
Springer Proceedings in Mathematics & Statistics

Roger E. Millsap
L. Andries van der Ark 
Daniel M. Bolt
Carol M. Woods    Editors 

New 
Developments 
in Quantitative 
Psychology
Presentations from the 77th Annual 
Psychometric Society Meeting



Springer Proceedings in Mathematics & Statistics

Volume 66

For further volumes:
http://www.springer.com/series/10533

http://www.springer.com/series/10533


Springer Proceedings in Mathematics & Statistics

This book series features volumes composed of select contributions from workshops
and conferences in all areas of current research in mathematics and statistics,
including OR and optimization. In addition to an overall evaluation of the interest,
scientific quality, and timeliness of each proposal at the hands of the publisher,
individual contributions are all refereed to the high quality standards of leading
journals in the field. Thus, this series provides the research community with
well-edited, authoritative reports on developments in the most exciting areas of
mathematical and statistical research today.



Daniel M. Bolt • Carol M. Woods
Editors

New Developments
in Quantitative Psychology

Presentations from the 77th Annual
Psychometric Society Meeting

123

Roger E. Millsap • L. Andries van der Ark



Editors
Roger E. Millsap
Department of Psychology
Arizona State University
Tempe, AZ, USA

Daniel M. Bolt
Department of Educational Psychology
University of Wisconsin
Madison, WI, USA

Department of Methodology and Statistics
Tilburg University
Tilburg, The Netherlands

Carol M. Woods
Department of Psychology
University of Kansas
Lawrence, KS, USA

ISSN 2194-1009 ISSN 2194-1017 (electronic)
ISBN 978-1-4614-9347-1 ISBN 978-1-4614-9348-8 (eBook)
DOI 10.1007/978-1-4614-9348-8
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2014930294

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

L. Andries van der Ark

www.springer.com


Preface

This volume represents presentations given at the 77th annual meeting of the
Psychometric Society, held at the Cornhusker Hotel in Lincoln, Nebraska, during
July 9–12, 2012. The annual meeting of the Psychometric Society typically attracts
participants from around the world, and the 2012 conference was no exception.
Attendees came from more than 15 different countries, with 149 papers being
presented, along with 50 poster presentations, three workshops, two keynote
speakers, six state-of-the-art speakers, five invited presentations, and seven invited
symposia. A full list of the conference presentation titles can be found in the January
2013 issue of Psychometrika, pp. 188–201. We thank the local organizer Ralph de
Ayala, along with his staff and students, for hosting a successful conference.

The idea for the present volume began with the recognition that many of the
useful ideas presented at the conference do not become available to a wider audience
unless the authors decide to seek publication in one of the quantitative journals. This
volume provides an opportunity for the presenters to make their ideas available to
the wider research community more quickly, while still being thoroughly reviewed.
The 31 chapters published here address a diverse set of topics, including item
response theory, reliability, test design, test validation, response styles, factor
analysis, structural equation modeling, categorical data analysis, longitudinal data
analysis, test equating, and latent score estimation. For the published chapters, we
asked the authors to include the ideas presented in their conference papers, and we
also gave them the opportunity to expand on these ideas in the published chapters.
Psychological measurement is playing a larger role internationally than ever before,
not only in educational applications but also in medicine and neuroscience. It is
important that this expanding role be supported by rigorous and thoughtful research.
We thank all of the chapter authors for their fine contributions to this volume. We
hope that the contents of this volume will stimulate wider interest in psychometric
research, both theoretical and applied.

Tempe, AZ, USA Roger E. Millsap
Madison, WI, USA Daniel M. Bolt
Tilburg, The Netherlands L. Andries van der Ark
Lawrence, KS, USA Carol M. Woods
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A Nonparametric Ability Measure

Nan L. Kong

1 Introduction

Before we define an ability measure, we need to make clear about the concept of
measure. In this section, we look into several well-defined measures from which we
try to find the property in common across these measures. We believe that the ability
measure, which is the topic of this paper, should also be defined on the basis of this
common property.

It is well known that the area of a rectangle is measured by the product of its
length and width. For example, for a rectangle with length of 2 and width of 1, the
area can be directly measured with 2 = 2× 1. Actually, this rectangle can also be
measured indirectly: (i) split this rectangle into two unit squares with both length
and width equal to 1; (ii) the areas of these two unit squares are measured with 1 =
1× 1; (iii) make summation of these two area measures in (ii) with 2 = 1+ 1. The
summation in (iii) is the “indirect” measure of the area of the rectangle with length
of 2 and width of 1. As we can see, both “direct” and “indirect” area measures on this
rectangle produce the same value which is 2 in this example. The relation between
“direct” and “indirect” area measures is mathematically expressed by 2× 1 = 1×
1+1×1. The left-hand side of this equation corresponds to “direct” measure while
the right-hand side corresponds to “indirect” measure. Generally, for the same area,
both “direct” and “indirect” measures must produce the same value—this is called
additivity according to the measure theory (Halmos 1974). In the same example, if
we measure the area of the rectangle by summation of length and width, instead
of product of its length and width, with the steps in (i)–(iii), we will receive two
different values for the “direct” measure, which is 3 = 1+ 2, and the “indirect”
measures which is 4 = (1+ 1)+ (1+ 1). Obviously, with summation of length and

N.L. Kong (�)
Educational Testing Service, 270 Hampshire Dr., Plainsboro, NJ 08536, USA
e-mail: nankg@yahoo.com

R.E. Millsap et al. (eds.), New Developments in Quantitative Psychology,
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2 N.L. Kong

width, the area of the rectangle is measured in a wrong way—the way that has no
additivity. Any measure without additivity is similar to measuring area of rectangle
by summation of its length and width.

In measure theory (Halmos 1974), a set function is a function whose domain of
definition is a class of sets. An extended real-valued set function μ(.) defined on
a class S of sets is additive if, whenever E ∈ S, F ∈ S, E ∪F ∈ S, and E ∩F = /0,
then μ(E ∪F) = μ(E)+ μ(F). For the measure of the rectangle area, the class S
contains all rectangles (each rectangle is a set of points) and μ(.) is defined by the
product of its length and width.

The next well-defined measure is called probability which measures randomness
(Hays 1970). If two events A and B are exclusive, we have

Prob(A∪B) = Prob(A)+Prob(B). (1)

Equation (1) is called additivity.
In information theory, the entropy (Shannon 1948; Wiener 1948) is defined to

measure the uncertainty in the random variables. One of the entropy fundamental
properties is the following equation:

H(X ,Y ) = H(X)+H(Y)− I(X ,Y ), (2)

where X and Y are two categorical random variables; H(X) and H(Y ) are the
entropies for X and Y , respectively; H(X ,Y ) is the entropy of X and Y ; I(X ,Y )
is the mutual information among X and Y .

If X and Y are independent from each other, which implies I(X ,Y ) = 0, Eq. (2)
becomes

H(X ,Y ) = H(X)+H(Y). (3)

Equation (3) is called additivity.
Unlike Shannon’s entropy, Fisher information (Fisher 1922 and 1925) is defined

to measure the parameter(s)’ information given random variable(s). If random
variables X and Y are independent, we have

IX ,Y (θ ) = IX(θ )+ IY (θ ), (4)

where IX ,Y (θ ) is the Fisher information given X and Y; IX(θ ) and IY (θ ) are the
Fisher information given X and Y, respectively. θ is the parameter(s).

Equation (4) is called additivity.
So far, we have looked into the theoretical structures for several well-defined

measures. All of these structures reveal the same property—additivity as shown in
(1), (3) and (4). We believe that the additivity is the general property for a measure.
The purpose of this paper is to study a new ability measure and, therefore, it is
requested that this ability measure be of the property of the additivity. In the next
section, an ability measure is defined and studied according to the additivity.
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2 A Nonparametric Ability Measure

In testing and psychometrics, the term ability means the knowledge, skills, or other
characteristics of a test taker measured by the test. A test question, with any stimulus
material provided with the test question, and the response choice or the scoring
rules, is called an item. Items that are scored in two categories - right (R) or wrong
(W) - are referred to as dichotomous items. In this section, the test taker’s ability
will be measured on the basis of a test consisting of a set of dichotomous items.
For a test consisting of I items, let Xi be the item-score variable for the item i (i =
1, . . . , I), with realization Xi ∈ {W,R}. Also, we suppose that a respondent answers
L(0 ≤ L ≤ I) items correctly, then these correctly answered items are indicated by
i1, . . . , il , . . . , iL. For example, suppose an item-response vector of RRWWWR, then
I = 6,L = 3, i1 = 1, i2 = 2, and i3 = 6. The probability of right response for i1 is
denoted by P(Xi1 = R) and, the probability of right responses for both i1 and i2 is
denoted by P(Xil = R,Xi2 = R), etc.

Definition 1. The ability with right (R) response(s) for items il (l = 1, . . . ,L;L ≥ 1)
is defined as

θ (i1, . . . , il , . . . , iL) =−ln(P(Xi1 = R, . . . ,Xil = R, . . . ,XiL = R)).(L ≥ 1) (5)

In (5), θ (i1, . . . , il , . . . , iL) is called the measure of the ability with right (R)
response(s) for the items il(l = 1, . . . ,L). We also request that the examinee’s ability
be measured as zero if this examinee does not respond to any item correctly, i.e.
L = 0 in (5).

In Definition 1, only the probabilities on correctly responded items are used for
measuring abilities, some probabilities such as those for incorrectly responded items
are not shown in (5). Because the probabilities on any combinations of the correctly
responded items and the incorrectly responded items can be fully expressed by
the probabilities on those correctly responded items, the probabilities on correctly
responded items have fully represented all of the information associated with the
joint probabilities. Therefore, the ability measure in Definition 1 has lost nothing in
terms of the information associated with the joint probabilities.

If items i1, . . . , iL are (jointly) independent, the following equation can be ob-
tained directly from Definition 1 and shows that the ability measure in Definition 1
is additive

θ (i1, · · · , iL) = θ (i1)+ · · ·+θ (iL). (6)

As we can see in Eq. (6) that, if the items are jointly independent, the measure
of examinee’s total ability with right responses on all these items is the summation
of the measures of the examinee’s abilities with right responses on each of these
items. The additivity in Eq. (6) implies that the summation of the ability measures
on subscales can be the total ability measure if and only if these subscales are jointly
independent. For the case that the items are not jointly independent, not only the
ability measure on each subscale but also the interactions among the items play the
roles in total ability measure. In Sect. 4, the total ability measure will be studied in
more detail.
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Corollary 1.
0 ≤ θ (i1, · · · , iL)≤+∞. (7)

Proof. This is obvious from Definition 1.

Corollary 2.

θ (i1, · · · , iL) = 0 ⇐⇒ P(Xi1 = R, · · · ,XiL = R) = 1 (8)

Proof. This is obvious from Definition 1.

Corollary 3.

θ (i1, · · · , iL) = +∞ ⇐⇒ P(Xi1 = R, · · · ,XiL = R) = 0 (9)

Proof. This is obvious from Definition 1.

As shown in Corollary 1, the ability measure defined in (5) is nonnegative which
implies the total ability measure is always greater than or equal to the ability
measure on each subscale according to the additivity. Because the minus sign has
no meaning in the ability measure, the additivity requests that the ability measure
be nonnegative (generally, the measure theory always requests that a measure be
nonnegative).

Now, assume that 0 < M ≤ L, there is

θ (i1, · · · , iM) = −ln(P(Xil = R, · · · ,XiM = R))

≤−ln(P(Xil = R, · · · ,XiM = R)

×P(XiM+1 = R, · · · ,XiL = R|Xil = R, · · · ,XiM = R))

=−ln(P(Xil = R, · · · ,XiL = R)) = θ (i1, · · · , iL)

Therefore, the following theorem is obtained:

Theorem 1. For 0 < M ≤ L,

θ (i1, · · · , iM)≤ θ (i1, · · · iL) (10)

Theorem 1 is another fundamental property of the ability measure: the measure
of the ability associated with subset of all correctly responded items is no greater
than the measure of the ability associated with all correctly responded items, i.e. the
measure of the ability associated with subscale can not be greater than the measure
of its total ability.

In summary, the ability measure defined in (5) has the following properties:
(a) Additivity (if the items are independent) as shown in Eq. (6). (b) The ability
measure is nonnegative. Therefore, the total ability measure is greater than or equal
to the ability measure on each subscale. (c) The ability measures with the same
response patterns are the same (this is obvious by Definition 1). (d) The ability
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measure on a response pattern is greater than or equal to the ability measure on the
subset of its response pattern (Theorem 1). (e) The ability measure is determined
by the difficulties of the items and the interactions among those items. The more
difficult and more jointly independent items cause higher ability measure. (f) The
ability measure in Definition 1 has no specific parametric structure. Therefore, the
ability measure in Definition 1 has no those assumptions or limitations associated
with the specific parametric structure. (g) The ability measure is defined with the
joint probability of the items in a given test and all of the response vectors out of
these items are utilized for measuring ability, therefore, the ability is measured with
full information for given joint probabilities.

In the next two sections, the following properties of the ability measure defined
in (5) will be studied: (h) With the additivity, it is possible to measure the shared
ability and unique ability. Generally speaking, an examinee’s ability consists of two
parts: the unique part that belongs to the examinee and the part shared with others.
(i) The total ability measure and the ability measures on subscales are related to the
additivity. Therefore, the interactive structures of the total ability and those abilities
associated with the subscales can be mathematically expressed.

3 Shared Ability Measure and Conditional Ability Measure

Because the ability measure in Definition 1 has the property of additivity, it is
possible to measure the shared ability among the correctly responded items and
unique ability of each correctly responded item.

Definition 2. The shared ability among correctly responded items i1 and i2 is
measured with

θ (i1 ∗ i2) = θ (i1)+θ (i2)−θ (i1, i2), (11)

where θ (i1), θ (i2), and θ (i1, i2) are defined in Definition 1.

According to Definitions 1 and 2, the following equation can be obtained:

θ (i1 ∗ i2) =−ln
P(Xi1 = R)P(Xi2 = R)
P(Xi1 = R,Xi2 = R)

(12)

By (12), it is obvious that θ (i1 ∗ i2) = θ (i2 ∗ i1).

The following theorem offers a sufficient and necessary condition for no shared
ability between two items i1 and i2.

Theorem 2.

θ (i1 ∗ i2) = 0 ⇐⇒ i1 and i2 are independent.
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Proof. Let Xi1 and Xi2 be the item-score variables of the items i1 and i2.
By Definition 1,

θ (i1) = −ln(P(Xi1 = R), (13)

θ (i2) = −ln(P(Xi2 = R), (14)

θ (i1, i2) = −ln(P(Xi1 = R,Xi2 = R)). (15)

Therefore, Xi1 and Xi2 are independent if and only if

θ (i1, i2) = θ (i1)+θ (i2)

By Eq. (11), we have

θ (i1 ∗ i2) = 0

This is the proof of Theorem 2.

In concept, the shared ability is closer to the concept of interaction between those
items associated with different respondents or subscales. The stronger association
between those items implies that the more abilities are shared. For example, if two
items are identical, the shared ability is the same as the ability associated with each
of those items. Another extreme case is that, if two items are independent, the shared
ability is zero. The shared ability is also related to the redundant or overlapped
information among the items, i.e. the items could be heavily similar to each other in
which the scope for those items to cover for testing could be limited. Therefore, the
shared ability among the different items should not be too big.

Unlike the ability measure in Definition 1 which is nonnegative, the shared ability
measure in Definition 2 can be negative. If an examinee with correct response on one
item tends to correctly respond to another item, this examinee has positive shared
ability among these two items. If an examinee with correct response on one item
tends to wrongly respond to another item, this examinee has negative shared ability
among these two items. In practice, for most of cases, the shared ability is positive.
The negative shared ability only happens for two items associated with the exclusive
abilities.

Definition 3. The unique or conditional ability with i1 given i2 is measured with

θ (i1|i2) =−lnP(Xi1 = R|Xi2 = R). (16)

Corollary 4.

θ (i1, i2) = θ (i2)+θ (i1|i2) (17)



A Nonparametric Ability Measure 7

Proof. The proof is obvious from Definitions 1 and 3 with noting that:

θ (i1|i2) = −ln(P(Xi1 = R|Xi2 = R)) =−ln(P(Xi1

= R,Xi2 = R))+ ln(P(Xi2 = R))

Corollary 5.

θ (i1 ∗ i2) = θ (i1)−θ (i1|i2) (18)

Proof. The proof is obvious from Definition 2 and Corollary 4.

The unique or conditional ability θ (i1|i2) measures the part of the ability with
i1, but exclusive of i2, that is, θ (i1|i2) measures the unique ability associated with
i1 out of the ability associated with i1 and i2. The following equation, which can be
proved with Corollaries 4 and 5, describes the relation among total ability, shared
ability, and unique ability:

θ (i1, i2) = θ (i1 ∗ i2)+θ (i1|i2)+θ (i2|i1). (19)

In (19), the θ (i1, i2) is decomposed into three parts—the shared ability associated
with i1 and i2, the unique ability associated with i1 with exclusive of the ability
associated with i2, and the unique ability associated with i2 with exclusive of the
ability associated with i1. Equation (19) is also available in probability and entropy:

P(A∪B) = P(A∩B)+P(A∩Bc)+P(B∩Ac),

H(X ,Y ) = I(X ,Y )+H(X |Y)+H(Y |X),

where A and B are events; Ac and Bc are the events “not A” and “not B”. X and Y are
two random variables; H(X ,Y ) is the entropy of X and Y ; H(X) and H(Y ) are the
entropies for X and Y , respectively; H(X |Y ) is the conditional entropy of X given
Y ; I(X ,Y ) is the mutual information among X and Y .

Theorem 3.

θ (i1 ∗ i2)≤ θ (i1) (20)

Proof.

P(XXi2
= R)≥ P(Xi1 = R,Xi2 = R) ⇐⇒ ln

P(Xi2 = R)
P(Xi1 = R,Xi2 = R)

≥ 0

⇐⇒−ln
P(Xi1 = R,Xi2 = R)

P(Xi1 = R)P(Xi2 = R)
≤−lnP(Xi1 = R)

⇐⇒ θ (i1 ∗ i2)≤ θ (i1).

This is the proof of Theorem 3.
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The measure of the shared ability associated with i1 and i2 in Definition 2 can be
extended into the measure of the shared ability associated with i1, i2, · · · , iL which is
denoted by θ (i1 ∗ · · ·∗ iL). Without loss of generality, θ (i∗ i2 ∗ i3) can be defined by:

θ (i1 ∗ i2 ∗ i3) = θ (i1)+θ (i2)+θ (i3)−θ (i1, i2)

−θ (i1, i3)−θ (i2, i3)+θ (i1, i2, i3). (21)

Obviously, according to (21), (joint) independence among i1, i2, and i3 implies
that θ (i1 ∗ i2 ∗ i3) = 0. Similar to θ (i1 ∗ i2), θ (i1 ∗ i2 ∗ i3) can be negative, but the
interpretation for this is more complicated. Roughly speaking, θ (i1 ∗ i2 ∗ i3) is the
interactive ability contribution by i1, i2, and i3 to the total ability θ (i1, i2, i3).

4 Total Ability and Abilities Associated with Subscales

Given the item responses i1 . . . iL answered correctly by a respondent, the examinees’
abilities can be measured according to (5). The ability measured by (5) is called the
overall or total ability because it is measured by all correctly answered items. In
case that those correctly answered item responses i1 . . . iL contain several subscales
in which each subscale is associated with a subset of {i1 . . . iL}, we need to measure
the examinees’ abilities on the basis of each subscale. First, let us look into the case
of two subscales: S1 and S2 which S1 is associated with the subset {i j1 , . . . , i jM} and
S2 is associated with the subset {ik1 , . . . , ikN} where M ≤ L and N ≤ L. Here the
intersection of {i j1 , . . . , i jM} and {ik1 , . . . , ikN} may not be empty set /0, that is, some
items may be associated with both S1 and S2. We also assume that {i j1 , . . . , i jM}∪
{ik1 , . . . , ikN}= {i1 . . . iL}.

Without loss of generality, the total ability and the abilities associated with the
subscales S1 and S2 are measured with

θ (Total) = −ln(P(Xi1 = R, · · · ,XiL = R)), (22)

θ (S1) = −ln(P(Xij1
= R, · · · ,XijM

= R)), (23)

θ (S2) = −ln(P(Xik1
= R, · · · ,XikN

= R)). (24)

Here Xi is the item-score variable for the item i. Because θ (S1) and θ (S2) in
(23) and (24) are defined with the subsets {i j1 , . . . , i jM} and {ik1 , . . . , ikN} out of total
correctly answered items {i1 . . . iL}, the θ (S1) and θ (S2) are also called marginal
measures of the abilities associated with S1 and S2.

Similar to Definition 2, we can define the measure for the shared ability
associated with S1 and S2.

Definition 4. The shared ability associated with S1 and S2 is measured with

θ (S1 ∗ S2) = θ (S1)+θ (S2)−θ (S1,S2), (25)
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where

θ (S1,S2) = θ (Total) =−ln(P(Xi1 = R, · · · ,XiL = R)). (26)

Equivalently, by Definition 4

θ (Total) = θ (S1)+θ (S2)−θ (S1 ∗ S2). (27)

Equation (27) expresses the relation among the measures of the total ability and
the abilities associated with the S1 and S2. From Definition 4, it is obvious that, if
S1 and S2 are independent, the measure of the total ability is the summation of the
measures of the abilities associated with S1 and S2, i.e. θ (Total) = θ (S1)+θ (S2).
Also, similar to (12), θ (S1 ∗ S2) can be negative in case that the abilities associated
with S1 and S2 are exclusive from each other.

In Eq. (22), some items may be shared by both S1 and S2. Obviously, these shared
items contribute the relation between S1 and S2 (the items which are not shared by
S1 and S2 also contribute the relation between S1 and S2 because those not-shared
items may be related across the different subscales) and relation between S1 and S2

determines θ (S1 ∗S2) in Eq. (27). Therefore, the total ability measure is affected by
the shared items through their interactive ability measure θ (S1 ∗ S2).

Definition 5. The conditional ability associated with S1 given the ability associated
with S2 is measured with

θ (S1|S2) = θ (Total)−θ (S2), (28)

where θ (Total) = θ (S1,S2) which is defined in (22).

θ (S1|S2) in (28) measures the ability associated with S1 with exclusion of S2. If
S1 and S2 are independent, θ (S1|S2) is equal to θ (S1), i.e. θ (S1|S2) = θ (S1).

Similar to Eq. (19), the following theorem shows the same decomposition of the
total ability in terms of the subscales.

Theorem 4.

θ (Total) = θ (S1|S2)+θ (S2|S1)+θ (S1 ∗ S2) (29)

Proof. By Definition 5, there is

θ (S1|S2) = θ (Total)−θ (S2), (30)

θ (S2|S1) = θ (Total)−θ (S1). (31)

By (30) + (31) and (27),

θ (S1|S2)+θ (S2|S1) = 2θ (Total)−θ (S1)−θ (S2)

⇐⇒
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θ (S1|S2)+θ (S2|S1) = θ (Total)−θ (S1 ∗ S2)

⇐⇒
θ (Total) = θ (S1|S2)+θ (S2|S1)+θ (S1 ∗ S2).

This is the proof of Theorem 4.

In Theorem 4, the measure of the total ability is the summation of the measure
of the ability associated with S1 with exclusion of S2 and the measure of the ability
associated with S2 with exclusion of S1 and the measure of the shared ability among
S1 and S2. Obviously, if S1 and S2 are independent, the measure of the total ability
is the summation of the measures of the ability associated with S1 and the ability
associated with S2, i.e. θ (Total) = θ (S1)+θ (S2).

So far, we have discussed the measures on the abilities associated with two
subscales. In case of multiple subscales, the measures can be defined in the similar
way. Without loss of generality, let us look into the case of three subscales S1, S2, and
S3 which their items are those items in S1, S2 and S3, the subsets of all correctly
responded items, which is {i1, . . . , iL}, respectively.

S1 ∼S1 ⊆ {i1, . . . , iL}
S2 ∼S2 ⊆ {i1, . . . , iL}
S3 ∼S3 ⊆ {i1, . . . , iL}

Total ∼ {i1, . . . , iL},

where “S1 ∼ S1” means the items that belong to subscale S1 are those in the set
S1, which is a subset of all correctly responded items {i1, . . . , iL}. Also, we assume
S1 ∪S2 ∪S3 = {i1, . . . , iL}.

Definition 6. The measure of the shared abilities associated with S1, S2, and S3 is
defined by

θ (S1 ∗ S2 ∗ S3) = θ (S1)+θ (S2)+θ (S3)

−θ (S1,S2)−θ (S1,S3)−θ (S2,S3)+θ (S1,S2,S3), (32)

where

θ (S1,S2,S3) = θ (Total) =−ln(P(Xi1 = R, . . . ,XiL = R)), (33)

θ (S j,Sk) = −ln(P(Xi1 = R, . . . ,XiMj,k
= R)). (34)

In Eq. (34), the Mj,k correctly responded items i1, . . . , iMj,k are exactly those in
S j ∪Sk, i.e. {i1, . . . , iMj,k}=S j ∪Sk for j,k = 1,2,3.
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It is interesting to compare the similar structure between Eqs. (21) and (32) and,
in fact, Eq. (21) is nothing but a special case of Eq. (32) if each subscale only
contains a single item. Similar to θ (S1 ∗ S2), θ (S1 ∗ S2 ∗ S3) can be negative, but its
interpretation is more complicated. Although θ (S1 ∗ S2 ∗ S3) is called shared ability
here, this concept is closer to the interaction among the abilities associated with S1,
S2, and S3.

Corollary 6. If S1, S2 and S3 are (jointly) independent, then

θ (Total) = θ (S1)+θ (S2)+θ (S3). (35)

Proof. The proof is obvious by the definitions:
θ (Si) = −ln(P(Xi1 = R, . . . ,XiMi

= R)) where the Mi correctly responded items
i1, . . . , iMi are exactly those in Si, i.e. {i1, . . . , iMi}=Si for i = 1,2,3.

θ (Total) = −ln(P(Xi1 = R, . . . ,XiL = R)) where the L correctly responded items
i1, . . . , iL are exactly those in S1 ∪S2 ∪S3, i.e. {i1, . . . , iL}=S1 ∪S2 ∪S3.

Equation (35) in Corollary 6 is another example of additivity in terms of their
subscales. Equation (6) can be thought as a special case of Eq. (35) for each subscale
to associate with a single item. Although there are three subscales in Corollary 6,
the property of additivity is also true for the case of multiple subscales.

Corollary 7. If S1, S2 and S3 are (jointly) independent, then

θ (S1 ∗ S2 ∗ S3) = 0. (36)

Proof. The proof is similar to that in Corollary 6.

Theorem 5.

θ (Total) = θ (S1)+θ (S2)+θ (S3)−θ (S1 ∗ S2)−θ (S1 ∗ S3)

−θ (S2 ∗ S3)+θ (S1 ∗ S2 ∗ S3). (37)

Proof. First, similar to (25), there are

θ (S j,Sk) = θ (S j)+θ (Sk)−θ (S j ∗ Sk) for j,k = 1,2,3 (38)

By Definition 6 and (38), there is

θ (S1 ∗ S2 ∗ S3)

= θ (S1)+θ (S2)+θ (S3)−θ (S1,S2)−θ (S1,S3)−θ (S2,S3)+θ (S1,S2,S3)

= θ (S1)+θ (S2)+θ (S3)−θ (S1)−θ (S2)+θ (S1 ∗ S2)−θ (S1)−θ (S3)

+θ (S1 ∗ S3)−θ (S2)−θ (S3)+θ (S2 ∗ S3)+θ (S1,S2,S3)

=−θ (S1)−θ (S2)−θ (S3)+θ (S1,S2)+θ (S1,S3)

+θ (S2,S3)+θ (S1,S2,S3)
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Therefore,

θ (S1,S2,S3) = θ (S1)+θ (S2)+θ (S3)−θ (S1 ∗ S2)−θ (S1 ∗ S3)

−θ (S2 ∗ S3)+θ (S1 ∗ S2 ∗ S3).

This is the proof of Theorem 5.

Theorem 5 shows that the measure of the total ability can be linearly expressed
with the measures of the shared abilities. In fact, according to (32) and (37),
θ (S1,S2,S3) and θ (S1 ∗ S2 ∗ S3) are two conjugate concepts.

Theorem 6.

θ (Total) = θ (S1|S2)+θ (S2|S3)+θ (S3|S1)+θ (S1 ∗ S2 ∗ S3). (39)

Proof. First, by (38), there is

θ (S1 ∗ S2) = θ (S1)+θ (S2)−θ (S1,S2) (40)

By Theorem 5 and (40), there is

θ (Total) = θ (S1)+θ (S2)+θ (S3)−θ (S1 ∗ S2)−θ (S1 ∗ S3)

−θ (S2 ∗ S3)+θ (S1 ∗ S2 ∗ S3)

= θ (S1,S2)+θ (S3)−θ (S1 ∗ S3)−θ (S2 ∗ S3)+θ (S1 ∗ S2 ∗ S3)

Equivalently, Eq. (28) can be rewritten as

θ (S1,S2) = θ (S1|S2)+θ (S2). (41)

By applying (41), we have

θ (Total) = θ (S1|S2)+θ (S2)+θ (S3)−θ (S1 ∗ S3)−θ (S2 ∗ S3)+θ (S1 ∗ S2 ∗ S3)

In the same way, by applying the following equations,

θ (S1 ∗ S3) = θ (S1)+θ (S3)−θ (S1,S3),

θ (S2 ∗ S3) = θ (S2)+θ (S3)−θ (S2,S3),

θ (S1,S3) = θ (S1|S3)+θ (S3),

θ (S2,S3) = θ (S2|S3)+θ (S3).
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We finally have

θ (Total) = θ (S1|S2)+θ (S2,S3)−θ (S1 ∗ S3)+θ (S1 ∗ S2 ∗ S3)

= θ (S1|S2)+θ (S2|S3)+θ (S3)−θ (S1 ∗ S3)+θ (S1 ∗ S2 ∗ S3)

= θ (S1|S2)+θ (S2|S3)+θ (S3|S1)+θ (S1 ∗ S2 ∗ S3).

This is the proof of Theorem 6.

It is obvious that, if S1, S2, and S3 are jointly independent, Eq. (39) becomes (6)
and therefore, Eq. (39) in Theorem 6 can be thought as a general form of additivity.
In Theorem 6, the total ability is decomposed into four parts which are θ (S1|S2),
θ (S1|S3), θ (S2|S3) and θ (S1 ∗ S2 ∗ S3). The decomposition in Theorem 6 is not
unique. In similar way, the total ability can also be decomposed as follows:

θ (Total) = θ (S1|S3)+θ (S3|S2)+θ (S2|S1)+θ (S1 ∗ S2 ∗ S3). (42)

Although the total ability is decomposed into four components in Theorem 6,
each of these four decomposed components can still be further decomposed. In the
remaining part of this section, a unique and complete decomposition for the total
ability will be derived. First, the following concepts are introduced:

θ (S1,S2,S3) = θ (Total) =−ln(P(Xi1 = R, . . . ,XiL = R)), (43)

θ (S j,Sk) = −ln(P(Xi1 = R, . . . ,XiMj,k
= R)). (44)

In Eq. (43), the L correctly responded items i1, . . . , iL are exactly those in S1 ∪S2 ∪
S3, i.e. {i1, . . . , iL}=S1∪S2 ∪S3. In Eq. (44), the Mj,k correctly responded items
i1, . . . , iMj,k are exactly those in S j ∪Sk, i.e. {i1, . . . , iMj,k} = S j ∪Sk for j,k =
1,2,3.

With θ (S1,S2,S3) and θ (S j,Sk) in (43) and (44), we can define the following
ability measures conditioned on the subscale(s):

Definition 7.

θ (S1|S2,S3) = θ (S1,S2,S3)−θ (S2,S3), (45)

where θ (S j,Sk) for j,k = 1,2,3 and θ (S1,S2,S3) are defined in (44) and (43).

Definition 8.

θ (S1,S2|S3) = θ (S1,S2,S3)−θ (S3), (46)

where θ (S1,S2,S3) is defined in (44).
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By Definition 7, there is

θ (S1,S2,S3) = θ (S3|S1,S2)+θ (S1,S2)

= θ (S3|S1,S2)+θ (S2|S1)+θ (S1). (47)

Equation (47) is also called additivity.

Definition 9.

θ (S1 ∗ S2|S3) = θ (S1|S3)+θ (S2|S3)−θ (S1,S2|S3), (48)

where θ (Si|S3) for i = 1,2 is defined in (28).

Theorem 7.

θ (Total) = θ (S1|S2,S3)+θ (S2|S1,S3)+θ (S3|S1,S2)+θ (S1 ∗ S3|S2)

+θ (S1 ∗ S2|S3)+θ (S2 ∗ S3|S1)+θ (S1 ∗ S2 ∗ S3). (49)

Proof. First, by Definitions 7 and 9,

θ (S1|S2,S3)+θ (S1 ∗ S2|S3) = θ (S1,S2,S3)−θ (S2,S3)+θ (S1|S3)

+θ (S2|S3)−θ (S1,S2|S3). (50)

Second, by Definition 8 and Eq. (41),

θ (S1,S2|S3) = θ (S1,S2,S3)−θ (S1,S2), (51)

θ (S1|S3) = θ (S1,S3)−θ (S3), (52)

θ (S2|S3) = θ (S2,S3)−θ (S3). (53)

By substituting (51), (52), and (53) into (50) and rearranging the terms, we have

θ (S1|S2,S3)+θ (S1 ∗ S2|S3) = θ (S1,S2,S3)−θ (S2,S3)

+θ (S1,S3)−θ (S3)+θ (S2,S3)

−θ (S3)−θ (S1,S2,S3)+θ (S3)

= θ (S1,S3)−θ (S3) = θ (S1|S3). (54)

By (54) and in the same way as (54), we have

θ (S1|S3) = θ (S1|S2,S3)+θ (S1 ∗ S2|S3), (55)

θ (S3|S2) = θ (S3|S1,S2)+θ (S1 ∗ S3|S2), (56)

θ (S2|S1) = θ (S2|S1,S3)+θ (S2 ∗ S3|S1). (57)
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Finally, by substituting (55), (56), and (57) into (42), we have

θ (Total) = θ (S1|S3)+θ (S3|S2)+θ (S2|S1)+θ (S1 ∗ S2 ∗ S3)

= θ (S1|S2,S3)+θ (S2|S1,S3)+θ (S3|S1,S2)+θ (S1 ∗ S3|S2)

+θ (S1 ∗ S2|S3)+θ (S2 ∗ S3|S1)+θ (S1 ∗ S2 ∗ S3).

This is the proof of Theorem 7.

In Theorem 7, the total ability of three subscales is decomposed into seven basic
components. The interpretation of each component is different from one to another.
With the decomposition in Theorem 7, we can look into the details of subscale
structure of the total ability.

Although we have discussed the decomposition (49) for the case of three
subscales in Theorem 7, the decomposition for the case of arbitrary number of
subscales can also be derived in the similar way. Readers are encouraged to derive
the decomposition for the cases of four subscales or more.

5 Discussion

In this paper, the measure of the ability defined in (5) shows (1) additivity; (2)
nonnegativity; (3) the measure of the ability with incorrect responses for all items is
equal to zero. Therefore, the definition in (5) conceptually can be called the measure
of the ability according to Measure Theory (Halmos 1974). Here, we place emphasis
on the concept of measure because, without additivity, an “ability measure” can
cause unexpected results. For example, without additivity, the directly measured
value and indirectly measured value for the same total ability are not the same for
most of cases. This is similar to measuring the area of a rectangle by summation of
its length and width (see Introduction of this paper).

In Sect. 3, the measure of the shared abilities is defined. We point out that the
measure of the shared abilities does not make sense without additivity. Unlike
the ability measure in Definition 1 which is nonnegative, measure of the shared
abilities can be negative. The negative value of the measure of the shared abilities
is interpreted as the conflicted or exclusive interaction among these two abilities.
For two exclusive abilities, the higher for one ability, the lower will be for another
ability. The positive value of the measure of the shared abilities implies that these
two abilities are not conflicted which means that, the higher for one ability, the
higher will be also for another ability. In practice, it is very rare for the measure of
the shared ability to be negative although it is possible.

The marginal measure of the ability associated with the subscale is defined in
Sect. 4. We also look into the relation between the measure of the total ability and
the measures of those abilities associated with the subscales by decomposing the
measure of the total ability in terms of the measures of those abilities associated
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with the subscales. Like the measure of the shared ability, without additivity, it is
impossible to decompose the measure of the total ability in terms of the measures
of those abilities associated with the subscales.

Although, throughout this paper, we assume all items are dichotomous, the
definition in (5) can be expanded to include partial credits, i.e. the items can have
more than two categories of right (R) and wrong (W). Under the case of partial
credits, the property of additivity is still reserved, i.e. the ability measure with the
partial credits is on the basis of measure theory. The nonparametric ability measure
with partial credits currently is under organization and will meet with readers in the
near future.

Finally, in this paper, most conclusions can be extended to more general form in
the same way. Also, the ability measures defined in this paper may be parameterized
with some reasonable constraints such as the log-linear model. In practice, the
parameterized measures is possible to handle the datasets of small size. How to
parameterize the ability measures defined in this paper could be the topic for the
future work.
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An Alternative to Cronbach’s Alpha:
An L-Moment-Based Measure of
Internal-Consistency Reliability

Todd Christopher Headrick and Yanyan Sheng

1 Introduction

Coefficient alpha (Cronbach 1951; Guttman 1945) is a commonly used index for
measuring internal-consistency reliability. Consider alpha (α) in terms of a model
that decomposes an observed score into the sum of two independent components:
a true unobservable score ti and a random error component ei j. The model can be
summarized as

Xi j = ti + ei j (1)

where Xi j is the observed score associated with the i-th examinee on the j-th test
item, and where i = 1, . . . ,n; j = 1, . . . ,k; and the error terms (ei j) are independent
with a mean of zero. Inspection of (1) indicates that this particular model restricts the
true score ti to be the same across all k test items. The reliability measure associated
with the test items in (1) is a function of the true score variance and cannot be
computed directly. Thus, estimates of reliability such as coefficient α have been
derived and will be defined herein as (e.g., Christman and Van Aelst 2006)

α =
k

k− 1

(
1− ∑ j σ2

j

∑ j σ2
j +∑∑ j �= j′ σ j j′

)
. (2)

A conventional estimate of α can be obtained by substituting the usual OLS sample
estimates associated with σ2

j and σ j j′ into (2) as
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α̂C =
k

k− 1

(
1− ∑ j s2

j

∑ j s2
j +∑∑ j �= j′ s j j′

)
(3)

where s2
j and s j j′ are the diagonal and off-diagonal elements from the variance–

covariance matrix, respectively.
Although coefficient α is often used as an index for reliability, it is also well

known that its use is limited when data are non-normal, in particular leptokurtic,
or when sample sizes are small (e.g., Bay 1973; Christman and Van Aelst 2006;
Sheng and Sheng 2012; Wilcox 1992). These limitations are of concern because
data sets in the social and behavioral sciences can often possess heavy tails or
consist of small sample sizes (e.g., Micceri 1989; Yuan et al. 2004). Specifically,
it has been demonstrated that α̂C can substantially underestimate α when heavy-
tailed distributions are encountered. For example, Sheng and Sheng (2012, Table 1)
sampled from a symmetric leptokurtic distribution and found the empirical estimate
of α to be approximately α̂C = 0.70 when the true population parameter was α =
0.80. Further, it is not uncommon that data sets consist of small sample sizes, e.g.,
n = 10 or 20. More specifically, small sample sizes are commonly encountered in
the contexts of rehabilitation (e.g., alcohol treatment programs, group therapy, etc.)
and special education as student–teacher ratios are often small. Furthermore, Monte
Carlo evidence has demonstrated that α̂C can underestimate α—even when small
samples are drawn from a normal distribution (see Sheng and Sheng 2012, Table 1).

L-moment estimators (e.g., Hosking 1990; Hosking and Wallis 1997) have
demonstrated to be superior to the conventional product-moment estimators in terms
of bias, efficiency, and their resistance to outliers (e.g., Headrick 2011; Hodis et al.
2012; Hosking 1992; Vogel and Fennessy 1993). Further, L-comoment estimators
(Serfling and Xiao 2007) such as the L-correlation have demonstrated to be an
attractive alternative to the conventional Pearson correlation in terms of relative bias
when heavy-tailed distributions are of concern (Headrick and Pant 2012a,b,c,d,e).

In view of the above, the present aim here is to propose an L-comoment-based
coefficient L-α , and its estimator denoted as α̂L, as an alternative to conventional
alpha α̂C in (3). Empirical results associated with the simulation study herein indi-
cate that α̂L can be substantially superior to α̂C in terms of relative bias and relative
standard error (RSE) when distributions are heavy-tailed and sample sizes are small.

The rest of the paper is organized as follows. In Sect. 2, summaries of univariate
L-moments and L-comoments are first provided. Coefficient L-α (α̂L) is then
introduced and numerical examples are provided to illustrate the computation and
sampling distribution associated with α̂L. In Sect. 3, a Monte Carlo study is carried
out to evaluate the performance of α̂C and α̂L. The results of the study are discussed
in Sect. 4.

2 L-Moments, L-Comoments, and Coefficient L-α

The system of univariate L-moments (Hosking 1990, 1992; Hosking and Wallis
1997) can be considered in terms of the expectations of linear combinations of order
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statistics associated with a random variable Y . Specifically, the first four L-moments
are expressed as

λ1 = E[Y1:1]

λ2 =
1
2

E[Y2:2 −Y1:2]

λ3 =
1
3

E[Y3:3 − 2Y2:3 +Y1:3]

λ4 =
1
4

E[Y4:4 − 3Y3:4 + 3Y2:4 −Y1:4]

where Y�:m denotes the �th smallest observation from a sample of size m. As such,
Y1:m ≤ Y2:m ≤ . . . ≤ Ym:m are referred to as order statistics drawn from the random
variable Y . The values of λ1 and λ2 are measures of location and scale and are the
arithmetic mean and one-half of the coefficient of mean difference (or Gini’s index
of spread), respectively. Higher order L-moments are transformed to dimensionless
quantities referred to as L-moment ratios defined as τr = λr/λ2 for r ≥ 3, where τ3

and τ4 are the analogs to the conventional measures of skew and kurtosis. In general,
L-moment ratios are bounded in the interval −1 < τr < 1 as is the index of L-
skew (τ3) where a symmetric distribution implies that all L-moment ratios with odd
subscripts are zero. Other smaller boundaries can be found for more specific cases.
For example, the index of L-kurtosis (τ4) has the boundary condition for continuous
distributions of (5τ2

3 − 1)/4 < τ4 < 1.
L-comoments (Olkin and Yitzhuki 1992; Serfling and Xiao 2007) are introduced

by considering two random variables Yj and Yk with distribution functions F(Yj)
and F(Yk). The second L-moments associated with Yj and Yk can alternatively be
expressed as

λ2(Yj) = 2Cov(Yj,F(Yj))

λ2(Yk) = 2Cov(Yk,F(Yk)). (4)

The second L-comoments of Yj toward Yk and Yk toward Yj are

λ2(Yj,Yk) = 2Cov(Yj,F(Yk))

λ2(Yk,Yj) = 2Cov(Yk,F(Yj)). (5)

The ratio η jk = λ2(Yj,Yk)/λ2(Yj) is defined as the L-correlation of Yj with respect
to Yk, which measures the monotonic relationship (not just linear) between two
variables (Headrick and Pant 2012c). Note that in general, η jk �= ηk j. The estimators
of (4) and (5) are U-statistics (Serfling 1980; Serfling and Xiao 2007) and their
sampling distributions converge to a normal distribution when the sample size is
sufficiently large.

In terms of coefficient L-α , an approach that can be taken to equate the
conventional and L-moment (comoment) definitions of α is to express (2) as
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Table 1 Data (Items) for
computing the second
L-moment–comoment matrix
in Table 2

Xi1 Xi2 Xi3 F̂(Xi1) F̂(Xi2) F̂(Xi3)

2 4 3 0.15 0.45 0.15
5 7 7 0.75 0.95 1.00
3 5 5 0.35 0.65 0.40
6 6 6 0.90 0.80 0.75
7 7 6 1.00 0.95 0.75
5 2 6 0.75 0.10 0.75
2 3 3 0.15 0.25 0.15
4 3 6 0.55 0.25 0.75
3 5 5 0.35 0.65 0.40
4 4 5 0.55 0.45 0.40

The data are part of the “Satisfaction With Life Data” from
McDonald (1999, p. 47)

Table 2 Second
L-moment–comoment matrix
for coefficient α̂L in Eq. (9)

Item 1 2 3

1 �2(1) = 0.989 �2(12) = 0.500 �2(13) = 0.789
2 �2(21) = 0.500 �2(2) = 1.022 �2(23) = 0.411
3 �2(31) = 0.667 �2(32) = 0.333 �2(3) = 0.733

α =
1

1+(R− 1)/k
=

k
k− 1

(
1− ∑ j σ2

j

∑ j σ2
j +∑∑ j �= j′ σ j j′

)
(6)

where R> 1 is the common ratio between the main and off-diagonal elements of the
variance–covariance matrix, i.e. R = σ2

j

/
σ j j′ . (See the appendix for the derivation

of Eq. (6)). As such, given a fixed value of R in (6) will allow for α to be defined in
terms of the second L-moments and second L-comoments as

α =
1

1+(R− 1)/k
=

k
k− 1

(
1− ∑ j λ2( j)

∑ j λ2( j) +∑∑ j �= j′ λ2( j j′)

)
(7)

where R = λ2( j)/λ2( j j′). Thus, the estimator of L-α is expressed as

α̂L =
k

k− 1

(
1− ∑ j �2( j)

∑ j �2( j) +∑∑ j �= j′ �2( j j′)

)
(8)

where �2( j) (�2( j j′)) denotes the sample estimate of the second L-moments (second
L-comoment) in (4) and (5). An example demonstrating the computation of α̂L is
provided below in Eq. (9). The computed estimate of α̂L = 0.807 in (9) is based
on the data in Table 1 and the second L-moment–comoment matrix in Table 2. The
corresponding conventional estimate for the data in Table 1 is α̂C = 0.798.

α̂L = 0.807 = (3/2)(1− (�2(1)+ �2(2)+ �2(3))/(�2(1) + �2(2)+ �2(3)

+�2(21)+ �2(31)+ �2(32) + �2(12)+ �2(13)+ �2(23))). (9)
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Fig. 1 Approximate normal sampling distribution of α̂L with α = 0.50. The distribution consists
of 25,000 statistics based on samples of size n= 100,000 and the heavy-tailed distribution (kurtosis
of 25) in Fig. 2

The estimator α̂L in (8) and (9) is a ratio of the sums of U-statistics and thus a
consistent estimator of α in (7) with a sampling distribution that converges, for large
samples, to the normal distribution (e.g., Olkin and Yitzhuki 1992; Schechtman and
Yitzhaki 1987; Serfling and Xiao 2007). For convenience to the reader, provided in
Fig. 1 is the sampling distribution of α̂L that is approximately normal and based on
α = 0.50, n = 100,000, and a symmetric heavy-tailed distribution (kurtosis of 25,
see Fig. 2) that would be associated with ti in (1).

3 Monte Carlo Simulation

An algorithm was written in MATLAB (Mathworks 2010) to generate 25,000
independent sample estimates of conventional and L-comoment α . The estimators
α̂C and α̂L were based on the parameters (α , k, R) given in Tables 3 and 4 and the
distributions in Figs. 2–4. The parameters of α were selected because they represent
commonly used references of various degrees of reliability, i.e. 0.50 (poor); 5/7
= 0.714 (acceptable); 0.80 (good); and 0.90 (excellent). Further, for each set of
parameters in Tables 3 and 4, the empirical estimators α̂C and α̂L were generated
based on sample sizes of n = 10, 20, 1,000. For all cases in the simulation, the
error term ei j in (1) was normally distributed with zero mean and with the variance
parameters (σ2

e ) listed in Tables 3 and 4.
The three distributions depicted in Figs. 2–4 are associated with the true scores

ti in Eq. (1). These distributions are referred to as: Distribution 1 is symmetric
and leptokurtic (skew = 0, kurtosis = 25; L-skew = 0, L-kurtosis = 0.4225);


