a) ∩
⋂
i∈F

h(I\{i}, ∅, ∅) = h(b, ∅, ∅)

is in U . So b ∈ W .
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Conversely, suppose that (b, F, a) is normal and b ∈ W . Since h(b, ∅, ∅) ⊆
h(b, F, a), we have h(b, F, a) ∈ U .

This finishes the proof of ⇒.

For ⇐, first suppose that (a) holds; we want to show that U is an ultrafilter

on
∏B

i∈I Ai. Suppose that h(b, F, a) ∈ U , h(b, F, a) ⊆ h(b′, F ′, a′), with (b, F, a)
and (b′, F ′, a′) normal.

Case 1. i ∈ b. Then also i ∈ b′, so h(b′, F ′, a′) ∈ U .

Case 2. i /∈ b, i ∈ F , and ai ∈ V . If i ∈ b′, then h(b′, F ′, a′) ∈ U . Suppose that
i /∈ b′. Then i ∈ F ′, so i ∈ F ∩ F ′ and hence ai ⊆ a′i. Hence a′i ∈ V and so
h(b′, F ′, a′) ∈ U .

Next, suppose that h(b, F, a), h(b′, F ′, a′) ∈ U , with (b, F, a), (b′, F ′, a′) nor-
mal. Then h(b, F, a) ∩ h(b′, F ′, a′) = h(b′′, F ′′, a′′) as in 1.5(iii). We consider some
subcases.

Subcase 2.1. i ∈ b ∩ b′. Then h(b′′, F ′′, a′′) ∈ U .

Subcase 2.2. i ∈ b\b′. Then i ∈ F ′ and a′i ∈ V . Now i ∈ F ′ ∩ b ⊆ F ′′ and a′′i = a′i,
so h(b′′, F ′′, a′′) ∈ U .

Subcase 2.3. i ∈ b′\b. Similar to Subcase 2.2.

Subcase 2.4. i /∈ b ∪ b′. Then i ∈ F , ai ∈ V , i ∈ F ′, a′i ∈ V . So i ∈ F ∩ F ′ and
ai ∩ a′i ∈ V , hence ai ∩ a′i �= ∅. So h(b′′, F ′′, a′′) ∈ U .

Thus U is a filter. Clearly ∅ /∈ U . Finally, suppose that a normal (b, F, a) is given.
Suppose that i /∈ b and (i /∈ F , or i ∈ F and ai /∈ V ). If i /∈ F , then i ∈ I\(b ∪ F )
and hence K\h(b, F, a) ∈ U . Suppose that i ∈ F and ai /∈ V . Then Ji\ai ∈ V ,
and hence K\h(b, F, a) = h(I\(b ∪ F ), F, a′) ∈ U , where a′j = Jj\aj for all j ∈ F .

Second, suppose that (b) holds. Clearly U is a proper filter. To show that it is an
ultrafilter, suppose that (b, F, a) is normal and h(b, F, a) /∈ U . Now K\h(b, F, a) =
h(I\(b ∪ F ), F, a′) with a′i = Ji\ai for all i ∈ F . Since h(b, F, a) /∈ U , we have
b /∈ W , hence I\b ∈ W . Since W is nonprincipal, we have {i} /∈ W for all i ∈
F , hence (I\{i}) ∈ W . Hence I\(b ∪ F ) = (I\b) ∩

⋂
i∈F (I\{i}) ∈ W , and so

(K\h(b, F, a)) ∈ U . So U is an ultrafilter. �

Theorem 1.6(viii) suggests an alternative formulation of the notion of moderate
products. Let I be an infinite set, 〈Ai : i ∈ I〉 a system of BAs, and Finco(I) ≤
B ≤ P(I). Let g be the natural isomorphism from P(I) onto I2. Then we can
take the moderate product to be〈

w∏
i∈I

Ai ∪ g[B]

〉
∏

i∈I Ai

.

Note that here one does not need to assume that each Ai is an algebra of sets.
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Theorem 1.7. Assume the hypotheses of Theorem 1.6, and suppose that L
def
= {i ∈

I : |Ai| > 2} is infinite. Then
∏B

i∈I Ai is not complete.

Proof. For each i ∈ L choose ai ∈ Ai such that 0 ⊂ ai ⊂ Ji. Suppose that∑
i∈L ai exists in

∏B
i∈I Ai; say it is equal to h(b, F, c), where we may assume that

(b, F, c) is normal. Fix i ∈ L\F . Then ai ⊆ h(b, F, c) implies that i ∈ b. But then
h(b\{i}, F ′, c′) is still an upper bound, where F ′ = F ∪ {i} and c′ extends c with
c′i = ai. Since h(b\{i}, F ′, c′) ⊂ h(b, F, c), this is a contradiction. �

It is clear that if each Ai is atomless, then so is
∏B

i∈I Ai; similarly for each Ai

atomic. It is somewhat less trivial to check that the moderate product preserves
superatomicity:

Theorem 1.8. If each Ai is superatomic and also B is superatomic, then
∏B

i∈I Ai

is superatomic.

Proof. For brevity write C =
∏B

i∈I Ai. It suffices to show that if f is a homo-
morphism from C onto a nontrivial BA D, then D has an atom. We consider two
cases.

Case 1. f(Ji) �= 0 for some i ∈ I. Let f ′ = f � Ai. Clearly f ′ is a homomorphism
from Ai onto D � f(Ji). Let f ′(ui) be an atom of D � f(Ji); this is possible since
Ai is superatomic. Clearly f ′(ui) is also an atom of D.

Case 2. f(Ji) = 0 for all i ∈ I. Note that h(b, F, a) = h(b, ∅, ∅)∪ h(∅, F, a) for any
b, F, a. Hence f(h(b, F, a)) = f(h(b, ∅, ∅)). For each b ∈ B, let k(b) = f(h(b, ∅, ∅).
Clearly k is a homomorphism from B onto D, so D has an atom since B is
superatomic. �

An important use of moderate products in connection with homomorphisms has
been given by Koszmider [99]. We give details on his construction.

Proposition 1.9. If K is an ideal in
∏B

i∈I Ai and i ∈ I, then {x ∩ Ji : x ∈ K} is
an ideal in Ai.

Proof. Clearly {x ∩ Ji : x ∈ K} is closed under unions. Now suppose that y ∈ Ai

and y ≤ x ∩ Ji with x ∈ K. Clearly y ∈
∏B

i∈I Ai and y = y ∩ Ji, so y is in the set
too. �

Note in fact that this ideal is merely K ∩ Ai.

Proposition 1.10. Suppose that C is an infinite homomorphic image of
∏B

i∈I Ai,
with I infinite. Then there is an infinite homomorphic image D of C which is also
a homomorphic image of B or of some Ai.

Proof. Let K be the kernel of a homomorphism of
∏B

i∈I Ai onto C. So
∏B

i∈I Ai/K
is isomorphic to C and hence is infinite. For each i ∈ I let Li = K ∩ Ai. So by
Proposition 1.9, each Li is an ideal in Ai. We now consider several cases.
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Case 1. N
def
= {i ∈ I : Ji /∈ K} is finite, and ∀i ∈ I[Ai/Li is finite]. Let M =

〈K ∪ {Ji : i ∈ I, Ji /∈ K}〉id.
(1)

∏B
i∈I Ai/M is infinite.

In fact, define f :
∏B

i∈I Ai/K →
∏B

i∈I Ai/M ×
∏

i∈N (Ai/Li) by

f([a]K) = ([a]M , 〈[ai]Li : i ∈ N〉).
First of all, f is well defined. For, if a ∈ K, then a ∈ M , and ai ∈ Li for each
i ∈ N . Moreover, f is an injection. For, if a ∈M and ai ∈ Li for each i ∈ N , then
there is a b ∈ K such that a ⊆ b ∪

⋃
i∈N Ji, so

a =

[
a\
⋃
i∈N

Ji

]
∪
[
a ∩

⋃
i∈N

Ji

]

=

[
a\
⋃
i∈N

Ji

]
∪
⋃
i∈N

ai

⊆ b ∪
⋃
i∈N

ai

∈ K.

Thus, indeed, f is an injection. Hence (1) follows.

Now define g(b) = [h(b, ∅, ∅)]M for any b ∈ B. Then g is a homomorphism of

B into
∏B

i∈I Ai/M , by Theorem 1.6(ii). For any element h(b, F, a) of
∏B

i∈I Ai we
have [h(b, F, a)]M = [h(b, ∅, ∅)]M , since h(b, F, a)�h(b, ∅, ∅) =

⋃
i∈F ai, and for all

i ∈ F , if i /∈ N then ai ⊆ Ji ∈ K, while if i ∈ N , then still ai ⊆ Ji ∈ M . Thus g
maps onto

∏B
i∈I Ai/M , and so

∏B
i∈I Ai/M is as desired.

Case 2. N is infinite, and ∀i ∈ I[Ai/Li is finite]. For each i ∈ N let Mi be a
maximal ideal in Ai such that Li ⊆ Mi. Let P be the ideal generated by K ∪⋃

i∈N Mi. For each i ∈ N we have Ji /∈ P , and so
∏B

i∈I Ai/P is infinite. Define

g(b) = [h(b, ∅, ∅)]P for all b ∈ B. Then g is a homomorphism of B into
∏B

i∈I Ai/M ,
by Theorem 1.6(ii). We claim that it is a surjection. Let h(b, F, a) be any element

of
∏B

i∈I Ai, with (b, F, a) normal, and let c = b ∪ {i ∈ F : ai /∈Mi}. Then

h(b, F, a)�h(c, ∅, ∅) = (h(b, F, a)\h(c, ∅, ∅)) ∪ (h(c, ∅, ∅)\h(b, F, a))

=
⋃
i∈F

ai∈Mi

ai ∪
⋃
i∈F

ai /∈Mi

(Ji\ai).

Now if i ∈ F and ai ∈ Mi then ai ∈ P , while if i ∈ F and ai /∈ Mi, then
(Ji\ai) ∈Mi ⊆ P . Hence g maps onto

∏B
i∈I Ai/P , as desired.

Case 3. There is an i0 ∈ I such that Ai0/Li0 is infinite. Let M be the ideal

generated by K ∪
{⋃

i�=i0
Ji

}
, and define

g([h(b, F, a)]M ) = [h(b, F, a) ∩ Ji0 ]Li0
.
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If h(b, F, a) ∈ M , then there is a c ∈ K such that h(b, F, a) ⊆ c ∪
⋃

i�=i0
Ji, hence

h(b, F, a) ∩ Ji0 ⊆ c, and so h(b, F, a) ∩ Ji0 ∈ (K ∩Ai0) = Li0 . So g is well defined.
It clearly maps onto Ai0/Li0 , as desired. �

Proposition 1.11. Suppose that X is a subset of
∏B

i∈I Ai with |X | = κ uncountable
and regular, κ > |I|. Then there exist Y ∈ [X ]κ and a finite G ⊆ I such that 〈Y 〉
is isomorphic to a subalgebra of (B � (I\G))×

∏
i∈G Ai.

Proof. Let 〈Fξ : ξ < κ〉 ∈ κ([I]<ω), b ∈ κB and a with domain κ be such that
aξ ∈

∏
i∈Fξ

Ai for all ξ < κ, (bξ, Fξ, aξ) is normal, and

X = {h(bξ, Fξ, aξ) : ξ < κ}.

Choose Y ∈ [κ]κ and G ∈ [I]<ω such that Fξ = G for all ξ ∈ Y . Let

W =

{
h(c,G, d) : c ∈ B, c ∩G = ∅, d ∈

∏
i∈G

Ai

}
.

This is a subalgebra of
∏B

i∈I Ai by the above computation rules, and Y ⊆W . Now
define

f(h(c,G, d)) = (h(c, ∅, ∅), d)
for each h(c,G, d) ∈ W . We claim that f is an isomorphism from W into (B �
(I\G))×

∏
i∈G Ai. In fact, f clearly preserves ·. For −,

f(−h(c,G, d)) = f(h(I\(c ∪G), G,−d)
= (h(I\(c ∪G), ∅, ∅),−d)
= (h(I\G, ∅, ∅) · h(I\c, ∅, ∅),−d)
= (h(I\G, ∅, ∅) · −h(c, ∅, ∅),−d)
= −f(h(c,G, d)). �

Let L be the set of all countable limit ordinals, and L2 the set of all countable
limits of elements of L. Let 〈cnα : α ∈ L2, n ∈ ω〉 be such that for all α ∈ L2,
〈cnα : n ∈ ω〉 is strictly increasing, cofinal in α, with c0α = 0 and ci+1

α ∈ L for all
i ∈ ω.

Let A and B be subalgebras of P(ω), with [ω]<ω ⊆ B. We construct 〈Cα :
α ∈ L〉 by recursion. Each Cα will be a subalgebra of P(α). For each β ∈ L let
fβ be a bijection from ω to [β, β + ω).

Define Cω = A. If Cα has been defined, with α ∈ L, let

Cα+ω = 〈Cα ∪ {fα[a] : a ∈ A}〉P(α+ω).

If β ∈ L2 and Cα has been defined for all α < β such that α ∈ L, let Cβ =∏B
i∈ω Dβ

i , with

Dβ
i = Cci+1

β
� [ciβ , ci+1

β ).
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Here in general G � h = {g ·h : g ∈ G} for G a subalgebra of H and h ∈ H , without
assuming that h ∈ G. Next, for each α ∈ L let Eα = Cα ∪ {a : ω1\a ∈ Cα}. Thus
Eα is a subalgebra of P(ω1). Finally, let

B∏
c

A =

〈⋃
α∈L

Cα

〉
P(ω1)

.

Lemma 1.12. Assume the above notation. Then

(i) If α, β ∈ L and α < β, then Cα ⊆ Cβ.

(ii) If α, β ∈ L and α ≤ β, then α ∈ Cβ.

(iii) If α1, α2, β ∈ L and α1 < α2 ≤ β, then [α1, α2) ∈ Cβ.

(iv) If α, β ∈ L, α < β, define fβα(a) = a ∩ α for each a ∈ Cβ . Then fβα is a
homomorphism from Cβ onto Cα which is the identity on Cα.

(v) If α, β ∈ L and α < β, then Eα ⊆ Eβ, and there is a homomorphism from
Eβ onto Eα which is the identity on Eα.

(vi)
∏B

c A =
⋃

α∈LEα.

(vii) For any α ∈ L, Cα+ω
∼= Cα ×A.

(viii) L ⊆
∏B

c A.

Proof. We prove (i)–(iv) simultaneously by induction on β. The case β = ω holds
vacuously. Now assume inductively that β > ω.

Case 1. β = γ + ω for some γ ∈ L. For (i), suppose that α ∈ L and α < β. Then
Cα ⊆ Cγ by the inductive hypothesis, and Cγ ⊆ Cβ by construction.

For (ii), suppose that α ≤ β with α ∈ L. If α < β, then α ∈ Cα ⊆ Cβ by the
inductive hypothesis. Obviously β ∈ Cβ .

For (iii), we consider two subcases.

Subcase 1.1. α2 < β. Then [α1, α2) ∈ Cγ by the inductive hypothesis, and Cγ ⊆ Cβ

by construction.

Subcase 1.2. α2 = β. Then [α1, γ) ∈ Cγ by the inductive hypothesis, and [γ, β) =
fγ [ω] ∈ Cβ by construction. So [α1, β) = [α1, γ) ∪ [γ, β) ∈ Cβ .

For (iv), we have a ∩ α ∈ Cα for each a in the generating set of Cβ , and so
(iv) holds.

Case 2. β ∈ L2. First we take (ii). Clearly β ∈ Cβ by construction. Now suppose
that α < β. Choose i ∈ ω such that ciβ ≤ α < ci+1

β . Then by the inductive

hypothesis, α ∈ Cci+1
β

, so [ciβ, α) ∈ Cci+1
β

� [ciβ , c
i+1
β ) = Dβ

i . Clearly [0, ciβ) ∈ Cβ .

Hence α ∈ Cβ .

Now assume the hypotheses of (iii). By (ii), [α1, α2) = α2\α1 ∈ Cβ . Thus
(iii) holds.

Now assume the hypotheses of (i), and suppose that a ∈ Cα. In particular,
a ⊆ α. Choose i0 such that ci0β ≤ α < ci0+1

β . If i+1 ≤ i0, then a∩ ci+1
β ∈ Cci+1

β
by
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the inductive hypothesis on (iv), so a ∩ [ciβ , c
i+1
β ) ∈ Dβ

i . Also, [c
i0
β , α) ∈ C

c
i0+1

β
by

the inductive hypothesis on (iii), and a ∈ C
c
i0+1

β

by the inductive hypothesis on

(i). Hence a∩ [ci0β , α) = a∩ [ci0β , α)∩ [ci0β , ci0+1
β ) ∈ Dβ

i0
. Thus a is a sum of elements

of Dβ
i for i+ 1 ≤ i0 and of an element of Dβ

i0
, so a ∈ Cβ , as desired in (i).

For (iv), suppose that α < β, and suppose that a ∈ Cβ . Again take i0 such
that ci0β ≤ α < ci0+1

β .

(1) If i+ 1 ≤ i0, then [ciβ , c
i+1
β ) ∩ a ∈ Cα.

In fact, clearly [ciβ , c
i+1
β ) ∩ a ∈ Dβ

i . By (iii) for ci+1
β we have [ciβ , c

i+1
β ) ∈ Cci+1

β
, so

Dβ
i ⊆ Cci+1

β
, and hence [ciβ , c

i+1
β )∩ a ∈ Cci+1

β
⊆ Cα by the inductive hypothesis on

(i) for α. Thus (1) holds.

(2) [ci0β , α) ∩ a ∈ Cα.

For, again clearly [ci0β , ci0+1
β )∩ a ∈ Dβ

i0
, so as above, [ci0β , ci0+1

β )∩ a ∈ C
c
i0+1

β
. Then

by the inductive hypothesis on (iv) for ci0+1
β ,

[ci0β , α) ∩ a = [ci0β , ci0+1
β ) ∩ a ∩ α ∈ Cα,

giving (2). Now by (1) and (2), a∩α =
⋃

i+1≤i0
(a∩ [ciβ , ci+1

β ))∪ ([ci0β , α)∩a) ∈ Cα.

This finishes the proof of (i)–(iv). For (v), from (i) it is clear that Eα ⊆ Eβ .
Now for each a ∈ Eβ , let

g(a) =

{
a ∩ α if a ∈ Cβ ,

(ω1\α) ∪ a otherwise.

Now g maps into Eα. For, if a ∈ Cβ , then g(a) = a ∩ α ∈ Cα ⊆ Eα by (iv). If
ω1\a ∈ Cβ , then

ω1\g(a) = ω1\((ω1\α) ∪ a) = ω1 ∩ α ∩ (ω1\a) = α ∩ (ω1\a),

and this is in Cα by (iv) again.

We check that g preserves ∪. Suppose that a, b ∈ Eβ . If a, b ∈ Cβ , then
a ∪ b ∈ Cβ , and g(a ∪ b) = (a ∪ b) ∩ α = (a ∩ α) ∪ (b ∩ α) = g(a) ∪ g(b). If a ∈ Cβ

and b /∈ Cβ , then ω1\b ∈ Cβ ⊆ β, hence ω1\β ⊆ b, and so a ∪ b /∈ Cβ ; it follows
that

g(a) ∪ g(b) = (a ∩ α) ∪ (ω1\α) ∪ b

= (ω1\α) ∪ a ∪ b

= g(a ∪ b).

Similarly if a /∈ Cβ and b ∈ Cβ . Finally, if a, b /∈ Cβ , then

g(a) ∪ g(b) = (ω1\α) ∪ a ∪ b = g(a ∪ b).
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So g preserves ∪. For complement, if a ∈ Cβ , then

g(ω1\a) = (ω1\α) ∪ (ω1\a) = ω1\(a ∩ α) = ω1\g(a),

and if a /∈ Cβ , then

ω1\g(a) = ω1\(ω1\α) ∪ a) = α\a = g(ω1\a).

So g is a homomorphism. If a ∈ Cα, clearly g(a) = a. If ω1\a ∈ Cα, then g(a) =
(ω1\α) ∪ a = a since (ω1\α) ⊆ a. Thus (v) holds.

For (vi), note that each Eα is clearly a subalgebra of 〈
⋃

α∈LCα〉, and so⋃
α∈LEα ⊆ 〈

⋃
α∈LCα〉. Since

⋃
α∈LEα is a subalgebra of P(ω1) containing⋃

α∈LCα, (vi) follows.

Turning to (vii), for any (a, b) ∈ Cα×A we define g(a, b) = a∪ fα[b]. Clearly
g preserves +. For −, we have

−g(a, b) = −(a ∪ fα[b])

= (α + ω)\(a ∪ fα[b])

= ((α + ω)\a) ∩ ((α+ ω)\fα[b])
= ((α\a) ∪ [α, α + ω)) ∩ (α ∪ [α, α+ ω)\fα[b])
= (α\a) ∪ ([α, α + ω)\fα[b])
= (α\a) ∪ fα[−b]
= g(−a,−b)
= g(−(a, b)).

Thus g is a homomorphism. Its range clearly contains Cα ∪ {fα[a] : a ∈ A} and
is contained in 〈Cα ∪ {fα[a] : a ∈ A}〉. It is clearly one-one. So g is the desired
isomorphism.

Finally, (viii) is immediate from (ii). �
Proposition 1.13. Assume the notation above.

(i) If x ∈ Eα, then x ∩ α ∈ Cα.

(ii) Cα is a maximal ideal in Eα.

(iii) For every ideal K in Eα, the set K ∩ Cα is an ideal in Cα.

(iv) For every ideal K in Eα and every x ∈ Eα, let f([x]K) = [x∩α]Cα∩K . Then
f is well defined, and is a homomorphism from Eα/K onto Cα/(K ∩ Cα).
Moreover, it is one-one on Cα/K.

(v) For every ideal K in Eα, if Eα/K is infinite, then so is Cα/(K ∩ Cα).

Proof. (i): Assume that x ∈ Eα. If x ∈ Cα, then the conclusion is obvious. Suppose
that x /∈ Cα. Then (ω1\x) ∈ Cα, and so the set α\(ω1\x) is also in Cα. This set
is equal to x ∩ α. So (i) holds.

(ii): Obviously Cα is closed under ∪. If x ∈ Cα and y ⊆ x, with y ∈ Eα, then
by (i), y ∈ Cα. Finally, Cα is obviously maximal.


