Hamid R. Hamidzadeh · Liming Dai Reza N. Jazar

Wave Propagation in Solid and Porous Half-Space Media

Wave Propagation in Solid and Porous Half-Space Media

Hamid R. Hamidzadeh • Liming Dai Reza N. Jazar

Wave Propagation in Solid and Porous Half-Space Media

Hamid R. Hamidzadeh Tennessee State University Nashville, TN, USA

Reza N. Jazar RMIT University Bundoora, VIC, Australia Liming Dai University of Regina Regina, SK, Canada

ISBN 978-1-4614-9268-9 ISBN 978-1-4614-9269-6 (eBook) DOI 10.1007/978-1-4614-9269-6 Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2014934652

© Springer Science+Business Media New York 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Dedicated to our wives Azar, Xinming, and Mojgan

Trying is not doing; doing is trying.

Preface

The main scope of this book is to present the established analytical and experimental techniques to address the dynamic responses of elastic as well as porous half-space media when they are subjected to dynamic loads and the related topics in a concise and suitable manner. The book introduces the reader to the dynamic response of the surface of an elastic half-space excited by concentrated vertical or tangential force. Based on the presented analyses, it also addresses the dynamic response of a rigid massless footing of arbitrary shape resting on the surface of an elastic half-space medium for three modes of vertical, horizontal, and rocking vibrations. The book also presents solutions to the three pure modes of vibration for massive rectangular foundations by employing the impedance matching technique and provides design charts for these modes of vibrations. The solution for these modes is extended to develop a solution to the dynamics of simultaneous horizontal and rocking motions of a rectangular foundations resting on the surface of elastic half-space medium. Moreover, the book presents the required theoretical background needed for analysis of interaction of two rectangular foundations founded on the surface of an elastic half-space. In addition to the theoretical topics, the book describes a finite model to simulate an elastic half-space and introduces experimental techniques to verify the presented solution. Furthermore, experimental methods are presented to determine the two important elastic properties of shear modulus and Poisson's ratio for the medium. In order to verify the present theoretical results some experiments, procedures, and results are also provided.

This book presents the required theoretical background needed to develop mathematical models and their solutions for the above topics. Furthermore, it offers the engineering information and quantitative data needed for design analysis and applications of the presented analytical procedures for different disciplines such as: mechanical, civil, and bioengineering. The book in its entirety constitutes as an extensive guidance for its reader. It also provides a systematic solution for the dynamic analysis of elastic, porous, and layered half-space media. It also extends the provided analytical solution to address a variety of practical problems in engineering and to determine the essential elastic properties of the medium. The book is intended to lay the foundation for understanding mathematical modeling, vibration analysis, and the design of engineering systems which can be modeled by a half-space medium in a complete and succinct manner. Throughout the book, an attempt has been made to provide a conceptual framework that includes exposure to the required background in mathematics and the fundamentals of the theory of elasticity. The knowledge of the presented topics will enable the reader to pursue further advances in the field.

Level of the Book

The primary audience of this book is the graduate students in mechanical engineering, engineering mechanics, civil engineering, bioengineering, ocean engineering, mathematics, and science disciplines. In particular, it is geared toward the students interested in enhancing their knowledge by taking the second graduate course in the areas of vibration of continuous systems, application of wave propagation, and soil dynamics. The presented topics have been prepared to serve as an aid to engineering designers. It can also be utilized as a guide for professional engineers in research and industry who are seeking to expand their expertise and are expected to extend their knowledge for setting design specifications and ensuring their fulfillment.

Organization of the Book

The book is presented in ten chapters: introduction, fundamentals of elasticity, vibration analysis for single-layer cylinders, modal analysis for single-layer cylinders, vibration of multilayer thick cylinders, constrained-layer damping for cylindrical structures, and vibration of thick cylindrical panels. Furthermore, it offers helpful and significant tabulated results, which can be used as design guidelines for these structures.

To make effective use of the presented topics, the following procedure is suggested. The realization of the topics may require a review of certain theoretical concepts and methods which can be achieved through references in Chaps. 1 through 5. To become acquainted with the state of the art in this particular field and learn about the historical background on this topic, the reader should begin with Chap. 1, which lists an extensive number of key references with brief discussions on their methodology, required assumptions, and their achievements. Chapter 2 reviews the succinct fundamental theoretical background and concepts needed from the theory of elasto-dynamics, which will enable the reader to follow the derivation of the required governing equations and their solutions in Chaps. 3 and 4. Chapter 5 is intended to present numerical results for the non-dimensional frequency responses of rigid rectangular foundations resting on an elastic half-space for three modes of vertical, horizontal, and rocking vibrations, as well as coupled horizontal and rocking vibrations. Chapter 6 presents a finite size experimental model for a

semi-infinite elastic half-space model and the experimental procedures for verifying the theoretical results. It also presents available techniques for determining the dynamic properties of the medium needed for analytical analysis. Chapters 7 and 8 provide analytical method to determine dynamic response of a rigid foundation subjected to a distance blast and to identify position of a vertical exciting force on the surface of an elastic half-space medium using sensor fusion, respectively. Chapter 9 presents an overview of techniques established for analyzing Surface Vibration of a multilayered elastic medium due to harmonic concentrated force. Chapter 10 will cover the three-dimensional wave propagation in porous media.

Method of Presentation

The scope of each chapter is clearly outlined and the governing equations are derived with an adequate explanation of the procedures. The covered topics are logically and completely presented without unnecessary overemphasis. The topics are presented in a book form rather than in the style of a handbook. Tables, charts, equations, and references are used in abundance. Proofs and derivations are often emphasized and the physical model and final results are accompanied with illustrations and interpretations. Certain specific information that is required in carrying out the design analysis in detail has been stressed.

Prerequisites

The book is written for graduate students, so the assumption is that the readers are familiar with the fundamentals of differential equations, as well as a basic knowledge of linear algebra, Fourier transform, and numerical methods. The presented topics are aimed to establish a conceptual framework that enables the reader to pursue further advances in the field. Although the governing equations will be derived with adequate explanations of the procedures, it is assumed that the readers have a working knowledge of theory of elasticity, fluid–structure interaction, and vibration engineering.

Unit System

Through the chapters, for the sake of generality, computed results and the required parameters are provided in non-dimensional forms. Nevertheless, the system of units adopted for case studies is, unless otherwise stated, the British Gravitational system of units (BG). The units of degree (deg) or radian (rad) are utilized for variables representing angular quantities.

Acknowledgements

We wish to express our thanks to our colleagues who have assisted in the development of this book. We are indebted to our students, friends, and colleagues for their constructive comments and suggestions on the draft manuscript of this book.

Nashville, TN, USA Regina, SK, Canada Bundoora, VIC, Australia Hamid R. Hamidzadeh Liming Dai Reza N. Jazar

Contents

1	Intro	oduction	1
	1.1	Surface Response Due to Concentrated Forces	2
	1.2	Dynamic Response of Foundations	4
		1.2.1 Assumed Contact Stress Distributions	4
		1.2.2 Mixed Boundary Value Problems	5
		1.2.3 Lumped Parameter Models	7
		1.2.4 Computational Methods	8
	1.3	Coupled Vibrations of Foundations	9
	1.4	Interactions Between Foundations	11
	1.5	Experimental Studies	12
	1.6	Layered Elastic Medium	13
2	Gove	erning Equations	15
	2.1	Derivation of Equations of Motion	16
	2.2	Stress–Strain Relation	16
	2.3	Strains in Terms of Displacements	17
	2.4	Elastic Rotations in Terms of Displacements	19
	2.5	Equations of Motion	19
	2.6	Displacements in Terms of Dilatation and Rotation	21
	2.7	Stresses in Terms of Dilatation and Rotation Components	22
	2.8	Fourier Transformation of Equations of Motion.	
		Boundary Stresses, and Displacements	24
	2.9	General Solution of Transformed Equations of Motion	25
3	Surf	ace Response of an Elastic Half-Space	
	Due	to a Vertical Harmonic Point Force	29
	3.1	Boundary Conditions of the Problem	30
	3.2	Integral Representations of Displacements	31
	3.3	Real Root of Rayleigh's Function	34
	3.4	System of Free Waves	35
	3.5	Evaluation of Displacements	36

	3.6	Numerical Integration for Displacements	40
	3.7	Evaluation of A_1	40
	3.8	Evaluation of A_2	41
	3.9	Evaluation of <i>A</i> ₃	41
	3.10	Results and Discussion	42
4	Resp	onse of the Surface of an Elastic Half-Space Due	
	to a I	Horizontal Harmonic Point Force	55
	4.1	Boundary Conditions for the Problem	56
	4.2	Integral Representations of Displacements	57
	4.3	Rayleigh Wave Displacements	60
	4.4	Evaluation of Displacements	60
	4.5	Numerical Integration of Displacements	69
	4.6	Results and Discussion	70
5	Dyna	mics of a Rigid Foundation on the Surface	
	of an	Elastic Half-Space	85
	5.1	Introduction	86
	5.2	Method of Analysis for a Massless Base	89
		5.2.1 Comparison	93
	5.3	Dynamic Response of a Massive Foundation	96
	5.4	Experimental Verification	102
	5.5	Discussion and Conclusion	102
	5.6	Simultaneous Horizontal and Rocking Vibration	
		of Rectangular Footing	104
		5.6.1 Equation of Motion	105
		5.6.2 Results and Discussions	107
	5.7	Response of Two Massive Bases on an Elastic	
		Half-Space Medium	110
		5.7.1 Introduction	110
		5.7.2 Displacement of a Massless Passive Footing	
		Due to Oscillations of an Active Massless Footing	111
		5.7.3 Interactions Between Two Massive Bases	115
		5.7.4 Results and Discussion	118
6	Expe	riments on Elastic Half-Space Medium	121
	6.1	Introduction	121
	6.2	Determination of Shear Modulus for the Medium	123
	6.3	Determination of Dynamic Properties of the Medium	126
	6.4	Laboratory Half-Space Medium	127
		6.4.1 Apparatus	128
		6.4.2 Static Properties of the Medium	129
		6.4.3 Dynamic Properties of the Medium	131
	6.5	Experimental Vibration Response of Massive	
		Rectangular and Circular Bases	134

	6.6	Experimental Response of Coupled Horizontal	36
	67	Measurement of Dynamic Properties of Flastic	50
	0.7	Half-Space Medium Using Square Footings	38
		6.7.1 Mathematical Model	38
		672 Experimental Results	39
_	D		
7	Dyna to o T	mic Response of a Rigid Foundation Subjected	12
	U a 1	Introduction 1	43 44
	7.1	Surface Personse Due to Concentrated Forces 1	44
	7.2	Governing Equation of Motion	44 16
	7.5	Pasults and Discussions 1	40
	7.4	Conclusion 1	49 51
	1.5		51
8	Ident	ification of Vertical Exciting Force on the Surface	50
	of an	Liastic Half-Space Using Sensor Fusion	55
	8.1	Introduction	54
	8.2	Numerical Techniques	22
	8.3	Determination of the Source Location	55
	8.4	Conclusions	38
9	Surfa	ce Vibration of a Multilayered Elastic Medium Due	
	to Ha	rmonic Concentrated Force 1	59
	9.1	Introduction 1	60
	9.2	Equation of Motion 1	61
		9.2.1 Displacement Equations 1	64
		9.2.2 Stress Equations 1	65
		9.2.3 Shear Stress Equations 1	66
		9.2.4 Solutions of the Governing Equations 1	67
		9.2.5 General Solutions of Transformed Equations of Motion . 1	76
		9.2.6 Harmonic Response of the Surface Due	
		to a Concentrated Vertical Load 1	79
	9.3	Results and Discussions 1	81
		9.3.1 Vertical and Horizontal Surface Load	
		on the One-Layered Mediums 1	81
		9.3.2 Vertical and Horizontal Surface Load	
		on the Two-Layered Mediums 1	83
	9.4	Conclusion 1	85
10	Three	-Dimensional Wave Propagations in Porous	
	Half-	Space Subjected to Multiple Energy Excitations 1	87
	10.1	Introduction 1	89
	10.2	Porous Materials and Porous Media in Petroleum Industry 1	94
		10.2.1 Porous Materials 1	94
		10.2.2 Porous Media and Enhanced Oil Recovery	
		in Petroleum Industry 2	.01

10.3	Develo	pment of General Governing Equations	
	in Rela	tive Displacements for Wave Propagations	
	in Poro	us Media	203
	10.3.1	Biot's Theory	204
10.4	Fractal	Dimension Development of 3D Wave Model	
	for Way	ve Propagations in Half-Space Porous Media	211
	10.4.1	Governing Equation Development	213
	10.4.2	Establishment of Wave Propagation Model	
		with Multiple Energy Sources	216
	10.4.3	Numerical Study	220
10.5	Wave F	ield in Porous Half-Space Media Saturated	
	with No	ewtonian Viscous Fluid	230
	10.5.1	Development of Governing Wave Equations	230
	10.5.2	Wave Propagation and Displacement Field	
		Model with Viscosity	233
	10.5.3	Effects of Viscosity on Wave Dispersion	
		in Porous Half-Space Under Multiple Energy Sources	236
10.6	Wave F	ield of a Porous Half-Space Medium Saturated	
	with Ty	vo Immiscible Fluids Under the Excitations	
	of Mult	tiple Wave Sources	249
	10.6.1	Volume Averaging Method	250
	10.6.2	Governing Equation Development	250
	10.6.3	Multisource Model	254
	10.6.4	Numerical Analyses	256
Appendix	A: Dou	ble Complex Fourier Transform	267
A.1	Fourier	Transform of Function	267
	A.1.1	Fourier Transform of Derivatives of Functions	268
	A.1.2	Inverse of Fourier Transform	268
	A.1.3	Fourier Transform of the Dirac Delta Function	269
Appendix	B: Eval	uation of Certain Infinite Integrals	271
Appendix	C: Num	erical Evaluation of Certain Integrals	277
C.1	The Nu	merical Evaluation of Cauchy Principal Values	
	of the I	ntegral	277
C .2	Integra	l of the Form $\int_0^b (b-x)^{\alpha} (x-a)^{\beta} f(x) dx$	278
Appendix	D: Trig	onometric Formulae	281
Reference	es		287
Index			299

Fig. 2.1	System of stresses on an infinitesimal element in the elastic medium	16
Fig. 2.2	Elastic deformation of the cubic element in the (x, y) plane	18
Fig. 3.1	Diagram for displacements of a point "A" on the surface of an elastic half-space due to a vertical point force	30
Fig. 3.2	Values of displacement functions v_3 and v_4 versus frequency factor for vertical harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.0	43
Fig. 3.3	Values of displacement functions v_3 and v_4 versus frequency factor for vertical harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.25	43
Fig. 3.4	Values of displacement functions v_3 and v_4 versus frequency factor for vertical harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.31	44
Fig. 3.5	Values of displacement functions v_3 and v_4 versus frequency factor for vertical harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.50	44
Fig. 3.6	Values of displacement functions u_3 and u_4 versus frequency factor for vertical harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.0	45
Fig. 3.7	Values of displacement functions u_3 and u_4 versus frequency factor for vertical harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.25	45

|--|

	•	•	•
xv	1	1	1
	•	٠	•

Fig. 3.8	Values of displacement functions u_3 and u_4 versus frequency factor for vertical harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.31	46
Fig. 3.9	Values of displacement functions u_3 and u_4 versus frequency factor for vertical harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.50	46
Fig. 4.1	Diagram for displacements of a point "A" on the surface of an elastic half-space due to a horizontal point force	56
Fig. 4.2	Values of displacement functions v_3 and v_4 versus frequency factor for horizontal harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.0.	70
Fig. 4.3	Values of displacement functions u_{31} and u_{41} versus frequency factor for horizontal harmonic point force on the surface of an elastic half-space with Poisson	71
Fig. 4.4	Values of displacement functions u_{32} and u_{42} versus frequency factor for horizontal harmonic point force on the surface of an elastic half-space with Poisson	/1
Fig. 4.5	ratio of 0.0 Values of displacement functions v_3 and v_4 versus frequency factor for horizontal harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.25	71
Fig. 4.6	Values of displacement functions u_{31} and u_{41} versus frequency factor for horizontal harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.25	72
Fig. 4.7	Values of displacement functions u_{32} and u_{42} versus frequency factor for horizontal harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.25	73
Fig. 4.8	Values of displacement functions v_3 and v_4 versus frequency factor for horizontal harmonic point force on the surface of an elastic half-space with Poisson ratio of 0.31	73
Fig. 4.9	Values of displacement functions u_{31} and u_{41} versus frequency factor for horizontal harmonic point force on the surface of an elastic half-space with Poisson	15
	ratio of 0.31	74

Fig. 4.10	Values of displacement functions u_{32} and u_{42} versus frequency factor for horizontal harmonic point force on the surface of an elastic half-space with Poisson	
	ratio of 0.31	74
Fig. 4.11	Values of displacement functions v_3 and v_4 versus	
	frequency factor for horizontal harmonic point force	
	on the surface of an elastic half-space with Poisson	
	ratio of 0.5	75
Fig. 4.12	Values of displacement functions u_{31} and u_{41} versus	
	frequency factor for horizontal harmonic point force	
	on the surface of an elastic half-space with Poisson	
	ratio of 0.5	75
Fig. 4.13	Values of displacement functions u_{32} and u_{42} versus	
	frequency factor for horizontal harmonic point force	
	on the surface of an elastic half-space with Poisson	
	ratio of 0.5	76
Fig. 5.1	Division of a rectangular base into subregions and	
U	definition of the coordinates	89
Fig. 5.2	Non dimensional displacement functions F_{VI} and	
C	F_{V2} versus frequency factor for vertical motion of a	
	square base resting on an elastic half-space with a	
	Poisson ratio of 0.25	93
Fig. 5.3	Non dimensional displacement functions F_{VI} and	
	F_{V2} versus frequency factor for vertical motion of a	
	rectangular base with side ratio of 1/2 resting on an	
	elastic half-space with a Poisson ratio of 0.25	93
Fig. 5.4	Non dimensional displacement functions F_{H1} and	
	F_{H2} versus frequency factor for horizontal motion of	
	a square base resting on an elastic half-space with a	
	Poisson ratio of 0.25	94
Fig. 5.5	Non dimensional displacement functions F_{HI} and	
	F_{H2} versus frequency factor for horizontal motion of	
	a rectangular base with side ratio of 1/2 resting on an	
	elastic half-space with a Poisson ratio of 0.25	94
Fig. 5.6	Non dimensional displacement functions F_{RI} and	
	F_{R2} versus frequency factor for rocking motion of a	
	square base resting on an elastic half-space with a	
	Poisson ratio of 0.25	95
Fig. 5.7	Non dimensional displacement functions F_{RI} and	
	F_{R2} versus frequency factor for rocking motion of a	
	rectangular base with side ratio of 1/2 resting on an	
	elastic half-space with a Poisson ratio of 0.25	95

Fig. 5.8	Addition of a foundation block (A) to the elastic	
	half-space (B) to form the complete system (C) for	
	the (a) vertical, (b) horizontal, and (c) rocking motions	97
Fig. 5.9	Nondimensional frequency responses for vertical	
	vibration of square bases with different mass ratios	98
Fig. 5.10	Nondimensional frequency responses for horizontal	
	vibration of square bases with different mass ratios	99
Fig. 5.11	Nondimensional frequency responses for rocking	
	vibration of square bases with different mass ratios	99
Fig. 5.12	Design curves for vertical oscillation of square bases	
	with different mass and Poisson ratios	100
Fig. 5.13	Design curves for horizontal oscillation of square	
	bases with different mass and Poisson ratios	101
Fig. 5.14	Design curves for rocking oscillation of square bases	
	with different Inertia and Poisson ratios	101
Fig. 5.15	Comparison of experimental results with the	
	theoretical prediction of mass ratios versus the	
	resonant frequency factors for vertical motion of (a)	
	square footings on an elastic half-space medium, (b)	
	rectangular footings on an elastic half-space medium	
	(side ratio of 0.5)	103
Fig. 5.16	Soil-foundation model for simultaneous rocking and	
	horizontal vibrations	105
Fig. 5.17	Nondimensional frequency responses for coupled	
	horizontal and rocking motion of rigid square	
	block resting on an elastic half-space medium for	
	$\nu = 0.31, \overline{H} = 1.5, \underline{\rho}_b / \rho_s = 10, \mu = 1 \ (1) \ \text{GCX}_{\text{CG}} / \text{F},$	
	(2) GCX/F, (3) $GC \overline{\Phi}/F$	108
Fig. 5.18	Locations of applied horizontal harmonic forces	
	for simultaneous horizontal and rocking vibration	
	analysis of square block on the half-space medium	109
Fig. 5.19	Nondimensional frequency responses for coupled	
	horizontal and rocking motion of rigid square	
	block resting on an elastic half-space medium for	
	$\nu = 0.31, H = 1.0, \rho_b / \rho_s = 10.$ (1) $\mu = 1, (2)$	
	$\mu = 0.0, (3) \mu = -0.5$	109
Fig. 5.20	Nondimensional frequency responses for coupled	
	horizontal and rocking motion of rigid square	
	block resting on an elastic half-space medium for	
	$\nu = 0.31, \mu = 0, \rho_b / \rho_s = 10.$ (1) $H = 1.5,$ (2) $H = 1,$	
	(3) $H = 0.5$	110
Fig. 5.21	Subregions for active and passive massless footings	112

Fig. 5.22	Schematic of rigid bases resting on the surface of an elastic half-space	116
Fig. 6.1	Schematic drawing of laboratory model for an elastic half-space medium	128
Fig. 6.2	Block diagram of the experimental setup	129
Fig. 6.3	Experimental setup for measuring vertical vibration	
	response of a square base subjected to a vertical	
	harmonic force while resting on the laboratory model	
	simulating an elastic half-space medium	130
Fig. 6.4	Experimental frequency responses for different	
	circular bases resting on the surface of an elastic	
	half-space with Poisson ratio of $v = 0.31$	132
Fig. 6.5	Frequency responses of circular bases resting on an	
	elastic half-space for different constant vibration amplitudes	133
Fig. 6.6	Comparison of experimental results with the	
	theoretical prediction of mass ratio versus the	
	resonant frequency factor for the vertical motion of a	
	square base	134
Fig. 6.7	Comparison of experimental results with the	
	theoretical prediction of mass ratio versus the	
	resonant frequency factor for the vertical motion of a	
	rectangular base (side ratio of ¹ / ₂)	135
Fig. 6.8	Comparison of experimental results with the	
	theoretical prediction of mass ratio versus the	
	resonant frequency factor for the vertical motion of a	
	circular base	135
Fig. 6.9	Schematic diagram of the assembly of the base	
	for the measurement of the coupled horizontal and	
	rocking vibration: A—contact base, B—steel block,	
	C—force gauge, D—accelerometer, E—push rod	136
Fig. 6.10	Dimensionless frequency response of coupled	
	horizontal and rocking vibration of a square base	137
Fig. 6.11	A rigid square base on the surface of an elastic	
	half-space medium	138
Fig. 6.12	Dimensionless frequency responses for vertical	
	vibration of different square base resting on surface	
	of an elastic half-space	139
Fig. 6.13	Dimensionless resonant frequencies versus mass and	
	Poisson ratios	140
Fig. 6.14	Dimensionless frequency responses for vertical	
	vibration of different square bases on surface of an	
	elastic half-space	141
Fig. 7.1	A rectangular rigid foundation on the surface of an	
č	elastic half-space subjected to a blast force	146

Fig. 7.2	Complex non-dimensional radial and vertical functions versus frequency factor a_0 (Hamidzadeh's—solid line; and	
	Holzlohner's— <i>symbols</i> Choudhury et al. (2005)	147
Fig. 7.3	Blast force at a distance <i>r</i> from the massless foundation with respect to time	150
Fig. 7.4	x, y and z axes displacement of the massless foundation in terms of time away from the blast	150
Fig. 7.5	x, y and z axes rotation of the massless foundation in terms of time away from the blast	150
Fig. 8.1	Displacement functions β_1 and β_2 versus the frequency factor (k) for the vertical motion	156
Fig. 8.2	Displacement functions $\alpha 1$ and $\alpha 2$ versus the	150
Fig. 8.3	Magnitudes and phases for displacement functions	150
Fig. 8.4	Position of vertical period force excitation relative to the location of displacement sensors on the surface of an elastic half space	157
Fig. 9.1	Concentrated vertical and horizontal load on	157
	one-layered medium	181
Fig. 9.2	Real and imaginary part of vertical displacement function versus frequency factor for vertical harmonic	
Fig. 9.3	point force on one-layered medium Real and imaginary part of horizontal displacement function versus frequency factor for vertical harmonic	182
Fig. 9.4	point force on one-layered medium Real and imaginary part of vertical displacement	182
C	function versus frequency factor for harmonic point	
Fig. 9.5	force on one-layered medium Concentrated vertical and horizontal load on	183
Fig. 9.6	two-layered medium Real and imaginary part of vertical displacement	183
	function versus frequency factor for vertical harmonic	18/
Fig. 9.7	Real and imaginary part of horizontal displacement function versus frequency factor for vertical harmonic	104
	point force on one-layered medium	184
Fig. 9.8	Real and imaginary part of vertical displacement function versus frequency factor for horizontal	
	harmonic point force on one-layered medium	185
Fig. 10.1 Fig. 10.2	Examples of natural and man-made porous media Definition of representative volume element (RVE)	195 197

xxii

Fig. 10.3	Examples of fractal structures	198
Fig. 10.4	Darcy's experiment	199
Fig. 10.5	Configuration of reservoir	201
Fig. 10.6	The model of porous half-space media subjected to a	
	single circular-cylindrical energy source	212
Fig. 10.7	3D model of multiple energy sources	217
Fig. 10.8	Multisource model in an x-y plane	218
Fig. 10.9	Two-source model for numerical simulation	220
Fig. 10.10	The maximum relative displacements along the line	
	connecting the two sources with identical frequencies	222
Fig. 10.11	The maximum relative displacements along the line	
	connecting the two sources with different frequencies	223
Fig. 10.12	The relative displacements along the line connecting	
	the two sources at a specified time	223
Fig. 10.13	The relative displacements in a time span	224
Fig. 10.14	The M-P line in space for comparing the effects of	
	single and two sources	225
Fig. 10.15	Comparison between the single and multiple energy	
	sources with identical frequencies in terms of relative	
	displacement at a given time, $\omega_1 = \omega_2 = 15 \dots$	225
Fig. 10.16	Comparison between the single and multiple energy	
	sources with two different frequencies in terms of	
	relative displacement at a given time, $\omega_1 = 5$, $\omega_2 = 25$	226
Fig. 10.17	Comparison between the single and multiple	
	energy sources with identical frequency in terms of	
	maximum relative displacement in the time range,	
	$\omega_1 = \omega_2 = 15 \dots$	227
Fig. 10.18	Comparison between the single and multiple energy	
	sources with different frequencies in terms of	
	maximum relative displacement in the time range,	
	$\omega_1 = 5, \ \omega_2 = 25$	227
Fig. 10.19	Maximum relative displacement excited by two	
	sources with different frequencies in a space domain	228
Fig. 10.20	Maximum relative displacement excited by two	
	sources with different frequencies in a space domain	229
Fig. 10.21	Maximum relative displacement detected with	
	different frequency range at a specified time	229
Fig. 10.22	Maximum relative displacements detected with	
	different frequency range within a time span	230
Fig. 10.23	The relationship between phase velocity and wave	
	frequency corresponding to different viscosities	237
Fig. 10.24	The relationship between phase velocity and wave	
	frequency corresponding to different permeability	238

Fig. 10.25	The maximum relative displacements along the	
	connecting line of the two wave sources. The	
	of combination of two wave sources	230
Fig. 10.26	The maximum relative displacements along the	237
Fig. 10.20	connecting line of the two wave sources. The wave	
	valocities are different in the case of combination of	
	two wave sources	240
Fig. 10.27	The maximum relative displacements along the	240
Fig. 10.27	approximation relative displacements along the	
	frequencies and valueities	241
$E_{10} = 10.29$	The maximum relative displacements along the	241
Fig. 10.28	The maximum relative displacements along the	
	connecting line of the two wave sources of different	242
E' 10.20	The solution disclosure of the M D line of the	242
Fig. 10.29	The relative displacements along the M-P line at a	242
E'. 10.20	given time	243
Fig. 10.30	The relative displacements along the M-P line at a	244
F: 10.21	given time (shifted frequencies)	244
Fig. 10.31	Comparison between the single and multiple wave	
	sources with identical frequencies (15 Hz) in terms of	~
T : 10.00	maximum relative displacement	244
Fig. 10.32	Comparison between the single and multiple wave	
	sources with different frequencies (10 Hz for right	
	and 5 Hz for left sources) in terms of maximum	
	relative displacement	245
Fig. 10.33	Maximum relative displacements versus location of	
	the right source under different frequencies of the	
	wave sources	246
Fig. 10.34	Maximum relative displacements versus location of	
	the right wave source of identical frequency as of the	
	left source	247
Fig. 10.35	Maximum relative displacements versus frequency of	
	the right wave source (frequency of the left source is 1 Hz)	248
Fig. 10.36	Maximum relative displacements versus frequency of	
	the right wave source (frequency of the left source is 200 Hz)	248
Fig. 10.37	Maximum relative displacements detected under	
	different frequencies at the two wave sources	249
Fig. 10.38	Relative displacements detected corresponding to	
	different frequencies at the two wave sources	257
Fig. 10.39	The maximum relative displacements along the	
	connecting line (S1 = 0.43, $\omega_1 = \omega_2 = 5$ Hz)	257
Fig. 10.40	The maximum relative displacements along the	
	connecting line (S1 = 0.43, $\omega_1 = \omega_2 = 25$ Hz)	258
Fig. 10.41	The maximum relative displacements along the	
	connecting line (S1 = 0.24, $\omega_1 = \omega_2 = 5Hz$)	258

Fig. 10.42	The maximum relative displacements along the	
	connecting line (S1 = 0.24, $\omega_1 = \omega_2 = 25$ Hz)	259
Fig. 10.43	The maximum relative displacements along the	
	connecting line (S1 = 0.43, $\omega_1 = 5$ Hz, $\omega_2 = 15$ Hz)	259
Fig. 10.44	The maximum relative displacements along the	
	connecting line (S1 = 0.24, $\omega_1 = 15$ Hz, $\omega_2 = 5$ Hz)	260
Fig. 10.45	The maximum relative displacements with the	
	changing of the location of the right source	
	$(S1 = 0.24, \omega_1 = 10Hz, \omega_2 = 10Hz)$	260
Fig. 10.46	The maximum relative displacements with the	
	changing of the location of the right source	
	$(S1 = 0.43, \omega_1 = 5Hz, \omega_2 = 10Hz)$	261
Fig. 10.47	The maximum relative displacements of fluid one	
-	along the connecting line with different relative	
	saturation ($\omega_1 = \omega_2 = 15$ Hz)	262
Fig. 10.48	The maximum relative displacements of fluid one	
	versus the changing of the location of the right source	
	with different relative saturation at same frequency	
	$(\omega_1 = \omega_2 = 5Hz) \dots$	262
Fig. 10.49	The maximum relative displacements of fluid one	
C	versus the changing of the location of the right	
	source with different relative saturation at different	
	frequencies ($\omega_1 = 25$ Hz, $\omega_2 = 50$ Hz)	263
Fig. 10.50	The maximum relative displacements of fluid one	
C	along the connecting line with different porosity	
	$(\omega_1 = \omega_2 = 15 \text{Hz}, \text{S1} = 0.43)$	263
Fig. 10.51	The maximum relative displacements of fluid one	
U	along the connecting line with different porosity	
	$(\omega_1 = 2.5 \text{Hz}, \omega_2 = 5 \text{Hz}, \text{S1} = 0.43)$	264
Fig. 10.52	The maximum relative displacements of fluid two	
U	along the connecting line with different porosity	
	$(\omega_1 = \omega_2 = 5 \text{Hz}, \text{S1} = 0.24)$	264
Fig. 10.53	The maximum relative displacements of fluid two	
J	along the connecting line with different porosity	
	$(\omega_1 = 2.5 \text{Hz}, \omega_2 = 5 \text{Hz}, \text{S1} = 0.24)$	265
D' D 1		070
F1g. B.1	Contour of Integration	272

Chapter 1 Introduction

Abstract This chapter will discuss some of the issues of dynamics of soils and foundations from a practical point of view. Since this topic is quite broad, a brief description of methodology will be outlined, while details will be given for a few procedures that have proven to be effective and accurate. One of the main objectives of this chapter is to survey different available techniques for solving the dynamic response of foundations when subjected to harmonic loadings. Special attention is directed to the dynamic response of foundations, coupled vibrations of foundations, interaction between two foundations, experimental aspects of soils and foundations, and laboratory simulations.

Keywords Surface forces • Concentrated forces • Contact stress distribution • Mixed boundary value problems • Elastic medium

The possible occurrence of extreme dynamic excitation, either natural or manmade, has a major influence on the design of buildings and machine foundations. A primary concern in designing foundations is the knowledge of how they are expected to respond when subjected to dynamic loadings. The validity of the mathematical analysis depends entirely on how well the mathematical model simulates the behavior of the real foundation. Over the past decades our ability to analyze mathematical models for dynamics of foundations has been improved by the use of different analytical and numerical techniques. In most of these analyses it is common to assume that the footing is rigid and the medium is a homogeneous elastic half-space. Extensive efforts have been confined in the development of procedures and computer simulations to tackle some practical problems that arise in this field, while other important problems have been neglected. It should be noted that interaction between foundations for noncircular footings was not treated in a satisfactory manner and significant deficiencies remain in most of the previous analyses. This chapter will discuss some of the issues of dynamics of soils and foundations from a practical point of view. Since this topic is quite broad, a brief description of methodology will be outlined, while details will be given for a few procedures that have proven to be effective and accurate. One of the main objectives of this chapter is to survey different available techniques for solving the dynamic response of foundations when subjected to harmonic loadings. Special attention is directed to the dynamic response of the surface of the medium due to concentrated dynamic loads, response of foundations, coupled vibrations of foundations, interaction between two foundations, experimental aspects of soils and foundations, and laboratory simulations.

Before addressing the abovementioned problems in soil dynamics, it is essential to define the soil medium. To the authors' knowledge, diverse dynamic analyses for the soil–foundation interaction have been conducted using the following modeling approaches for the soil medium: subgrade reaction model, Winkler foundations, elastic half-space medium, which can be elastic isotropic or viscoelastic, Gibson soil model, layered medium, porous medium, and medium with particulate materials.

Among these models the subgrade reaction model can only be used for lumped systems and is developed using experimental results on different soils. Detailed information about this model are provided by Terzaghi (1955) and Barkan (1962). Winkler's foundation (1987) is a weak model which cannot account for the geometrical damping of the half-space medium. The half-space model is the most realistic model which can be extended to the viscoelastic one by considering complex elastic moduli for the medium. This model is adopted throughout Chaps. 2-6. The halfspace medium can also be considered to be porous. Gibson's model (1967) allows for variation of the shear modulus within the depth of the elastic half-space. This model has rarely been used for real design analysis. In the layered soil medium model, the medium is divided into thin layers and each thin layer considered to be an elastic or viscoelastic medium with specific mechanical properties. See Kausel and Roesset (1981). The porous half-space medium represents volumetrically interacting solid-fluid aggregates, which can be modeled using continuum porous media theories by allowing for both solid-matrix deformation and fluid flow (Morand and Ohayon 1955). To study the mechanical behavior of sand and other granular soil medium, Tavarez and Plesha (2007) used the discrete element method to account for the discontinuous characteristic of some geomaterials. It should be noted that this book also addresses the porous and the layered stratum in different chapters.

1.1 Surface Response Due to Concentrated Forces

In the field of propagation of disturbances on the surface of an elastic halfspace, the first mathematical attempt was made by Lamb (1904). He gave integral representations for the vertical and radial displacements of the surface of an elastic half-space due to a concentrated vertical harmonic force. Evaluation of these integrals involves considerable mathematical difficulties, due to the evaluation of a Cauchy principal integral and certain infinite integrals with oscillatory integrands. Nakano (1930) considered the same problem for a normal and tangential force distribution on the surface. Barkan (1962) presented a series solution for the evaluation of integrals for the vertical displacement caused by a vertical force on the surface, which was given by Shekhter (1948). Pekeris (1955a, b) gave a greatly improved solution to this problem when the surface motion is produced by a vertical point load varying with time, like the Heaviside function. Elorduy et al. (1967) developed a solution by applying Duhamel's integral to obtain the harmonic response of the surface of an elastic half-space due to a vertical harmonic point force. Heller and Weiss (1967) studied the far field ground motion due to an energy source on the surface of the ground.

Among the investigators who considered the three-dimensional problem for a tangential point force, Chao (1960) presented an integral solution to this problem for an applied force varying with time, like the Heaviside unit function. Papadopulus (1963) and Aggarwal and Ablow (1967) have presented solutions, in integral expressions, to a class of three-dimensional pulse propagation in an elastic halfspace. Johnson (1974) used Green's functions for solving Lamb's problem, and Apsel (1979) employed Green's functions to formulate the procedure for layered media. Kausel and Roesset (1975) reported an explicit solution for dynamic response of layered media. Davies and Banerjee (1983) used Green's functions to determine responses of the medium due to forces which were harmonic in time with a constant amplitudes. The solution was derived from the general analysis for impulsive sources. Kobayashi and Nishimura (1980) utilized the Fourier transform to develop a solution for this problem and expressed the results in terms of the fullspace Green's functions, which include infinite integrals of exponential and Bessel's function products. Banerjee and Mamoon (1990) provided a solution for a periodic point force in the interior of a three-dimensional, isotropic elastic half-space by employing the methods of synthesis and superposition. The solution was obtained in the Laplace transform as well as the frequency domain.

Hamidzadeh (1978) presented mathematical procedures for determination of the dynamic response of surface of an elastic half-space subjected to harmonic loadings and provided numerical results for displacement of any point on the surface in terms of properties of the medium and of the exciting force. The solution was analytically formulated by employing double Fourier transforms and was presented by integral expressions. Hamidzadeh (1987) and Hamidzadeh and Chandler (1991) provided dimensionless response for an elastic half-space and compared their results with other available approximate results. Verruijt (2010) provided mathematical procedures for analyzing the vertical displacement of the surface of an elastic half-space due to the surface point load, and moving vertical loads. Meral and Royston (2009) studied shear and surface wave motion in and on a viscoelastic material representative of biological tissue. They considered the surface wave motion on a half-space caused by a finite rigid circular disk located on the surface and oscillating normal to it and determined the compression, shear, and surface wave motion in a half-space generated by a subsurface finite dipole. In their study, they

assumed fractional order Voigt model of viscoelasticity in their theoretical analysis. They concluded that their theoretical results had a better agreement with their measured results over a limited frequency range.

1.2 Dynamic Response of Foundations

Advances in the development of solutions for soil-foundation interaction problems are categorized in the following sections based on the formulation procedures.

1.2.1 Assumed Contact Stress Distributions

The first attempt to solve the vertical vibration of a massive circular base on the surface of an elastic medium was made by Reissner (1936). He adopted Lamb's (1904) approach and developed a solution by assuming a uniform stress distribution on the surface of the medium. He established an estimated solution for determining the vertical steady state response of circular footings. He also calculated the displacement of the center of the base and introduced the amplitude of vibration in terms of non-dimensional parameters. It has been proven that his results overestimated the amplitude due to his consideration of the displacement at the center of the base. Reissner and Sagoci (1944) presented a static solution for the torsional oscillation of a disc on the medium. Miller and Pursey (1954, 1955) considered the vertical response of a circular base due to a force uniformly distributed on the contact surface. Quinlan (1953) and Sung (1953) independently extended Riessner's (1936, 1944) approach to solve the problem of vertical vibration of circular and infinitely long rectangular footings. In their analyses they considered three different harmonic stress distributions: uniform, parabolic, and stress produced by a rigid base under static conditions. They showed that the vibration characteristics of semi-infinite media effectively vary with the type of stress distributions and elastic properties of the medium.

Arnold et al. (1955) considered four vibrational modes (vertical, horizontal, torsional, and rocking) for a circular base on the surface of elastic media. By assuming harmonic static stress distributions for all modes, they evaluated the dynamic responses using an averaging technique. They also verified this work with experimental results using a finite model for the infinite medium. Bycroft (1956,1959) followed the same approach for four modes of vibration by determining complex functions to represent the in-phase and out-of-phase components of displacement of a rigid massless circular plate. Bycroft (1977) later carried out some tests to verify his previous theoretical work. Thomson and Kobori (1963) and Kobori et al. (1966a, b, 1968, 1970, 1971) considered the dynamic response of a rectangular base. They provided computational results for components of the complex displacement functions by assuming a uniform stress distribution on the