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Preface

Influence of Epigenetic Phenomena on Gene Expression

and Inheritance of Phenotypes

One of the many definitions of an epigenetic mark is a heritable feature that does not

change the DNA sequence but determines when, where, and to what extent a gene

will be expressed. Hence, epigenetics is a science that studies DNA packaging and

regulation of its expression. Although often introduced as a new science,

epigenetics dates back to the discovery of the roles of chromatin and DNA

methylation in controlling gene expression in the 60s and 70s of the last century.

Despite the intimate relationship between DNA and epigenetic factors, mainstream

studies of genetic traits in humans and animal models have largely ignored the

existence of epigenetic factors during the past decades, while the epigenetics

community, although part of both the genetics and developmental biology fields,

was digging deeper and deeper into the molecular mechanisms of epigenetic

phenomena but seldom tackling problems of complex genetic traits in mammals.

One of the reasons for the dichotomy is the very complexity of complex traits where

small effects frommultiple loci define the phenotype, whereas traditional molecular

biology research required focusing on one selected target at a time. Another reason

was the lack of methodologies capable of analyzing large amounts of epigenetic

information in large cohorts of patients and controls. Nevertheless, during the last

two decades, in-depth analysis of inheritance patterns combined with molecular

approaches in a number of animal models, such as agouti viable yellow mice and

callipyge sheep, has provided remarkable examples of how the interplay between

genetic and epigenetic factors can generate complex traits.

Rapid technological improvements are now making it possible to measure

epigenetic signals at many genomic locations in an unprecedented way and conduct

prior-hypothesis-free epigenetic studies. Global initiatives such as the International

Human Epigenome Consortium are underway to obtain high-resolution maps of

histone modifications, DNA methylation, and transcription start sites and to com-

pare epigenome signals and the resulting transcriptional regulation in a wide variety
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of tissues and different cell types. However, even hypothesis-free data analyses

require knowledge of epigenetic paradigms to make informed decisions when

interpreting these massive data sets.

In this book, we have focused on the relationship between epigenetics and

complex traits, since this field can be daunting for those wishing to do research.

The biology is complex, and the ramifications of epigenetic regulation are wide-

spread. Epigenetic states may contribute to the penetrance of genetic

polymorphisms or mutations and thereby modify inheritance patterns. This may

result in apparently non-Mendelian inheritance of genetic traits. Epigenetic changes

in an individual may affect several different generations, depending on when these

changes occur and in which cells. Genetic factors will influence epigenetic factors,

and possibly their transmission. Effects may vary depending on sex, and also on the

sex of an implicated parent. Concepts that applied in genetics, such as heritability,

or the proportion of variance explained by genetics, can now be expanded to

explicitly consider the epigenetic contributions. Furthermore, of course, different

loci may demonstrate different associations with all these factors. Design of

experiments and analysis of experimental data must reflect this complexity and

be carefully approached.

Therefore, this book presents 14 detailed and distinct views on the interplay

between complex traits and epigenetics. The chapters are grouped into three

sections: (1) Fundamental aspects of the biology in epigenetics, with focus on the

period in mammalian development that is pivotal for genetic transmission, i.e.,

gametogenesis and early embryonic development, insight into how the epigenetic

marks are established, maintained, and transmitted and their influence on gene

expression; (2) The known impact of epigenetic factors on several different com-

plex traits and diseases of interest for human genetics; and (3) Approaches to

experimental design and statistical analysis in this context.

Our hope is that the two communities of basic researchers and analysts will find

mutual enrichment through this combination of material. An overview of available

analytic methods and their underlying assumptions could inform experimental

design choices. Similarly, improved understanding of the biology could lead to

better choices for analysis, and an appreciation for the many factors that may need

to be considered. Ultimately, this marriage of topics could lead to improved study

designs, rich and complete analytic frameworks, new approaches to analysis, and

guidelines for interpretation.

Of course, this book includes only a small overview of the available knowledge

and approaches, yet we anticipate that this will be a helpful first reference for

researchers entering the field, and will stimulate future developments. We thank

Springer for making this endeavor possible.

Montreal, QC, Canada Anna K. Naumova

Montreal, QC, Canada Celia M.T. Greenwood
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Mohammad Saharul Islam Medical Microbiology and Immunology, Genome

Center, MIND Institute, University of California, Davis, CA, USA
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Part I

Epigenetic Phenomena in the Germ Line
and Early Embryonic Development and

Their Effects on the Inheritance
of Genetic Traits



Chapter 1

Epigenetic Reprogramming

in the Mammalian Germline

Stéphanie Maupetit-Méhouas, David Nury, and Philippe Arnaud

Abstract Epigenetic modifications are crucial for maintaining and faithfully

transmitting the identity of each cell type during cell division. During mammalian

germ cell development, the acquisition of the ability to form a totipotent zygote is

associated with extensive epigenetic reprogramming that affects all major develop-

mental processes, including genomic imprinting, X-inactivation, retroelement

silencing and gene expression. The existing epigenetic patterns are first erased

during primordial germ cell development, followed by acquisition of a germline-

specific epigenetic signature that can be eventually transmitted to and interpreted by

the progeny. A better characterisation of the underlying mechanisms is relevant for

both fundamental and clinical research dealing with epigenetic inheritance, epige-

netic control of mammalian development and regenerative medicine. In this review

we present and discuss recent advances on the nature, mechanisms and consequences

of resetting the epigenetic pattern during primordial germ cell formation and (re)

acquiring a new set of epigenetic marks at later stages of germline development.

1.1 Introduction

During somatic development of higher organisms, pluripotent cells progressively

reduce their differentiation potential and become committed to a particular cell fate

with specific gene expression and functional profiles. This tightly regulated process

requires the concerted action of specific factors and is accompanied or caused by

dynamic chromatin changes that influence gene expression patterns and phenotype.

S. Maupetit-Méhouas • D. Nury • P. Arnaud (*)

GReD (Genetic Reproduction and Development), CNRS UMR6293-Clermont
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These changes occur at the level of DNA methylation, histone tail modifications,

nucleosome remodelling and regulation of higher order chromatin structures. Most

(but not all) of these modifications are heritable from one cell generation to the

next and are thus referred as being epigenetic. Thus, each cell type in an organism

is characterised by a specific and stable epigenetic signature (epigenome) that is

transmitted to the daughter cells. Once specified, the epigenome of a cell type is

relatively stable. However, in mammals, there are two key developmental stages in

which epigenetic patterns are profoundly modified, with erasure of the existing

epigenetic marks and acquisition of a new set. This so-called epigenetic

reprogramming occurs first in early embryogenesis, following fertilisation, when

the epigenetic information carried by the mature gametes is removed and replaced

by an embryonic/somatic signature at the peri-implantation stage. This “embry-

onic” reprogramming is incomplete as some genomic regions, notably the cis-
acting regulatory sequences of imprinted gene loci (imprinting control regions,

ICRs), escape this process. A more thorough epigenetic reprogramming occurs

during gametogenesis and it virtually impacts all epigenetic-based developmental

processes: genomic imprinting, X-inactivation, retroelement silencing and gene

expression. The understanding of the underlying mechanisms is relevant for both

fundamental and clinical research. It will enable to better define the role of

epigenetics in the control of mammalian development and also to elucidate the

mechanism of in vitro-induced reprogramming/pluripotency.

This review focuses on the germline epigenetic reprogramming and discusses

recent findings on the mechanisms involved in erasing the epigenetic pattern during

primordial germ cell (PGC) formation and in (re)acquiring a new set of epigenetic

marks at later stages of germline development.

1.2 Temporal and Spatial Dynamics

of Mouse Germ Cell Development

Among all the cell lineages of a complex organism, only germ cells can give rise to

a new individual, allowing the transmission of genetic and possibly epigenetic

information to the next generation. Germ cell development initiates with the

specification of PGCs, which following colonisation of the embryonic gonads

will develop into oocytes or spermatozoa. In mammals, most of our knowledge

on the temporal and spatial dynamics of this tightly regulated process comes from

the mouse model (Fig. 1.1).

Unlike other non-mammalian species, such as D. melanogaster and zebrafish,

mouse PGCs are not predetermined at fertilisation but are specified in the post-

implantation embryo. At embryonic day 4.5 (E4.5), following blastocyst implanta-

tion, there is a rapid increase in the number of inner cell mass cells, leading to

the formation of the epiblast (the source of all the body cell lineages). Germ cell fate

4 S. Maupetit-Méhouas et al.
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is induced in the proximal epiblast in a dose-dependent manner by bone

morphogenetic protein (BMP) signals from the extra-embryonic ectoderm at

~E6.25 (Lawson et al. 1999). This leads to the formation of a pool of PGC

precursors of which only a limited number (about 6 cells), characterised by the

expression of the zinc finger transcriptional regulators BLIMP1 (B-lymphocyte-

induced maturation protein 1, also known as PR-domain-zinc-finger protein

1, PRDM1) and PRDM14 (PR-domain-zinc-finger protein 14), acquire a PGC

fate. As a result, “fate-determined” PGCs emerge at ~E7.25 as a cluster of

~20–40 cells located at the base of the forming allantois (Ginsburg et al. 1990;

Ohinata et al. 2005, 2009; Yamaji et al. 2008). From ~E7.5, PGCs migrate through

the hindgut and mesentery and start colonising the nascent genital ridges (i.e., the
future gonads) at ~E10.5. During this process, PGCs rapidly proliferate: from

around 100 PGCs at E8.5 to ~200 at E9.5 and ~600 at E10.5. In the genital ridges,

PGCs still proliferate up to E13.5 (~26 000 cells), when they stop dividing

(Mochizuki and Matsui 2010; Kagiwada et al. 2012) (Fig. 1.2).

Following colonisation of the developing gonad, at E12.5, PGCs, now referred

to as germ cells (GCs), start differentiating into male or female gametes. In the

developing ovary, at E13.5, female GCs initiate meiosis I that will be blocked at

the diplotene stage of prophase I at about the time of birth and until puberty.

Following ovulation, the oocyte resumes meiosis I and halts in metaphase of

meiosis II that will be completed after fertilisation (Smallwood and Kelsey 2012).

Conversely, male GCs do not initiate meiosis in the embryo and stop dividing

from E13.5 (Western et al. 2008). At sexual maturity, male GCs will differentiate

into spermatogonial stem cells and resume mitotic proliferation to form

spermatocytes that will give rise, following meiosis, to haploid spermatids that

will develop into spermatozoa.

1.3 Primordial Germ Cell Development

and Reprogramming

After implantation, epiblast cells mature and prepare for gastrulation and formation

of all the body cell lineages. This process is associated with major epigenetic

changes, as illustrated by the genome-wide increase in DNA methylation in

pre-gastrulating embryos that will be almost complete by E6.5 (Borgel

et al. 2010). Thus, by ~E6.25, the prospective PGCs have accumulated several

layers of epigenetic information and are already primed towards a somatic fate.

Upon PGC specification, these epigenetic features will be erased through a major

transcriptional and epigenetic reprogramming that might be important for the

production of a totipotent zygote following fertilisation.

6 S. Maupetit-Méhouas et al.



Fig. 1.2 Temporal schematic of epigenetic reprogramming during mouse primordial germ cell

development. Genome-wide dynamics of DNA methylation and main histone modifications

during PGC development (mainly revealed by immunochemistry analysis) are depicted. The

dynamic expression of key epigenetic modifiers and pluripotency factors is also shown. Based

on Kurimoto et al. (2008a, b); Ancelin et al. (2006); Seki et al. (2005, 2007); Hajkova et al. (2008,

2010); Daujat et al. (2009); and Hackett et al. (2013). PGC: Primordial germ cells, BLIMP1:

B-lymphocyte-induced maturation protein 1, PRDM14: PR-domain-zinc-finger protein 14, SOX2:

SRY (sex-determining region Y)-box 2, KLF2: Kruppel-like factor 2, OCT4 or POU5F1: POU

class 5 homeobox 1, Dnmt: DNA (cytosine-5)-methyltransferase, NP95 or UHRF1: ubiquitin-like

with PHD and ring finger domains 1, PRMT5: protein arginine methyltransferase 5, Tet:
ten-eleven-translocation, Aid or Aicda: activation-induced cytidine deaminase, Apobec: apolipo-
protein B mRNA editing enzyme catalytic polypeptide, HIRA: histone cell cycle regulation

defective homolog A, NAP-1: nucleosome assembly protein 1, Gadd45a: growth arrest and

DNA-damage-inducible protein 45 alpha
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1.3.1 Primordial Germ Cell Specification: Reprogramming
Their Transcription Pattern

PGC specification is associated with major changes in gene transcription to repress

the somatic cell program and activate the germ cell-specific program, reacquire

their pluripotency potential and prepare for the imminent genome-wide epigenetic

reprogramming. This highly ordered process is regulated by BLIMP1 and

PRDM14. At ~E6.25 these transcriptional regulators co-mark epiblast cells that

will form PGCs and in the absence of either of these proteins, nascent PGC

precursors fail to properly develop (Ohinata et al. 2005; Yamaji et al. 2008; Vincent

et al. 2005; Kurimoto et al. 2008a, b). A single-cell microarray approach to

establish the genome-wide transcription dynamics of developing PGCs and their

somatic neighbours from E6.25 to E8.25 revealed that germ cell specification

involves the up-regulation of nearly 500 “germ cell-specification” genes and the

down-regulation of 330 “somatic program” genes (Kurimoto et al. 2008a). Among

the down-regulated “somatic” genes there are many genes involved in embryonic

development (e.g., Hox genes, Dkk1, Cdx1 . . .), cell cycle regulation (e.g., Ccne1,
Cdc25a . . .) as well as DNA methylation and histone modification, such as the de

novo DNA methyltransferases DNMT3A and DNMT3B, the nuclear protein of

95 kDa (NP95, a factor essential to maintain the DNA methylation pattern during

cell division) and the H3K9me2 histone methyltransferase GLP (G9a-like protein).

Conversely, the “germ cell specification” category includes genes associated with

germ cell development, such as Stella or Fragilis, and also the pluripotency genes

Nanog, Sox2 (Sry-box2) and Klf2 (Kruppel-like factor 2) (Kurimoto et al. 2008a).

Further analysis conducted using BLIMP1-deficient PGC-like cells showed that

BLIMP1 functions as a dominant repressor of the somatic program and is also

involved in the reacquisition of the pluripotency potential and in the forthcoming

epigenetic reprogramming. On the other hand, PRDM14 is required for Sox2
up-regulation and Glp repression and is essential for the reacquisition of the

pluripotency potential and for epigenetic reprogramming (Yamaji et al. 2008;

Kurimoto et al. 2008b). Importantly, BLIMP1, although unnecessary to induce

Prdm14 expression, is strictly required for its maintenance (Yamaji et al. 2008).

How precisely these two proteins regulate germ cell specification remains to be

established. Both BLIMP1 and PRDM14 contain a zinc-finger and histone

methyltransferase SET domains, but no associated histone-modifying activity has

been reported. Alternatively, they could exert their functions by recruiting effector

partners to their target genes. BLIMP1 can recruit different chromatin-modifying

proteins, such as histone deacetylases (HDAC) (Yu et al. 2000), G9A (Gyory

et al. 2004) and the arginine methyltransferase PRMT5 (Ancelin et al. 2006).

BLIMP1 and PRMT5 co-localise in the nuclei of migrating PGCs (Ancelin

et al. 2006); however, it is not known whether the putative BLIMP1/PRMT5

complex is formed also during PGC specification and whether it contributes to

repression of the somatic program.

8 S. Maupetit-Méhouas et al.


