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Preface

In January 2012 the International Conference Recent Trends in Dynamical Systems
was held in Munich on the occasion of Jiirgen Scheurle’s 60th birthday. As parts of
this conference, a scientific colloquium took place at the Carl Friedrich von Siemens
Stiftung in Munich from 11th to 13th of January and also a Festkolloquium at the
Technische Universitit Miinchen in the afternoon of January 13th. Besides numerous
posters on recent advances in the field of dynamical systems, 25 highly recognized
scholars gave plenary talks that were grouped according to the following themes:

— Stability and bifurcation

— Geometric mechanics and control theory
— Invariant manifolds, attractors, and chaos
— Fluid mechanics and elasticity

— Perturbations and multiscale problems

— Hamiltonian dynamics and KAM theory

These themes reflect the broad scientific interests of Jiirgen Scheurle and his
fascination of applying mathematics to real world situations, in particular from
physics and mechanics. The volume at hand is an outgrowth of this conference,
containing research articles about exciting new developments in the multifaceted
subject of dynamical systems as well as survey articles. We are very happy that
the authors accepted the invitation to contribute to this volume in honour of Jiirgen
Scheurle and we are sure that their exciting articles will be of interest not only
to experts in the field of dynamical systems but also to graduate students and
scientists from many other fields, including engineering. This is in the spirit of
Jiirgen Scheurle, who, besides his research activities, always puts a lot of emphasis
on conveying the beauty of the Theory of Dynamical Systems and its applicability
to real world problems in extremely well-prepared, beautiful lectures.

Munich, Germany Andreas Johann
January 2013 Hans-Peter Kruse
Florian Rupp

Stephan Schmitz
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viii Preface
Short Curriculum Vitae of Jiirgen Scheurle

Jirgen Scheurle was born on September 26, 1951, in Schwibisch Gmiind, Baden-
Wiirttemberg. He received his professional education at the University of Stuttgart,
where he studied mathematics, physics, and computer science from 1970 until 1974,
and finished his diploma degree in mathematics with a thesis entitled “Ein Antikon-
vergenzprinzip”. Some months later, in 1975, he completed his doctorate under the
guidance of Klaus Kirchgissner. The title of his Ph.D. thesis is “Ein selektives Itera-
tionsverfahren und Verzweigungsprobleme”. In 1981 he presented his Habilitation
thesis on “Verzweigung quasiperiodischer Losungen bei reversiblen dynamischen
Systemen”.

From 1974 to 1985 Jiirgen Scheurle held positions as a postdoctoral researcher,
senior researcher, and assistant professor, at the University of Stuttgart. In 1982 he
was visiting professor at the Department of Mathematics, University of California,
Berkeley (USA), and in 1983 at the Division of Applied Mathematics, Brown
University, Providence (USA). In 1985 Jiirgen Scheurle moved to Fort Collins
(USA), where he became an associate and later full professor at Colorado State
University. In 1987 he accepted a full professorship and the Chair of Theory and
Applications of Partial Differential Equations at the University of Hamburg. In 1996
Jiirgen Scheurle was appointed full professor at the Technische Universitdt Miinchen
(TUM) and since then holds the Chair of Advanced Mathematics and Analytical
Mechanics. Notable predecessors at this chair were Felix Klein, Walter von Dyck,
and Robert Sauer, see Fig. 1, which illustrates the special responsibility of Jiirgen
Scheurle for the mathematical education of engineering students.

He was the founding director of the Center for Mathematics at TUM and later
dean of the Faculty of Mathematics. As dean, he continued the reform-oriented
politics of his predecessors. During his term in office, the faculty voluntarily
conducted a peer assessment and was awarded the title “Reformfakultit” by
the “Stifterverband der Deutschen Wissenschaft”. Such assessments are common
nowadays but were completely novel 10 years ago. Moreover, far ahead before
such procedures were put into law, the Bavarian Ministry of Research and Teaching
allowed the faculty to introduce an “Experimentierklausel” to assess prospective for
the admission of students.

Jiirgen Scheurle was responsible for the introduction of the “Master of Science in
Industrial & Financial Mathematics” at the off-shore campus of TUM in Singapore.
He was a member of the planning team for the new mathematics building at the
research campus Garching and in charge of the relocation from downtown Munich
to Garching in 2002. Finally, Jiirgen Scheurle was and is member of numerous
expert committees appointed by the president of the TUM and the faculty of
mathematics. Inter alia he is representative of the “Bayerische Eliteakademie”,
member of the “Hurwitz-Gesellschaft zur Forderung der Mathematik an der TU
Miinchen” and its president since 2011.

Jiirgen Scheurle authored and co-authored several pioneering publications, and
among them the following are highly influential articles:
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Fig. 1 Genealogy of the chair “Analytische Mechanik und Angewandte Mathematik™” at the
Technische Universitit Miinchen

* On the bounded solutions of a semilinear elliptic equation in a strip (together
with K. Kirchgissner). J. Diff. Equat. 32 (1) (1979), 119-148.

* Smoothness of bounded solutions of non-linear evolution equations (together
with J. Hale). J. Diff. Equat. 56 (1) (1985), 142-163.

e Chaotic solutions of systems with almost periodic forcing. ZAMP 37 (1986), 12—
26.

e The construction and smoothness of invariant manifolds by the deformation
method (together with J. Marsden). STAM J. Math. Anal. 18 (5) (1987), 1261-
1274.

* Exponentially small splittings of separatrices in KAM theory and degenerate
bifurcations (together with P. Holmes and J. Marsden). Cont. Math. 81 (1988),
213-243.

* Existence of perturbed solitary wave solutions to a model equation for water
waves (together with J. Hunter). Physica D 32 (1988), 253-268.

e Lagrangian reduction and bifurcations of relative equilibria of the double
spherical pendulum (together with J. Marsden). ZAMP 44 (1993), 17 - 43.

o The reduced Euler-Lagrange equations (together with J. Marsden). Fields Inst.
Comm. 1 (1993), 139-164.

* Pattern evocation and geometric phases in mechanical systems with symmetry
(together with J. Marsden), Dyn. and Stab. of Systems 10 (1995), 315-338.

* Discretization of homoclinic orbits and “invisible” chaos (together with B.
Fiedler). Memoirs of the AMS vol. 119, nb. 570 (3), Providence 1996.

* Reduction Theory and the Lagrange-Routh equations (together with J. Marsden
and T. Ratiu). J. Math. Phys. 41(6) (2000), 3379-3429.

o The orbit space method (together with M. Rumberger). In Ergodic Theory,
Analysis and Efficient Simulation of Dynamical Systems, B. Fiedler edt.,
Springer-Verlag 2001, 649—-689.
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* On the generation of conjugate flanks for arbitrary gear geometries (together
with A. Johann). GAMM-Mitt. 32, No. 1, 2009, 61-79.

His teaching covers a wide spectrum of subjects, ranging from mathematics
for engineering students, functional analysis, ordinary differential equations and
partial differential equations to dynamical systems, bifurcation theory, hamiltonian
dynamics, geometric mechanics, mathematical methods in continuum mechanics,
and mathematical modeling in biology and ecology. He supervised more than 20
dissertations and habilitations in these areas.

Jiirgen Scheurle was a member of the advisory board of the book series Dynam-
ics Reported and an executive editor of the International Journal of Nonlinear
Mechanics. He is currently a member of the editorial board of the Journal of
Nonlinear Science, Nonlinear Science Today, Journal of Applied Mathematics and
Mechanics (ZAMM), and Journal of Geometric Mechanics.
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Conference photo in the garden of the Carl Friedrich von Siemens Stiftung at the Schlof
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Chapter 1
The Birth of Chaos

John Guckenheimer

1.1 Introduction

The word chaos has become firmly embedded in the literature on dynamical
systems. Indeed, James Gleick’s book, Chaos Theory [17], established that term
as a description of the entire subject in the public mind. Nonetheless, there is no
authoritative technical meaning of “chaos” in dynamical systems. Li and Yorke
first used the word in the title of their paper “Period three implies chaos” [31],
but it does not appear in the text. They refer to trajectories that are “nonperiodic
and might be called ‘chaotic’.” Ruelle and Takens [45] used the longer phrase
“sensitive dependence to initial conditions” and the two terms have largely been
regarded as synonyms [15,57]. The informal definition of sensitive dependence to
initial conditions is that nearby initial conditions separate; the technical definition
is that there are sets of trajectories with positive Lyapunov exponents [15] that
measure the exponential rate of separation of nearby trajectories. What is not
often specified in the definition is how many trajectories have positive Lyapunov
exponents. For example, if a dynamical system has a saddle point, this point has a
positive Lyapunov exponent, but the presence of a single saddle point (or even more
complicated normally hyperbolic sets) does not make the system chaotic. There
appears to be little consensus on the minimal requirements for sets of trajectories
with positive Lyapunov exponents that make a system chaotic, but there is a
sufficient criterion formulated by Smale [48] that is often used as a practical test:
namely, that the system possesses a “transversal intersection of stable and unstable
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4 J. Guckenheimer

manifolds of a periodic orbit.” This concept is explained below. Such homoclinic
orbits were first discovered by Poincaré in 1890 in a prize winning essay [43]
motivated by the question, is the solar system stable? The intriguing history
of Poincaré’s discovery has been studied and recounted by Barrow-Green [3].
The work of Poincaré and later Birkhoff was directed at conservative dynamical
systems arising in celestial mechanics. Within the setting of systems that preserve
a symplectic structure, they investigated the presence of transversal intersections
of the stable and unstable manifolds of periodic orbits. The first mathematical
analysis of transversal homoclinic orbits in the context of dissipative systems that
are not conservative was carried out by Cartwright and Littlewood, beginning
during World War II [9-12] and culminating in Littlewood’s long two part paper
of 1957 [32-34]. The personal aspects of the Cartwright-Littlewood collaboration
are also fascinating and have been described by McMurran and Tattersall [37,38] as
well as by Cartwright herself [8, 50].

The initial presentations of significant mathematical discoveries seldom appear
in full clarity. The path to a new discovery is often tortuous, so reformulation
is typically needed to distill the essence of new insights. This has been true in
dynamical systems theory: the papers of Poincaré and Littlewood cited above
are excellent examples. The work of Cartwright-Littlewood has a dual character,
containing detailed analysis of the forced Van der Pol differential equation as well
as a description of the dynamical consequences of transversal homoclinic orbits in
dissipative systems. There was a long period of abstraction and simplification of
the arguments of Cartwright—Littlewood that led to piecewise linear vector fields
studied by Levinson [30] and later Levi [29], the geometric discrete time Smale
horseshoe [47,49] and the concept of hyperbolic invariant sets [46]. Figure 1.1
illustrates the horseshoe. These developments provided tremendous insight into
chaotic dynamics, but they draw upon only a small portion of the Cartwright—
Littlewood analysis of the forced Van der Pol differential equation. Thus, there is a
disparity between mathematical awareness of these two aspects of the Cartwright—
Littlewood discovery of chaos in dissipative systems. The horseshoe and its
symbolic dynamics are a beautiful geometric example of chaotic dynamics, simple
enough to be included routinely in undergraduate courses. Littlewood’s analysis
of the forced Van der Pol equation remains obscure despite its central role in the
book of Grasman [18]. This paper visualizes horseshoes in the forced Van der
Pol equation from the perspective of geometric singular perturbation theory and
describes recent extensions of the work of Cartwright-Littlewood by myself and
collaborators [6,19,20] that culminated in the thesis of Radu Haiduc [22,23]. Haiduc
proved that there are parameter values for which the forced Van der Pol equation is
structurally stable and possesses a chaotic invariant set. This paper gives an extended
outline of this work, presenting the key geometric constructions used in the analysis
of the forced Van der Pol equation.
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f(R})

f(Ry)

Fig. 1.1 The horseshoe is an invariant set A of the discrete map f depicted in this figure. The
map f stretches the background oval vertically, compresses it horizontally, and maps it back into
itself. The rectangles R; and Ra shaded in light gray are mapped rectilinearly into their images
shaded in dark gray. Inside the intersection (R1 U R2) N (f(R1) U f(R2)), there is an invariant
Cantor set A consisting of points whose f-trajectories (both forward and backward) remain inside
the intersection. The vertical distance between points that lie on different horizontal lines increases
until one of the points lands in R; at the same time that the other lands in Ra. This expresses the
sensitivity to initial conditions of this map. There is a one-to-one correspondence between points

of A and bi-infinite sequences of 1 and 2 that encode which rectangle R; each iterate lies in

1.2 The Forced Van der Pol Equation

The main object of this paper is analysis of the system of differential equations

e=y+r— —
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3

Yy = —x + asin(270)

9.:

w

(1.1)

where the variable § € S' = R/Z, so we identify 6 and 6 + 1. We are interested
in the parameter regime where € > 0 is small. The limit ¢ = 0 produces a system



