Springer Proceedings in Mathematics & Statistics

Andreas Johann Hans-Peter Kruse Florian Rupp Stephan Schmitz *Editors*

Recent Trends in Dynamical Systems

Proceedings of a Conference in Honor of Jürgen Scheurle

Springer Proceedings in Mathematics and Statistics

Volume 35		
volume 33		

For further volumes: http://www.springer.com/series/10533

Springer Proceedings in Mathematics and Statistics

This book series features volumes composed of selected contributions from workshops and conferences in all areas of current research in mathematics and statistics, including OR and optimization. In addition to an overall evaluation of the interest, scientific quality, and timeliness of each proposal at the hands of the publisher, individual contributions are all refereed to the high quality standards of leading journals in the field. Thus, this series provides the research community with well-edited, authoritative reports on developments in the most exciting areas of mathematical and statistical research today.

Andreas Johann • Hans-Peter Kruse Florian Rupp • Stephan Schmitz Editors

Recent Trends in Dynamical Systems

Proceedings of a Conference in Honor of Jürgen Scheurle

Editors
Andreas Johann
Hans-Peter Kruse
Florian Rupp
Stephan Schmitz
Zentrum Mathematik
Technische Universität München
Garching bei München
Germany

ISSN 2194-1009 ISSN 2194-1017 (electronic)
ISBN 978-3-0348-0450-9 ISBN 978-3-0348-0451-6 (eBook)
DOI 10.1007/978-3-0348-0451-6
Springer Basel Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013947464

Mathematical Subject Classification (2010): 34-XX, 35-XX, 37-XX, 70-XX, 74-XX, 76-XX, 82-XX, 93-XX

© Springer Basel 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer Basel is part of Springer Science+Business Media (www.springer.com)

Preface

In January 2012 the International Conference *Recent Trends in Dynamical Systems* was held in Munich on the occasion of Jürgen Scheurle's 60th birthday. As parts of this conference, a scientific colloquium took place at the Carl Friedrich von Siemens Stiftung in Munich from 11th to 13th of January and also a Festkolloquium at the Technische Universität München in the afternoon of January 13th. Besides numerous posters on recent advances in the field of dynamical systems, 25 highly recognized scholars gave plenary talks that were grouped according to the following themes:

- Stability and bifurcation
- Geometric mechanics and control theory
- Invariant manifolds, attractors, and chaos
- Fluid mechanics and elasticity
- Perturbations and multiscale problems
- Hamiltonian dynamics and KAM theory

These themes reflect the broad scientific interests of Jürgen Scheurle and his fascination of applying mathematics to real world situations, in particular from physics and mechanics. The volume at hand is an outgrowth of this conference, containing research articles about exciting new developments in the multifaceted subject of dynamical systems as well as survey articles. We are very happy that the authors accepted the invitation to contribute to this volume in honour of Jürgen Scheurle and we are sure that their exciting articles will be of interest not only to experts in the field of dynamical systems but also to graduate students and scientists from many other fields, including engineering. This is in the spirit of Jürgen Scheurle, who, besides his research activities, always puts a lot of emphasis on conveying the beauty of the Theory of Dynamical Systems and its applicability to real world problems in extremely well-prepared, beautiful lectures.

Munich, Germany January 2013 Andreas Johann Hans-Peter Kruse Florian Rupp Stephan Schmitz viii Preface

Short Curriculum Vitae of Jürgen Scheurle

Jürgen Scheurle was born on September 26, 1951, in Schwäbisch Gmünd, Baden-Württemberg. He received his professional education at the University of Stuttgart, where he studied mathematics, physics, and computer science from 1970 until 1974, and finished his diploma degree in mathematics with a thesis entitled "Ein Antikonvergenzprinzip". Some months later, in 1975, he completed his doctorate under the guidance of Klaus Kirchgässner. The title of his Ph.D. thesis is "Ein selektives Iterationsverfahren und Verzweigungsprobleme". In 1981 he presented his Habilitation thesis on "Verzweigung quasiperiodischer Lösungen bei reversiblen dynamischen Systemen".

From 1974 to 1985 Jürgen Scheurle held positions as a postdoctoral researcher, senior researcher, and assistant professor, at the University of Stuttgart. In 1982 he was visiting professor at the Department of Mathematics, University of California, Berkeley (USA), and in 1983 at the Division of Applied Mathematics, Brown University, Providence (USA). In 1985 Jürgen Scheurle moved to Fort Collins (USA), where he became an associate and later full professor at Colorado State University. In 1987 he accepted a full professorship and the Chair of Theory and Applications of Partial Differential Equations at the University of Hamburg. In 1996 Jürgen Scheurle was appointed full professor at the Technische Universität München (TUM) and since then holds the Chair of Advanced Mathematics and Analytical Mechanics. Notable predecessors at this chair were Felix Klein, Walter von Dyck, and Robert Sauer, see Fig. 1, which illustrates the special responsibility of Jürgen Scheurle for the mathematical education of engineering students.

He was the founding director of the Center for Mathematics at TUM and later dean of the Faculty of Mathematics. As dean, he continued the reform-oriented politics of his predecessors. During his term in office, the faculty voluntarily conducted a peer assessment and was awarded the title "Reformfakultät" by the "Stifterverband der Deutschen Wissenschaft". Such assessments are common nowadays but were completely novel 10 years ago. Moreover, far ahead before such procedures were put into law, the Bavarian Ministry of Research and Teaching allowed the faculty to introduce an "Experimentierklausel" to assess prospective for the admission of students.

Jürgen Scheurle was responsible for the introduction of the "Master of Science in Industrial & Financial Mathematics" at the off-shore campus of TUM in Singapore. He was a member of the planning team for the new mathematics building at the research campus Garching and in charge of the relocation from downtown Munich to Garching in 2002. Finally, Jürgen Scheurle was and is member of numerous expert committees appointed by the president of the TUM and the faculty of mathematics. Inter alia he is representative of the "Bayerische Eliteakademie", member of the "Hurwitz-Gesellschaft zur Förderung der Mathematik an der TU München" and its president since 2011.

Jürgen Scheurle authored and co-authored several pioneering publications, and among them the following are highly influential articles:

Preface ix

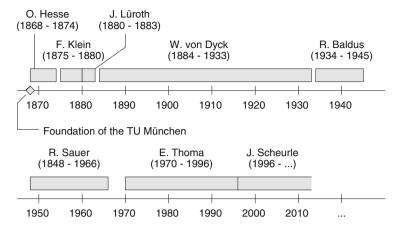


Fig. 1 Genealogy of the chair "Analytische Mechanik und Angewandte Mathematik" at the Technische Universität München

- On the bounded solutions of a semilinear elliptic equation in a strip (together with K. Kirchgässner). J. Diff. Equat. 32 (1) (1979), 119–148.
- Smoothness of bounded solutions of non-linear evolution equations (together with J. Hale). J. Diff. Equat. 56 (1) (1985), 142–163.
- Chaotic solutions of systems with almost periodic forcing. ZAMP 37 (1986), 12–26.
- The construction and smoothness of invariant manifolds by the deformation method (together with J. Marsden). SIAM J. Math. Anal. 18 (5) (1987), 1261– 1274.
- Exponentially small splittings of separatrices in KAM theory and degenerate bifurcations (together with P. Holmes and J. Marsden). Cont. Math. 81 (1988), 213–243.
- Existence of perturbed solitary wave solutions to a model equation for water waves (together with J. Hunter). Physica D 32 (1988), 253–268.
- Lagrangian reduction and bifurcations of relative equilibria of the double spherical pendulum (together with J. Marsden). ZAMP 44 (1993), 17 43.
- *The reduced Euler-Lagrange equations* (together with J. Marsden). Fields Inst. Comm. 1 (1993), 139–164.
- Pattern evocation and geometric phases in mechanical systems with symmetry (together with J. Marsden), Dyn. and Stab. of Systems 10 (1995), 315–338.
- *Discretization of homoclinic orbits and "invisible" chaos* (together with B. Fiedler). Memoirs of the AMS vol. 119, nb. 570 (3), Providence 1996.
- Reduction Theory and the Lagrange-Routh equations (together with J. Marsden and T. Ratiu). J. Math. Phys. 41(6) (2000), 3379–3429.
- *The orbit space method* (together with M. Rumberger). In Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems, B. Fiedler edt., Springer-Verlag 2001, 649–689.

x Preface

• On the generation of conjugate flanks for arbitrary gear geometries (together with A. Johann). GAMM-Mitt. 32, No. 1, 2009, 61–79.

His teaching covers a wide spectrum of subjects, ranging from mathematics for engineering students, functional analysis, ordinary differential equations and partial differential equations to dynamical systems, bifurcation theory, hamiltonian dynamics, geometric mechanics, mathematical methods in continuum mechanics, and mathematical modeling in biology and ecology. He supervised more than 20 dissertations and habilitations in these areas.

Jürgen Scheurle was a member of the advisory board of the book series *Dynamics Reported* and an executive editor of the *International Journal of Nonlinear Mechanics*. He is currently a member of the editorial board of the *Journal of Nonlinear Science*, *Nonlinear Science Today*, *Journal of Applied Mathematics and Mechanics* (ZAMM), and *Journal of Geometric Mechanics*.

Conference photo in the garden of the Carl Friedrich von Siemens Stiftung at the Schloß Nymphenburg, Munich

xii Preface

Registered Participants in Alphabetic Order

- · Wolf-Jürgen Beyn
- · Anthony Bloch
- Jörg-Stefan Bock
- · Henk W. Broer
- · Tomas Caraballo
- · David Chillingworth
- · Florin Diacu
- Michael Dellnitz
- · Jochen Denzler
- Freddy Dumortier
- Dominik Eberlein
- Francesco Fasso
- · Peter Giesl
- Christoph Glocker
- · John Guckenheimer
- · Thomas Hagen
- Heinz Hanßmann
- Karl-Heinz Hoffmann
- Phillip Huber
- Delia Ionescu-Kruse
- · Gerard Iooss
- · Andreas Johann
- Christopher K.R.T. Jones
- Oliver Junge
- · Hansjörg Kielhöfer
- Peter E. Kloeden
- Thorsten Knott
- · Peter Koltai
- · Carl Friedrich Kreiner
- P.S. Krishnaprasad
- Hans-Peter Kruse
- Tassilo Küpper

- Christian Kühn
- · Rainer Lauterbach
- · Martin Lehl
- Armin Leutbecher
- · Daniel Matthes
- Johannes Mayet
- · Alexander Mielke
- · James Montaldi
- Horst Osberger
- Kathrin Padberg-Gehle
- · Tudor Ratiu
- Geneviève Raugel
- Sebastian Reich
- Michael Renardy
- · Mark Roberts
- Marcello Romano
- Matthias Rumberger
- Florian Rupp
- · Johannes Rutzmoser
- · Björn Sandstede
- Jürgen Scheurle
- · Thorsten Schindler
- Günter Schlichting
- · Guido Schneider
- · Stephan Schmitz
- Svenja Schoeder
- Andreas Schuppert
- · Rüdier Seydl
- Andre Vanderbauwhede
- · Sebastian Walcher
- · Bodo Werner
- Johannes Zimmer

Contents

Part I Stability, Bifurcation and Perturbations

1	The I	Birth of C	Chaos	. 3
	John	Guckenh	eimer	
	1.1	Introdu	uction	. 3
	1.2	The Fo	orced Van der Pol Equation	
	1.3	Backg	round on Slow-Fast Dynamical Systems	. 7
	1.4	Folds a	and Folded Saddles	. 12
	1.5	Return	Maps	. 16
	1.6	Structu	aral Stability, Hyperbolic Invariant Sets,	
		and Ax	xiom A	. 18
	1.7		aral Stability of the Forced Van der Pol Equation	
	1.8	Afterw	vord	. 21
	Refer	ences		. 22
2	Perio	dic Orbi	ts Close to Grazing for an Impact Oscillator	25
			gworth and A.B. Nordmark	
	2.1	_	pact Oscillator	25
		2.1.1	Nordmark's Criteria	. 26
		2.1.2	The Impact Surface Approach	. 29
		2.1.3	Single Impact Period T Orbits	
		2.1.4	Single Impact 2 <i>T</i> -Periodic Orbits	
		2.1.5	Conclusion	36
	Refer	ences		. 37
3	Bran	ches of P	Periodic Orbits in Reversible Systems	39
	Andre	é Vanderb	pauwhede	
	3.1	Introdu	uction	. 39
	3.2	Revers	sible Systems	40
	2 2	Dovore	pible Honf Rifurgation	40

xiv Contents

	3.4	Generic Subharmonic Branching	42
		3.4.1 Period Doubling	43
		3.4.2 Subharmonic Branching	44
	3.5	Degenerate Subharmonic Branching	46
	3.6	Change of Stability Without Bifurcation	47
	Refer	ences	48
4	Cana	rd Explosion and Position Curves	51
	Fredd	y Dumortier	
	4.1	Introduction	51
	4.2	Setting of the Problem and Statement of Results	53
		4.2.1 Generic Breaking Mechanisms and Nearby	
		Transition Maps	53
		4.2.2 Control Curves and Manifold of Closed Orbits	57
		4.2.3 Position Curves and Statement of Results	58
	4.3	Typical Shape of Generic Position Curves	61
		4.3.1 Flying Canards	61
		4.3.2 Simple Zeros of $I(Y, \mu_0)$	65
	4.4	Catastrophes of Canard Type Limit Cycles	68
	4.5	Consequences of Theorem 4.1 and Remaining Problems	75
	Refer	ences	77
5	Bifur	cation for Non-smooth Dynamical Systems via	
		ction Methods	79
	T. Kü	pper, H.A. Hosham, and D. Weiss	
	5.1	Introduction	80
	5.2	General Setting	83
	5.3	Concept of Generalized Center Manifolds	87
		5.3.1 Brake Model as PWS	91
		5.3.2 Detecting Crossing and Sliding Regions	92
	5.4	Piecewise Smooth Linear System	92
		5.4.1 Concepts of Invariant Cones	92
	5.5	PWLS with Sliding	97
	5.6	Nonlinear Piecewise Smooth Systems (PWNS)	102
	Refer	ences	104
6	Home	oclinic Flip Bifurcations in Conservative Reversible	
Ů		ms	107
	Björn	Sandstede	
	6.1	Introduction	107
	6.2	Main Results	109
	6.3	Proof of Theorem 6.1	112
	6.4	Application to a Fifth-Order Model for Water Waves	115
	6.5	Open Problems	118
		ences	123

Contents xv

7	Local	Lyapun	ov Functions for Periodic and Finite-Time ODEs	125		
	Peter	Giesl and	l Sigurdur Hafstein			
	7.1	Introdu	action	125		
	7.2	Autono	omous System	128		
	7.3	Period	ic Time	130		
		7.3.1	Linear Systems	130		
		7.3.2	Nonlinear Systems	133		
	7.4	Finite '	Time	134		
		7.4.1	Dini Derivative	137		
		7.4.2	Linear Systems	140		
		7.4.3	Nonlinear Systems	144		
		7.4.4	Norm $ x ^2 = x^T Nx$	145		
	7.5	Relatio	ons Between Autonomous, Periodic			
		and Fin	nite-Time Systems	147		
		7.5.1	Periodic Systems as Finite-Time Systems	147		
		7.5.2	Autonomous Systems as Periodic			
			and Finite-Time Systems	148		
	7.6	Conclu	sions and Outlook	150		
	Refere	ences		151		
8	Owasi	Ctoody	States Secreting for and Hilliaing			
0			State: Searching for and Utilizing	153		
	Small Parameters Alexandra Goeke and Sebastian Walcher					
	8.1		iction	153		
	8.2		round and Statement of Problem	153		
	0.2	8.2.1	Chemical Reactions and ODEs	154		
		8.2.1		154		
		8.2.3	Quasi-Steady State	157		
	8.3		tion in the Presence of Small Parameters	157		
	0.3	8.3.1		159		
		8.3.2	Singular Perturbations	161		
		8.3.3	Computing a Reduction	168		
		8.3.4		171		
	8.4		Why Does the Ad Hoc Method Persist?	171		
	0.4	8.4.1	g Small Parameters	172		
		8.4.2	Underlying Assumptions: QSS vs. Slow–Fast	173		
		8.4.3	The Role of Scaling	173		
	Dofor					
	Keler	ences		177		
9	On a	Global U	Uniform Pullback Attractor of a Class			
	of PD	Es with l	Degenerate Diffusion and Chemotaxis			
	in On	e Dimen	sion	179		
	Messo	oud Efend	diev and Anna Zhigun			
	9.1	Introdu	action	180		
	9.2	Dissipa	ative Estimates (Proof of <i>Theorem 9.2</i>)	184		

xvi Contents

	9.3		Uniform Pullback Attractor	106
	Refere		of <i>Theorem 9.3</i>)	196 203
10				200
10		-	uential Monte Carlo Method	205
		e Assimii tian Reich	ation of Data into Stochastic Dynamical Systems	205
	10.1		_	206
			ction	206
	10.2		Theorem, Filtering, and Coupling	200
	10.2		dom Variables	209 214
	10.3		IC Method	214
	10.4		an Dynamics Under a Double Well Potential	210
	10.5		sions	219
	Refere	ences	•••••	219
11	Deter	ministic a	and Stochastic Dynamics of Chronic	
	Myelo	genous I	Leukaemia Stem Cells Subject	
	to Hil	l-Functio	on-Like Signaling	221
	Tor Fl	å, Florian	Rupp, and Clemens Woywod	
	11.1	Introdu	ction	222
	11.2	Definiti	ion of the Governing Probabilistic	
		Four-D	imensional Model (Model C)	224
		11.2.1	Biological Aspects of the Model	224
		11.2.2	Formulation of the Building Blocks of Model C	227
		11.2.3	The Approximate Fokker-Planck Equation	
			for Model C	229
		11.2.4	The Stochastic Version of Model C in Terms	
			of Itô/Langevin Equations	231
	11.3		ria and Their Stability in the Deterministic	
		Small N	Noise Limit	234
		11.3.1	J 1 &	235
		11.3.2	Model B: The Formation	
			of Cancer—Competition Between Normal	
			and Wild-Type Leukaemic Stem Cells	246
		11.3.3	Model C: The Full Four-Dimensional	
			Problem, Including Cycling and Noncycling	
			Normal Stem Cells Plus Two Cycling	
			Leukaemic Stem Cell Clones	
	11.4	Summa	ary and Outlook	257
	Refere	ences		261

Contents xvii

Part II Hamiltonian Dynamics, Geometric Mechanics and Control Theory

12			ions of Euler–Poincaré Equations	
			with Symmetry	267
	D.D. F	Iolm, J. N	Munn, and S.N. Stechmann	
	12.1		ction	268
		12.1.1	Motivation and Problem Statement	268
		12.1.2	The Camassa–Holm Equation	
			on a Riemannian Manifold	269
		12.1.3	Main Results of the Paper	272
		12.1.4	Plan of the Paper	273
	12.2		Equations on Einstein Spaces	273
	12.3		Diff Equation on the Sphere	275
		12.3.1	Rotationally Invariant Solutions	275
		12.3.2	The Basic Irrotational Puckon	280
		12.3.3	Rotating Puckons	282
		12.3.4	The Basic Rotating Puckon	286
		12.3.5	Puckons and Geodesics	288
		12.3.6	Further Hamiltonian Aspects of Radial	
			Solutions of EPDiff on the Riemann Sphere	289
	12.4		ical Solutions for EPDiff on the Sphere	291
		12.4.1	Overview	291
		12.4.2	Numerical Specifications	292
	12.5		lizing to Other Surfaces	297
		12.5.1	Rotationally Symmetric Surfaces	298
		12.5.2	Rotationally Invariant Diffeons	
			on Hyperbolic Space	302
		12.5.3	Horolationally Invariant Diffeons	
			on Hyperbolic Space	305
		12.5.4	Translation Invariant Diffeons on Hyperbolic Space	306
	12.6		on Warped Product Spaces	308
		12.6.1	Warped Products	309
		12.6.2	Singular Fibers	313
	12.7		sions	314
	Refere	nces		315
13	On th	e Destru	ction of Resonant Lagrangean Tori	
			n Systems	317
			Heinz Hanßmann, and Jiangong You	
	13.1		ction	318
	13.2		gorov Hamiltonians	322
	13.3		bilic Example	329
	13.4		ann Hamiltonians	330
	13.5		sions	331

xviii Contents

14	Defor	mation o	f Geometry and Bifurcations of Vortex Rings	335
	James	Montald	i and Tadashi Tokieda	
	14.1	Smooth	Family of Geometries	337
		14.1.1	Lie Algebras	337
		14.1.2	Surfaces	
		14.1.3	Hamiltonians for Point Vortices	342
	14.2	Nondeg	generate Analysis of Vortex Rings	344
		14.2.1	Regular Ring	
		14.2.2	Hessians	
		14.2.3	Symplectic Slice	
	14.3	Bifurca	tions Across the Degeneracy	351
		14.3.1	Dihedral Group Action	
		14.3.2	Dihedral Bifurcations	
		14.3.3	Bifurcations of Vortex Rings	
		14.3.4	Geometry of Bifurcating Rings	
		14.3.5	Degenerate Critical Points	
		14.3.6	Bifurcations from the Equator	
	14.4	What H	Suppens with Other Hamiltonians	
		14.4.1	Green's Function $G = \log z - w ^2$	
		14.4.2	Green's Function $G = \log \frac{ z-w ^2}{ 1+\lambda z\overline{w} ^2}$	
	Defere		Section of Tableton $G = \log \frac{1}{ 1+\lambda z\overline{w} ^2}$	
				310
15			s in the Normal and Kähler Metrics	
			cket Generated Metriplectic Systems	371
		•	och, Philip J. Morrison, and Tudor S. Ratiu	
	15.1		ction	372
	15.2		on Adjoint Orbits of Compact Lie Groups	
			sociated Dynamical Systems	
		15.2.1	Double Bracket Systems	
		15.2.2	The Finite Toda System	
		15.2.3	Lie Algebra Integrability of the Toda System	
		15.2.4	The Toda System as a Double Bracket Equation	
		15.2.5	Riemannian Metrics on @	
	15.3	Gradier	nt Flows on the Loop Group of the Circle	
		15.3.1	The Loop Group of S^1	
		15.3.2	The Based Loop Group of S^1	
		15.3.3	$L(S^1)$ as a Weak Kähler Manifold	
		15.3.4	Weak Riemannian Metrics on $L(S^1)$	384
		15.3.5	Vector Fields on $L(S^1)$ and $L(\mathbb{R})$	385
		15.3.6	The Gradient Vector Fields in the Three	
			Metrics of $L(S^1)$	387
		15.3.7	Symplectic Structure on Periodic Functions	392
	15.4	Metripl	ectic Systems	
		15.4.1	Definition and Consequences	395
		15.4.2	Metriplectic Systems Based on Lie Algebra	
			Triple Brackets	397

Contents xix

		15.4.3	The Toda System Revisited	403
		15.4.4	Metriplectic Systems for PDEs: Metriplectic	
			Brackets and Examples	404
		15.4.5	Hybrid Dissipative Structures	410
	Refere	nces		412
16	Daniel	lawa Tha	shine and Obstacle Ausidence Using	
16			cking and Obstacle Avoidance Using	417
			entrolEric W. Justh, and P.S. Krishnaprasad	417
	16.1		ection	418
	16.1		Boundary Tracking	419
	10.2	16.2.1	Models	419
		16.2.1	Boundary-Curve Frame Convention	421
	16.3		Bertrand Mate Strategy	423
	10.5	16.3.1	Lyapunov Function and Steering Law	423
		16.3.1	Shape Variables	425
		16.3.3	Convergence Result	426
	16.4		Fracking with Obstacle Avoidance	720
	10.4		e Dimensions	428
		16.4.1	Curves and Moving Frames	429
		16.4.2	Spherical Curves and Natural Frames	429
		16.4.3	Free-Particle Interaction with the Spherical Curve	430
		16.4.4	Lyapunov Function and Control Law Derivation	431
		16.4.5	Control Law Interpretation	434
		16.4.6	Strategy and Invariant Submanifold	435
		16.4.7	Shape Variables	436
		16.4.8	Convergence Result	438
		16.4.9	Simulation Example	441
	16.5		sions	442
				445
17			Equations, Random Walks, and Products	
			atrices	447
			, Anthony M. Bloch, and Jeffrey C. Lagarias	4.40
	17.1		ction	448
	17.2		es from Hill's Equation in the Unstable Regime	451
			Growth Rates for Positive Matrix Elements	452
	17.2		Matrix Elements with Varying Signs	454
	17.3		ts of Randomly Rotated Matrices	456
		17.3.1	Deterministic Formulas for Product Matrices	458
		17.3.2	Uniformly Distributed Rotations Case	460
	17.4	17.3.3	Uniformly Distributed Case with Constant x_k	462
	17.4		rison of the Unstable Regime Hill Equation	164
	17.5		and Random Rotation Model with all $x_k = 1$	464
	17.5		ding Remarks	466
	Ketere	nces		468

xx Contents

Part III	Continuum	Mechanics:	Solids,	Fluids	and	Other
	Materials					

18	The T	hree-Dimensional Globally Modified Navier-Stokes	
	Equat	ions: Recent Developments 4	173
	T. Cara	aballo and P.E. Kloeden	
	18.1	Introduction	173
		18.1.1 Notation	175
	18.2	Existence and Regularity of Solutions	176
		18.2.1 Weak Solutions	176
		$oldsymbol{arepsilon}$	177
	18.3	Global Attractor in <i>V</i> : Existence and Dimension Estimate 4	179
			179
			181
	18.4		82
	18.5		186
		$oldsymbol{arepsilon}$	186
		18.5.2 Stationary Statistical Solutions	
			87
	18.6		88
	18.7	Weak Solutions of the Three-Dimensional	
			189
		18.7.1 Weak Kneser Property of the Attainability	
			189
		18.7.2 Convergence to Weak Solutions	
			189
		18.7.3 Existence of Bounded Entire Weak Solutions	
			190
	Refere	nces	191
19	Simula	ation of Hard Contacts with Friction: An Iterative	
	Projec	ction Method 4	193
	Christo	oph Glocker	
	19.1	Introduction	193
	19.2	The Normal Cone and Proximal Points	95
	19.3	Exact Regularization of the Set-Valued Sign Function 4	196
	19.4		198
	19.5		199
	19.6	· · · · · · · · · · · · · · · · · · ·	02
	19.7		604
	19.8		07
	19.9		609
	19.10	11	512
	Refere	nces	113

Contents xxi

20	Dynan	nics of Second Grade Fluids: The Lagrangian Approach	517
	M. Pai	cu and G. Raugel	
	20.1	Introduction	518
	20.2	Existence Results for the Second Grade Fluid Equations	527
		20.2.1 The Transport Equation	527
		20.2.2 An Auxiliary Problem	534
		20.2.3 Local Existence and Uniqueness of Solutions	
		in $V^{3,p}$, $p > 1$	536
		20.2.4 Global Existence of Solutions in $V^{3,p}$, $p > 1$	541
	20.3	Dynamics of the Second Grade Fluids in the 2D Torus	544
		20.3.1 Existence of a Compact Global Attractor	544
		20.3.2 Regularity of the Compact Global Attractor	546
		20.3.3 Finite-Dimensional Properties	550
	Refere	nces	551
21	Diccin	ative Quantum Mechanics Using GENERIC	555
41		nder Mielke	333
	21.1	Introduction	556
	21.2	The GENERIC Framework.	559
	21.2	21.2.1 The Structure of GENERIC	560
		21.2.2 Properties of GENERIC Systems	561
		21.2.3 Isothermal Systems	561
	21.3	Coupling of Quantum and Dissipative Mechanics	562
	21.5	21.3.1 Quantum Mechanics	562
		21.3.2 Dissipative Evolution	564
		21.3.3 Coupling of the Models	565
	21.4	Canonical Correlation	566
	21.1	21.4.1 The Kubo–Mori Metric	566
		21.4.2 GENERIC Systems with Canonical Correlation	569
		21.4.3 Steady States	571
		21.4.4 Comparison to the Lindblad Equation	572
	21.5	A Simple Coupled System	573
	21.5	21.5.1 The Case of One Heat Bath	573
		21.5.2 Elimination of the Temperature	574
		21.5.3 The Case dim $H = 2$	575
	21.6	Existence and Convergence into Equilibrium	577
		21.6.1 Existence via a Modified Explicit Euler Scheme	577
		21.6.2 Convergence into the Thermodynamic Equilibrium	580
	21.7	Comparison to Stochastic Gradient Structures	582
		nces	584
22		lling of Thin Martensitic Films with Nonpolynomial	.
		l Energies	587
		Kružík and Johannes Zimmer	.
	22.1	Introduction	587
		22.1.1 Shape Memory Alloys	589
		22.1.2 Variational Models for Shape Memory Alloys	589

xxii Contents

	22.2	Thin Films	590
		22.2.1 Static Problems	590
		22.2.2 Evolutionary Problems	595
	22.3	Problems Involving Concentration	598
		22.3.1 DiPerna–Majda Measures	599
		22.3.2 DiPerna–Majda Measures Depending on the Inverse	601
		22.3.3 Application to a Thin Film Model	603
	22.4	Open Problems	606
	Refere	ences	606
23	Linea	r Stability of Steady Flows of Jeffreys Type Fluids	609
		el Renardy	
	23.1	Introduction	609
	23.2	Statement of Results	611
	23.3	Proof of Theorem 23.1	613
	23.4	Some Comments on the Proof of Theorem 23.2	615
	Defere	nces	615

List of Contributors

Fred C. Adams Department of Physics, University of Michigan, Ann Arbor, MI, USA

Anthony M. Bloch Department of Mathematics, University of Michigan, Ann Arbor, MI, USA

Henk W. Broer Instituut voor Wiskunde en, Informatica, Rijksuniversiteit Groningen, AG Groningen, The Netherlands

T. Caraballo Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Sevilla, Spain

D.R.J. Chillingworth Department of Mathematics, University of Southampton, Southampton, UK

Freddy Dumortier Hasselt University, Diepenbeek, Belgium

Messoud Efendiev Helmholtz Center Munich, Institute of Biomathematics and Biometry, Neuherberg Germany

Tor Flå Department of Mathematics and Statistics, University of Tromso, Tromso, Norway

Peter A. Giesl Department of Mathematics, University of Sussex, Falmer, UK

Christoph Glocker IMES - Center of Mechanics, ETH Zurich, Zurich, Switzerland

Alexandra Goeke Lehrstuhl A für Mathematik, RWTH Aachen, Aachen, Germany

John Guckenheimer Mathematics Department, Cornell University, Ithaca, NY, USA

Sigurdur Hafstein School of Science and Engineering, Reykjavik University, Reykjavik, Iceland

xxiv List of Contributors

Heinz Hanßmann Mathematisch Instituut, Universiteit Utrecht, TA Utrecht, The Netherlands

D.D. Holm Mathematics Department, Imperial College London, London, UK

H.A. Hosham Mathematical Institute, University of Cologne, Cologne, Germany

Eric W. Justh Naval Research Laboratory, Washington, DC, USA

Peter E. Kloeden Institut für Mathematik, Goethe-Universität, Frankfurt am Main, Germany

P.S. Krishnaprasad Institute for Systems Research and Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA

M. Kružík Institute of Information Theory and Automation of the ASCR, Prague, Czech Republic Faculty of Civil Engineering, Czech Technical University, Prague, Czech Republic

Tassilo Küpper Mathematical Institute, University of Cologne, Cologne, Germany

Jeffrey C. Lagarias Department of Mathematics, University of Michigan, Ann Arbor, MI, USA

Alexander Mielke Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany

James Montaldi School of Mathematics, University of Manchester, Manchester, UK

Philip J. Morrison Department of Physics and Institute for Fusion Studies, University of Texas, Austin, TX, USA

J. Munn Eltham College, London, UK

A.B. Nordmark Department of Mechanics, KTH, Stockholm, Sweden

Marius Paicu Univ. Bordeaux, IMB, UMR 5251, Talence, France

Tudor S. Ratiu Department of Mathematics and Bernoulli Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Geneviève Raugel CNRS, Laboratoire de Mathématiques d'Orsay, Orsay Cedex, France Univ Paris-Sud, Orsay Cedex, France

Sebastian Reich Universität Potsdam, Institut für Mathematik, Potsdam, Germany

Michael Renardy Department of Mathematics, Virginia Tech, Blacksburg, VA, USA

Florian H.-H. Rupp Lehrstuhl für Höhere Mathematik und Analytische Mechanik, Technische Universität München, Fakultät für Mathematik, Garching, Germany

List of Contributors xxv

Björn Sandstede Division of Applied Mathematics, Brown University, Providence, RI, USA

Samuel N. Stechmann Mathematics Department, University of Wisconsin, Madison, WI, USA

Tadashi Tokieda Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Trinity Hall, Cambridge, UK

André Vanderbauwhede Department of Pure Mathematics, Ghent University, Gent, Belgium

Sebastian Walcher Lehrstuhl A für Mathematik, RWTH Aachen, Aachen, Germany

D. Weiss Mathematical Institute, University of Tübingen, Tübingen, Germany

Clemens Woywod Department of Chemistry, Center for Theoretical and Computational Chemistry (CTCC), University of Tromso, Tromso, Norway

Jiangong You Department of Mathematics, Nanjing University, Nanjing, PR China

Fumin Zhang School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Anna Zhigun Helmholtz Center Munich, Institute of Biomathematics and Biometry, Neuherberg, Germany

Johannes Zimmer Department of Mathematical Sciences, University of Bath, Bath, UK

Part I Stability, Bifurcation and Perturbations

Chapter 1 The Birth of Chaos

John Guckenheimer

1.1 Introduction

The word *chaos* has become firmly embedded in the literature on dynamical systems. Indeed, James Gleick's book, Chaos Theory [17], established that term as a description of the entire subject in the public mind. Nonetheless, there is no authoritative technical meaning of "chaos" in dynamical systems. Li and Yorke first used the word in the title of their paper "Period three implies chaos" [31], but it does not appear in the text. They refer to trajectories that are "nonperiodic and might be called 'chaotic'." Ruelle and Takens [45] used the longer phrase "sensitive dependence to initial conditions" and the two terms have largely been regarded as synonyms [15, 57]. The informal definition of sensitive dependence to initial conditions is that nearby initial conditions separate; the technical definition is that there are sets of trajectories with positive Lyapunov exponents [15] that measure the exponential rate of separation of nearby trajectories. What is not often specified in the definition is *how many* trajectories have positive Lyapunov exponents. For example, if a dynamical system has a saddle point, this point has a positive Lyapunov exponent, but the presence of a single saddle point (or even more complicated normally hyperbolic sets) does not make the system chaotic. There appears to be little consensus on the minimal requirements for sets of trajectories with positive Lyapunov exponents that make a system chaotic, but there is a sufficient criterion formulated by Smale [48] that is often used as a practical test: namely, that the system possesses a "transversal intersection of stable and unstable 4 J. Guckenheimer

manifolds of a periodic orbit." This concept is explained below. Such *homoclinic* orbits were first discovered by Poincaré in 1890 in a prize winning essay [43] motivated by the question, is the solar system stable? The intriguing history of Poincaré's discovery has been studied and recounted by Barrow-Green [3]. The work of Poincaré and later Birkhoff was directed at *conservative* dynamical systems arising in celestial mechanics. Within the setting of systems that preserve a symplectic structure, they investigated the presence of transversal intersections of the stable and unstable manifolds of periodic orbits. The first mathematical analysis of transversal homoclinic orbits in the context of dissipative systems that are not conservative was carried out by Cartwright and Littlewood, beginning during World War II [9–12] and culminating in Littlewood's long two part paper of 1957 [32–34]. The personal aspects of the Cartwright–Littlewood collaboration are also fascinating and have been described by McMurran and Tattersall [37,38] as well as by Cartwright herself [8,50].

The initial presentations of significant mathematical discoveries seldom appear in full clarity. The path to a new discovery is often tortuous, so reformulation is typically needed to distill the essence of new insights. This has been true in dynamical systems theory: the papers of Poincaré and Littlewood cited above are excellent examples. The work of Cartwright-Littlewood has a dual character, containing detailed analysis of the forced Van der Pol differential equation as well as a description of the dynamical consequences of transversal homoclinic orbits in dissipative systems. There was a long period of abstraction and simplification of the arguments of Cartwright-Littlewood that led to piecewise linear vector fields studied by Levinson [30] and later Levi [29], the geometric discrete time Smale horseshoe [47, 49] and the concept of hyperbolic invariant sets [46]. Figure 1.1 illustrates the horseshoe. These developments provided tremendous insight into chaotic dynamics, but they draw upon only a small portion of the Cartwright-Littlewood analysis of the forced Van der Pol differential equation. Thus, there is a disparity between mathematical awareness of these two aspects of the Cartwright-Littlewood discovery of chaos in dissipative systems. The horseshoe and its symbolic dynamics are a beautiful geometric example of chaotic dynamics, simple enough to be included routinely in undergraduate courses. Littlewood's analysis of the forced Van der Pol equation remains obscure despite its central role in the book of Grasman [18]. This paper visualizes horseshoes in the forced Van der Pol equation from the perspective of geometric singular perturbation theory and describes recent extensions of the work of Cartwright-Littlewood by myself and collaborators [6,19,20] that culminated in the thesis of Radu Haiduc [22,23]. Haiduc proved that there are parameter values for which the forced Van der Pol equation is structurally stable and possesses a chaotic invariant set. This paper gives an extended outline of this work, presenting the key geometric constructions used in the analysis of the forced Van der Pol equation.

The Birth of Chaos 5

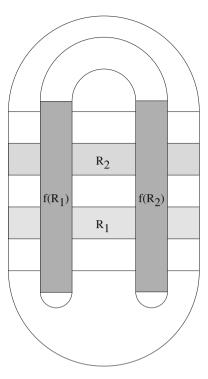


Fig. 1.1 The horseshoe is an invariant set Λ of the discrete map f depicted in this figure. The map f stretches the background oval vertically, compresses it horizontally, and maps it back into itself. The rectangles R_1 and R_2 shaded in *light gray* are mapped rectilinearly into their images shaded in *dark gray*. Inside the intersection $(R_1 \cup R_2) \cap (f(R_1) \cup f(R_2))$, there is an invariant Cantor set Λ consisting of points whose f-trajectories (both forward and backward) remain inside the intersection. The vertical distance between points that lie on different horizontal lines increases until one of the points lands in R_1 at the same time that the other lands in R_2 . This expresses the *sensitivity to initial conditions* of this map. There is a one-to-one correspondence between points of Λ and bi-infinite sequences of 1 and 2 that encode which rectangle R_j each iterate lies in

1.2 The Forced Van der Pol Equation

The main object of this paper is analysis of the system of differential equations

$$\varepsilon \dot{x} = y + x - \frac{x^3}{3}$$

$$\dot{y} = -x + a \sin(2\pi\theta)$$

$$\dot{\theta} = \omega$$
(1.1)

where the variable $\theta \in S^1 = \mathbb{R}/\mathbb{Z}$, so we identify θ and $\theta + 1$. We are interested in the parameter regime where $\varepsilon > 0$ is small. The limit $\varepsilon = 0$ produces a system