# **Springer Theses** Recognizing Outstanding Ph.D. Research

# Brian Hicks

# Nulling Interferometers for Space-based High-**Contrast Visible** Imaging and Measurement of Exoplanetary Environments



Springer Theses

Recognizing Outstanding Ph.D. Research

For further volumes: http://www.springer.com/series/8790

### **Aims and Scope**

The series "Springer Theses" brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student's supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today's younger generation of scientists.

## Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria

- They must be written in good English.
- The topic should fall within the confines of Chemistry, Physics, Earth Sciences and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics.
- The work reported in the thesis must represent a significant scientific advance.
- If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder.
- They must have been examined and passed during the 12 months prior to nomination.
- Each thesis should include a foreword by the supervisor outlining the significance of its content.
- The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field.

Brian Hicks

# Nulling Interferometers for Space-based High-Contrast Visible Imaging and Measurement of Exoplanetary Environments



Brian Hicks Center for Atmospheric Research UMass Lowell Lowell, MA, USA

ISSN 2190-5053 ISSN 2190-5061 (electronic) ISBN 978-1-4614-8210-9 ISBN 978-1-4614-8211-6 (eBook) DOI 10.1007/978-1-4614-8211-6 Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013947795

#### © Springer Science+Business Media New York 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

## **Supervisor's Foreword**

Compared to many other pursuits in experimental astrophysics, observational studies of extrasolar planets (exoplanets) is a relative newcomer. Nonetheless, the spectacular success of ground-based and space-based observations is already rewriting our understanding of how planets form and evolve. Today we stand at the threshold of the next step in this quest – the detailed characterization and inventory of these alien worlds.

Direct imaging of exoplanets is being pursued by a number of research groups around the world. The primary impediment to directly image an exoplanet is not their low brightness – our observatories routinely image and study much fainter celestial bodies. The key challenge is contrast – the brightness ratio between the planet and the star. In visible light a typical star is a billion or more times brighter than the planets. A mental image that represents the challenge of directly imaging an exoplanet around a star is the task of imaging a marble sitting next to a lighthouse in Boston by an observer in San Francisco!

For various reasons such a task is best accomplished from a space-based platform. This dissertation describes our attempts to develop a rugged instrument that belongs to a family called nulling interferometer (or nuller) or internal coronagraph. In simple terms, a nuller is an interferometer that destructs light from a point source (a star) located on its optical axis, while at the same time it allows off-axis light be recorded without any attenuation. There are many different optical approaches that have been studied theoretically or experimented with in the laboratory and some have been deployed in the field. Another type of instruments that can provide the same information belongs to the class called external occulter, where a carefully designed mask blocks out the on-axis starlight in a manner similar to that of solar or lunar eclipses. Depending upon the characteristics of the system, a planet could be observable very near the edges of the shadow cast by the occulter.

The key parameters that are used to describe the performance of all such systems include, contrast, bandpass (the range of color of light over which the instrument operates satisfactorily – a large value being desirable), inner working angle, which describes how close to the star the planet could be for instrument to measure its physical parameters, optical throughput and suitability for spaceflight. Laboratory

measurements have shown that a planet-star contrast as low as  $10^{-9}$ , a bandpass of 20% (±10% of the operating wavelength) and an inner working angle of 1.5  $\lambda$ /D, where  $\lambda$  is the operating wavelength and D is the diameter of the telescope are possible. As of now, only one coronagraph flew aboard a sounding rocket (the Planet Imaging Concept Testbed Using a Rocket Experiment – PICTURE), which unfortunately could not collect any science data due to the failure of a radio communication link.

This dissertation describes in detail the design and implementation of the Monolithic Achromatic Nulling Interference Coronagraph (MANIC). It belongs to a subclass of internal coronagraph that has been described as Rotational Shearing Interferometer (RSI). MANIC splits incident light into two beams. One of the beams undergoes a  $\pi$  phase shift and a pupil flip before being combined with the other beam, which results in the desired interference.

Chapters 1–4 provides the necessary background and science relevance for high contrast imaging along with key engineering considerations for possible future applications. Chapter 5 delves into nullers and their characteristics and introduces MANIC. It followed the implementation path of interferometric spectrographs such as Wide-Angle Micheson Doppler Imaging Interferometer (WAMDII) and others that eliminated sensitivity to misalignment of key optical components. MANIC, being a carefully designed optical monolith, is impervious to the rigors of spaceflight. The details of the implementation of MANIC is described in Chap. 6 and the final chapter provides some concluding thoughts.

On a personal note, it has been great to be a part of the journey that transformed Mr. Hicks into Dr. Hicks. As his dissertation advisor, I rejoiced and shared the successes and has been dispirited by the setbacks, that is common in a highly technical and multidisciplinary endeavor. MANIC could not have been developed without Professor Timothy Cook, the other half of Brian's advising team or without the technical support from LightMachinery, its fabricator. MANIC has taken the first step of a long journey that will, one day, allow us to take the first image of a planet like those we find in our solar system.

Lowell, USA

Supriya Chakrabarti

## **Supervisor's Foreword**

Imaging planets orbiting other stars is the most exciting challenge of our time. The idea of other worlds has gripped human imagination since the time of HG Wells and Edgar Rice Burroughs, and no other branch of science so thoroughly excites our curiosity as the study of what are now called exoplanets. As discoveries continue to grow in this field the first few planetary systems have been imaged but we need to do much more. Ultimately we want to be capable of imaging Earth-like planets orbiting Solar-type stars, but even imaging Jupiter like planets in Jupiter-like orbits is not currently possible.

In the last two decades the idea of taking a picture of a planet orbiting a distant star has moved from purely speculative to accomplished fact. In 1990 we did not know of any planet outside our solar system. Today we know of thousands. We have already discovered more planets, in more places, with more exotic characteristics than we would have thought possible just a few decades ago. This acceleration of discovery has been brought about by a similar explosion in the instruments designed to detect, study, and image exoplanets. A great many new systems have been developed and many more have been discussed. While we have made great progress more, higher performance systems await.

The essential problem is that to image an exoplanet near its host star one must image the faint planet next to the bright star; one must make measurements with a contrast of between a part per million and a part per 10 billion. In order to do this one needs to control the optical system to between one thousandth and one hundred thousand of the wavelength of the light being observed. This is obviously quite difficult.

Building systems to study exoplanets is not easy, nor is it cheap. The most capable systems under consideration will cost tens of billions of dollars. These costs necessitate that they will not be on line for decades, if then. We cannot wait that long. In this volume, Dr. Hicks lays out a system capable of making significant progress at a using smaller telescopes and less capable satellites. Such systems will be essential in our field for the next decade or two. The keys to an exoplanet imaging system which can be realized in the near future are stability, simplicity, and size. As described here, these properties are inherent to the design of MANIC. By reducing the optics at the heart of this instrument to a single monolithic prism the high stability, operational simplicity, and small size are assured.

Given the rapid progress in the study of exoplanets I suspect that our expectations for future missions, instruments, and discoveries will prove to be dashed, and exceeded, and completely incorrect, and fulfilled beyond our wildest dreams – all at the same time. This volume should serve well as both a first step to new and exciting instrumentation and a solid reference on the state of the art at the dawn of the era of exoplanetary observation.

Lowell, USA

Timothy Cook

# Contents

| 1 | Intr                               | oduction                         |                              | 1  |
|---|------------------------------------|----------------------------------|------------------------------|----|
|   | 1.1                                | Exoplanet Discovery from 51      | Peg b to the Present         | 2  |
|   | 1.2                                | Why Direct Detection of Exop     | lanets?                      | 4  |
|   |                                    | 1.2.1 Candidate Confirmation     | Between Detection Methods    | 5  |
|   |                                    | 1.2.2 Increasing Exoplanet D     | iscovery Space               | 6  |
|   |                                    | 1.2.3 Spectroscopy               |                              | 8  |
|   | 1.3                                | Contributions to the State of th | e Art                        | 9  |
|   | 1.4                                | Scope and Structure of This W    | ork                          | 9  |
|   |                                    | 1.4.1 Why a Monolithic Null      | ing Interferometer in Space? | 10 |
|   |                                    | 1.4.2 Structure of This Work     |                              | 12 |
|   | Refe                               | erences                          |                              | 12 |
| 2 | Rele                               | evant Physical Optics Concept    | s                            | 15 |
|   | 2.1                                | Diffraction                      |                              | 15 |
|   | 2.2 Interference                   |                                  |                              | 18 |
|   |                                    | 2.2.1 Visibility and Null Dep    | th                           | 20 |
|   |                                    | 2.2.2 Null Leakage Sources       |                              | 21 |
|   | Refe                               | erences                          |                              | 26 |
| 3 | System Level Design Considerations |                                  | 27                           |    |
|   | 3.1                                | High-Contrast Imaging Targets    |                              | 27 |
|   |                                    | 3.1.1 Exoplanets                 |                              | 28 |
|   |                                    | 3.1.2 Exozodiacal Dust and I     | Debris Disks                 | 28 |
|   |                                    | 3.1.3 Binary Star Systems        |                              | 31 |
|   | 3.2                                | Contrast Scaling and Operation   | nal Bandpass                 | 31 |
|   |                                    | 3.2.1 Planet-Star Reflected L    | ight and Thermal Emission    |    |
|   |                                    | Contrast                         | -                            | 32 |
|   |                                    | 3.2.2 Foreground and Backg       | ound Sources                 | 33 |
|   | 3.3                                | Resolution and On-Sky Spatial    | Response                     | 34 |
|   |                                    | 3.3.1 The Resolution Limit a     | nd Angular Unit $\lambda/D$  | 34 |
|   |                                    | 3.3.2 Angular Response           |                              | 35 |
|   |                                    | 3.3.3 Stellar Angular Size       |                              | 38 |

|   | 3.4                | Obser   | vation Platforms                                       | 39        |
|---|--------------------|---------|--------------------------------------------------------|-----------|
|   |                    | 3.4.1   | Ground-Based Observatories                             | 39        |
|   |                    | 3.4.2   | Sounding Rockets                                       | 40        |
|   |                    | 3.4.3   | Stratospheric Balloons                                 | 41        |
|   |                    | 3.4.4   | Satellites                                             | 42        |
|   | 3.5                | Overv   | iew of High-Contrast Imaging Techniques                | 43        |
|   |                    | 3.5.1   | External Occulters                                     | 43        |
|   |                    | 3.5.2   | Pupil Apodization                                      | 44        |
|   |                    | 3.5.3   | Enhanced Lyot Masks                                    | 45        |
|   |                    | 3.5.4   | Nulling Interferometers (Nullers)                      | 46        |
|   | 3.6                | Wavef   | Front Control                                          | 47        |
|   |                    | 3.6.1   | Tip/Tilt/Piston Control                                | 48        |
|   |                    | 3.6.2   | Low-Order Wavefront Correction                         | 48        |
|   |                    | 3.6.3   | Deformable Mirrors for High Spatial Frequency Control  | 49        |
|   |                    | 3.6.4   | Spatial Filter Arrays                                  | 51        |
|   | 3.7                | Wavef   | front Sensing                                          | 52        |
|   |                    | 3.7.1   | Low-Order Wavefront Sensor                             | 53        |
|   |                    | 3.7.2   | Secondary Pupil Plane Interferometer                   | 53        |
|   |                    | 3.7.3   | Image Plane Sensing                                    | 54        |
|   | 3.8                | Legac   | y, Ongoing and Future Efforts                          | 56        |
|   | Refe               | erences |                                                        | 57        |
| 4 | Con                | manior  | n Signal to Noise Calculation                          | 61        |
| 1 | 4.1                | Basic   | Instrument Parameters and Companion Flux               | 62        |
|   | 4.2                | Wavef   | Front Requirements                                     | 64        |
|   |                    | 4.2.1   | Mechanical Alignment and Surface Figure Errors         | 64        |
|   |                    | 4.2.2   | Pointing Jitter and Instrument Roll                    | 65        |
|   |                    | 4.2.3   | Amplitude                                              | 66        |
|   |                    | 4.2.4   | Polarization                                           | 67        |
|   |                    | 4.2.5   | Overall Expected Leakage                               | 67        |
|   | 4.3                | Throu   | ghput and Detector Efficiencies                        | 68        |
|   | 4.4                | Foreg   | round, Background and Noise Sources                    | 69        |
|   |                    | 4.4.1   | Stellar Leakage, Zodiacal and Exozodiacal Light        | 69        |
|   | 4.5                | Obser   | ving and Exposure Times                                | 69        |
|   |                    | 4.5.1   | Available Observation Time from a Sounding Rocket      | 70        |
|   |                    | 4.5.2   | Detector Frame Rates and Noise                         | 70        |
|   | 4.6                | The Si  | ignal to Noise Calculation                             | 71        |
|   | 4.7                | Signal  | l-to-Noise Enhancement Techniques                      | 72        |
|   |                    | 4.7.1   | Calibration Interferometer                             | 72        |
|   |                    | 4.7.2   | The Self-Coherent Camera                               | 73        |
|   |                    | 4.7.3   | Angular and Simultaneous Spectral Differential Imaging | 73        |
|   | Refe               | rences  |                                                        | 74        |
| 5 | Cor                | marico  | n of Single Aperture Nullers Designed for Space        | 77        |
| 3 | <b>COII</b><br>5 1 | Pototi  | onal and Lateral Shearing Nullers                      | וו<br>רר  |
|   | 5.1                | 5 1 1   | PSI Principle of Operation                             | 70        |
|   |                    | 512     | Lateral Shearing Nuller Principle of Operation         | 19<br>20  |
|   |                    | J.1.2   | Lateral shearing Numer Efficiple of Operation          | <u>80</u> |

#### Contents

|   | 5.2  | Nuller On-Sky Response Versus Angle                             | 80  |
|---|------|-----------------------------------------------------------------|-----|
|   |      | 5.2.1 <i>MANIC</i> (RSI) Transmission Profile                   | 80  |
|   |      | 5.2.2 <i>PICTURE</i> (VNC) Transmission Profile                 | 82  |
|   |      | 5.2.3 Extended Source Leakage                                   | 82  |
|   | 5.3  | Search Space and "Useful Throughput"                            | 83  |
|   | 5.4  | Chromatic Limitations                                           | 84  |
|   |      | 5.4.1 <i>MANIC</i> : Geometric Achromaticity                    | 85  |
|   |      | 5.4.2 <i>PICTURE</i> : Broadband Nulling with Dispersion Plates | 85  |
|   | 5.5  | Deformable Mirror Location                                      | 86  |
|   |      | 5.5.1 DM Stroke and Actuator Mapping Efficiency                 | 87  |
|   |      | 5.5.2 Relaxed Telescope Tolerance                               | 88  |
|   |      | 5.5.3 Wavefront Sensing                                         | 89  |
|   | 5.6  | Radiation Degradation                                           | 89  |
|   | 5.7  | Nuller Comparison Summary                                       | 89  |
|   | Refe | erences                                                         | 90  |
| 6 | The  | Development of MANIC                                            | 01  |
| Ŭ | 6.1  | Instrument Legacy                                               | 91  |
|   | 0.1  | 6.1.1 Origins of the RSI                                        | 91  |
|   |      | 6.1.2 Gouv Phase Shift/Cat's Eve RSI                            | 92  |
|   |      | 6.1.3 The Symmetric RSI                                         | 93  |
|   |      | 6.1.4 Common-Path RSI                                           | 93  |
|   | 6.2  | Mathematical Formalism                                          | 93  |
|   | 6.3  | The Monolithic Design                                           | 94  |
|   |      | 6.3.1 Fabrication Strategy                                      | 95  |
|   |      | 6.3.2 Wavefront Sensing Strategy                                | 98  |
|   | 6.4  | Monte Carlo Design Study                                        | 99  |
|   |      | 6.4.1 Model Description                                         | 99  |
|   |      | 6.4.2 Model Results                                             | 101 |
|   | 6.5  | Leakage Source Contribution Analysis                            | 105 |
|   |      | 6.5.1 Beamsplitter Epoxy Wedge                                  | 105 |
|   |      | 6.5.2 TIR Folding Phase Errors                                  | 107 |
|   |      | 6.5.3 Input Refraction                                          | 108 |
|   |      | 6.5.4 Field Rotation                                            | 109 |
|   |      | 6.5.5 Amplitude Balance                                         | 109 |
|   |      | 6.5.6 Uncorrected Bulk OPD                                      | 110 |
|   | 6.6  | Expected Performance                                            | 112 |
|   | 6.7  | Internal OPD Measurement and Correction                         | 113 |
|   |      | 6.7.1 Internal Optical Path Difference Measurement Setup        | 113 |
|   |      | 6.7.2 Results of Correction                                     | 118 |
|   | 6.8  | Null Measurement                                                | 118 |
|   | Refe | erences                                                         | 119 |
| 7 | Sum  | imary                                                           | 121 |
| 1 | 7.1  | Implications                                                    | 122 |
|   | 7.2  | Development Updates and Future Work                             | 124 |
|   |      | 7.2.1 Incorporating Wavefront Sensing and Control               | 124 |
|   |      |                                                                 |     |

| A | Constants a | and Solar System Data             | 127 |
|---|-------------|-----------------------------------|-----|
|   | References  |                                   | 125 |
|   | 7.2.3       | Improving Extended Object Nulling | 125 |
|   | 7.2.2       | Increasing the Deep Null Bandpass | 125 |

# Acronyms

The following acronyms are used throughout this work.

| (Common-path) Achromatic Interferometric Coronagraph        |
|-------------------------------------------------------------|
| Beamsplitter                                                |
| Delay Line Assembly                                         |
| Deformable Mirror                                           |
| Electric Field Conjugation                                  |
| Fast Fourier Transform                                      |
| Full-Width at Half Maximum                                  |
| Fast Steering Mirror                                        |
| Gemini Planet Imager                                        |
| Hydroxide Catalysed Bonding                                 |
| Hubble Space Telescope                                      |
| Inner Working Angle                                         |
| James Webb Space Telescope                                  |
| Low-Order Wavefront Sensor                                  |
| Monolithic Achromatic Nulling Interference Coronagraph      |
| Micro-Electro Mechanical System(s)                          |
| Optical Path Difference                                     |
| Outer Working Angle                                         |
| Planetary Imaging Concept Testbed Using a Rocket Experiment |
| Phase-Induced Amplitude Apodization                         |
| Power Spectral Density                                      |
| Point Spread Function                                       |
| Piezoelectric Transducer                                    |
| Root Mean Square                                            |
| Rotational Shearing Interferometer                          |
| Self-coherent Camera                                        |
| Shack-Hartmann Wavefront Sensor                             |
| Static Mirror Assembly                                      |
| Signal to Noise Ratio                                       |
|                                                             |