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           Introduction 

 Primate immune systems have evolved to interact with pathogens in different ways 
(Mandl et al.  2008 ,  2011 ; Pandrea et al.  2007 ; Sawyer et al.  2004 ; Song et al.  2005 ; 
Soto et al.  2010 ). Human and nonhuman primate immune systems have diverged 
with some species exhibiting strong differences in immune response to certain 
pathogens including immunodefi ciency viruses [reviewed by Pandrea and Apetrei 
( 2010 ),  Toxoplasma gondii  (Epiphanio et al.  2003 ), herpesviruses (Estep et al.  2010 ; 
Huang et al.  1978 ), and trypanosomes (Thomson et al.  2009 ; Welburn et al.  2001 )]. 
Why closely related primates have evolved such divergent pathogen interaction 
strategies is not well understood. Despite strong public interest in human/nonhuman 
primate evolutionary history and the importance of various primate species as bio-
medical models, the current picture of interspecies differences in immunity remains 
fairly incomplete. Our understanding of how primate immunity evolved is hindered 
by disconnected research on primate–pathogen molecular interaction, an uneven 
focus on primate coevolution with a limited number of pathogens, and the discon-
nect between research on primate molecular phylogeny and primate physiology. The 
objective of the present collection of papers is to integrate research on the evolution 
of primate genomes, primate immune function, primate–pathogen biochemical 
interaction, and infectious disease emergence to provide a knowledge base for future 
research on human and nonhuman primate speciation, immunity, and disease. 

      Primates, Pathogens and Evolution: 
An Introduction 
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    The Role of Long-Term Evolutionary Processes in Shaping 
the Primate Immune System 

 Evolution of the immune system is tied to the evolutionary history of a species and 
intertwined with the evolution of physiological functions and developmental stages 
of an organism. The majority of cold-blooded vertebrates appear to experience 
functional shifts in their immune response depending on external temperatures, 
resulting, in some cases, in impaired immune responses such as the inhibition of 
immunoglobulin class switching (Jackson and Tinsley  2002 ). The importance of a 
graft-rejection-like immune response during tadpole to adult morphogenesis in the 
frog genus  Xenopus  and the failure of novel proteins associated with lactation to 
stimulate “nonself” immune responses in mammals, for example, both suggest that 
the immune system has likely evolved in parallel with the evolution of species 
developmental stages (Izutsu  2009 ; Matzinger  1994 ,  2002 ). 

 To interpret variation in primate immune response within and between species, 
the evolutionary forces that shaped the underlying molecular differences need to be 
examined. Of these forces, pathogen-mediated natural selection has likely been the 
leading factor in increasing the frequency of pathogen resistance in host popula-
tions. Factors such as an organism’s environment, diet, postural behavior, and soci-
ality led to interspecies differences in exposure to specifi c pathogens and the 
frequency with which such pathogens were encountered. Complete or partial resis-
tance of specifi c human genotypes to certain pathogenic strains and the patterned 
distribution of these genotypes among indigenous populations around the globe is 
fairly well documented (Hamblin and Di Rienzo  2000 ; Hraber et al.  2007 ; Leffl er 
et al.  2013 ; Marmor et al.  2001 ; Tishkoff et al.  2001 ). While the genetic variability 
of nonhuman primate immune factors is comparatively less well studied, specifi c 
disease resistance genotypes in some of these species have been identifi ed. Ecological 
differences between savanna dwelling Guinea baboons  (Papio papio)  and chimpan-
zees ( Pan troglodytes ) are likely responsible for resistance on the part of the former 
species to the savannah-based pathogen  Trypanosoma brucei gambiensis , and high 
susceptibility to fatal  T. brucei- caused sleeping sickness in the latter. Baboons are 
more involved in grassland ground foraging than chimpanzees, which also exploit 
savannah resources but are tied to forested regions and tend to retreat to the forest 
for sleep (Kageruka et al.  1991 ). In the course of their evolution in open habitats, 
baboons have likely been continuously exposed to the low fl ying tsetse fl y—the 
vector for  T. brucei  (Lambrecht  1985 ; Welburn et al.  2001 ). The selective pressure 
generated by  T. brucei  is thought to have favored fixation of two nonconserva-
tive mutations in the baboon trypanosomal lytic factor  ApoLI  that have been linked 
to sleeping sickness resistance and are not shared with either humans or chimpan-
zees (Thomson et al.  2009 ). In humans, two unrelated mutations in  ApoLI  that 
increase sleeping sickness resistance are geographically restricted to Africa and 
absent in European populations. Interestingly, trypanolytic variants of  ApoLI  in 
humans contribute to an increased risk of kidney disease, providing an example of 
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heterozygous advantage (Genovese et al.  2010 ) parallel to the classic case of the 
HbS variant of the HBB globin locus and other hemoglobinopathies that confer 
heterozygous advantage by means of increasing resistance to malaria(Allison  1956 ; 
Haldane  1949 ; Hedrick  2004 ; Kwiatkowski  2005 ; Lapoumeroulie et al.  1992 ; Oner 
et al.  1992 ). 

 The pathogen-directed evolutionary mechanisms that contribute to the divergence 
of immune systems remain hypothetical. In the simplest case, an epidemic of a highly 
virulent infectious disease eliminates a large number of susceptible organisms very 
quickly, thereby favoring the disproportional reproductive success of resistant indi-
viduals. In such a scenario pathogen-mediated selection is assumed to be strong. 
However, such a model of host–pathogen coevolution is pertinent in extreme cases 
only. Pathogens of moderate-to-low virulence can also affect host immune allele 
frequencies by, for example, contributing to lowered fertility in the form of physical 
inability to produce offspring after being infected or causing a lesser ability to acquire 
mates as a result of decreased mobility (Cheney et al.  1988 ; Levin et al.  1988 ). 
Pathogens that do not kill a host, therefore, can affect sexual selection and gene fl ow. 
Of course, the consequences of a deadly epidemic may  not  be limited to removal of 
the alleles that contribute to disease susceptibility, such as those of surface antigens 
recruited by a pathogen to penetrate the host. Such strong selective pressure may also 
affect alleles that contribute to increased susceptibility to coinfections or to overt 
immune activity that leads to the development of secondary conditions (e.g., sepsis). 
Pathogen pressure may also select for resistance traits and in doing so affect the 
frequency of linked alleles in a population through selective sweeps. 

 The most popularized perception of host–pathogen evolutionary interaction is the 
concept of a host–pathogen evolutionary arms race. This idea is derived from the 
application of Leigh Van Valen’s  1973  Red Queen hypothesis to hosts and pathogens 
(Van Valen  1973 ). The Red Queen hypothesis proposes that closely associated organ-
isms may coevolve so tightly that the likelihood of extinction for one or the other is 
constant over geological time. Changes in one species affect the tightly coevolved 
interface with another species, threatening either species with extinction. As stated by 
the Red Queen in Lewis Carroll’s  Through the Looking Glass : “Now, here, you see, it 
takes all the running you can do, to keep in the same place.” Tightly coevolved hosts 
and pathogens have to “run”—that is, evolve quickly—just to maintain a balance and 
avoid extinction. Within this framework, it is tempting to characterize host–pathogen 
relationships as benefi cial for the host to recognize and either tolerate or eliminate a 
pathogen, with a pathogen’s main recourse being to evade a host’s defensive mecha-
nisms. These interactions are thought to result in head-to- head collisions between a 
host’s immune system and a pathogen, leading to selective pressure on the immune 
system and the pathogen and culminating in coadaptation. 

 However, some pathogens actually co-opt normal mechanisms of primate 
immune recognition and the subsequent responses, such as cytokine release, cell 
traffi cking, and tissue destruction, using them to their advantage.  Mycobacterium 
tuberculosis  (tuberculosis) infection is enhanced by the release of host anti- 
infl ammatory cytokine IL-10 (Redford et al.  2011 ). Once consumed by a macro-
phage,  Yersinia pestis  (plague) migrates to its main point of dissemination, the 
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lymph nodes, while acquiring phagocytosis resistance (Oyston et al.  2000 ; Pujol 
and Bliska  2003 ; Zhou et al.  2006 ). Similarly, HIV can disseminate to the lymph 
nodes and other regions through antigen-presenting cells (Koppensteiner et al. 
 2012 ). Moreover, exaggerated and uncontrolled immune cell responses may result 
in host death—such is the case of severe sepsis and septic shock triggered by strong 
innate immune cell recognition of immune system insult (e.g., blood stream infec-
tions and injury) (Brown et al.  2006 ; Murdoch and Finn  2003 ; Zemans et al.  2009 ). 
Rather than acquiring permanent and costly adaptations, some pathogens can escape 
host immune defenses through transient amplifi cation of a resistance gene that 
 creates tandem arrays aptly named “genomic accordions.” Poxviruses encode two 
factors, E3L and K3L, which inhibit the host antiviral factor protein kinase R (PKR). 
In viruses lacking E3L, K3L rapidly becomes amplifi ed 10–15-fold via serial dupli-
cation, which increases viral fi tness. However, the tradeoff for increased genome 
size is less effi cient replication. Remarkably, an expanded genomic array of identi-
cal resistance genes in a pathogen increases the probability of emergence, fi xation, 
and spreading of additional K3L mutants with improved host avoidance; these 
viruses subsequently lose the K3L duplicated array but retain the novel resistance 
mutation (Elde et al.  2012 ). 

 Two limiting factors for pathogen-driven evolution of the immune system are 
disadvantages rendered to the host by hyper-responsiveness, leading to autoimmune 
disorders, and inadvertent pressure on symbiotic and commensal organisms. An 
overactive immune system is responsible for the development of chronic conditions 
mediated by the immune system itself, such as systemic lupus erythematosus, 
antiphospholipid syndrome, polycystic ovary syndrome, and diabetes, among oth-
ers, that negatively affect reproductive fi tness and may therefore contribute to 
immune system evolution (Carp et al.  2012 ). 

 Consequently, immune system divergence between species is not driven by host–
pathogen interaction alone but is profoundly affected by the living environment, 
which includes a complex network of interspecies interactions between hosts, sym-
bionts, commensals, and pathogens (Klimovich  2002 ; Lee and Mazmanian  2010 ). 
A species, with its associated microorganisms, can be considered a “holobiont,” an 
evolutionary unit encompassing the totality of organisms involved in commensal-
istic, symbiotic, and parasitic relations (Zilber-Rosenberg and Rosenberg  2008 ). 
Changes in the fi tness of any holobiont-involved species affect the system as a 
whole, rather than just the fi tness of the host species. Indeed, changes in the compo-
sition of intestinal microbiota may promote outgrowth or invasion by pathogenic 
microorganisms or induce an exaggerated host response that results in the onset of 
various autoimmune disorders such as infl ammatory bowel disease (Maynard et al. 
 2012 ). Alternatively, dietary and environmental changes may cause a shift in 
species- associated microbiota that results in the appearance of new pathogens or 
symbionts. Establishing whether new species-specifi c pathogens are effectors or 
consequences of speciation is a daunting task.  

J.F. Brinkworth and K. Pechenkina
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    The Role of Pathogens in Primate Speciation 

 Interaction with pathogens likely played an important role in primate speciation in 
several ways. Pathogens have contributed to primate genome divergence through 
direct integration of microorganismal genomes into the genomes of primate germ-
line cells. Over millions of years, viral integration into host genomes has changed 
genome sequences and affected multiple biological functions (Arnaud et al.  2007 ; 
Hunter  2010 ). For instance, Dunlap et al. ( 2006 ) proposed that effective placenta 
formation in mammals is impossible without a gene coding for an envelope protein 
that was initially introduced by a retrovirus (HERV-W) (Dunlap et al.  2006 ). Once 
incorporated, viral genomes were inherited by offspring. Past retroviral infections 
of human ancestors now represent approximately 8 % of the human genome 
(Bannert and Kurth  2006 ). Due to different histories of pathogen exposure, primate 
genomes differ from one another in terms of the types and numbers of integrated 
viral sequences (Horie et al.  2010 ; Kim et al.  2008 ). As such, viral pathogens have 
contributed to the divergence of primate genomes and the divergent functions of 
primate genes (Gogvadze et al.  2009 ; Wang et al.  2007 ; Yohn et al.  2005 ). 

 While portions of primate genomes have diverged because of species-specifi c 
viral integration, some loci appear to have evolved under pathogen-driven selection. 
Multiple pathogens have been identifi ed as having exerted selective pressure on pri-
mate immune factors for millions of years [i.e., retroviruses and apolipoprotein 
B-editing catalytic polypeptide 3G (APOBEC3G) (Sawyer et al.  2004 ), retroviruses 
and Tripartite Motif 5 alpha (TRIM5α) (Sawyer et al.  2005 ; Song et al.  2005 ), 
 Plasmodium falciparum  and glycophorin C (Maier et al.  2003 ), and  Mycobacterium 
tuberculosis  an granulysin (Stenger et al.  1998 )]. Primate immune genes, proteins, 
and cells have structurally and functionally diverged. Primate immune factors show 
evidence of selection [CC-motif receptor 5 (Wooding et al.  2005 ), Toll-like Receptors 
1 and 4 (Nakajima et al.  2008 ; Wlasiuk and Nachman  2010 ), TRIM5α (Sawyer et al. 
 2005 ), Cluster of Differentiation-45 (Filip and Mundy  2004 ), and Protein kinase R 
(Elde et al.  2009 )] or interspecies divergence in function [Major- histocompatibility 
Complexes, Killer cell Immunoglobulin-like Receptors (Abi- Rached et al.  2010 ; 
Moesta et al.  2009 ), Toll-like Receptor 7 (Mandl et al.  2008 ,  2011 ), and ApoLI 
(Thomson et al.  2009 )]. Reconstructions of primate evolutionary relationships based 
on the regulatory and coding sections of immune system genes deviate signifi cantly 
from generally accepted primate phylogenies [Toll-like receptor 2 (Yim et al.  2006 ), 
CXC-motif receptor 4 (Puissant et al.  2003 ), and Major Histocompatability-DQA1 
(Loisel et al.  2006 )]. Although it appears that pathogens have directly contributed to 
the evolution of individual loci, we primarily understand these changes in the context 
of the primary structures of individual genes or proteins and not in the context of 
immune function. Until the functional effects of these changes are considered, it is 
impossible to appreciate how they contributed to speciation or disease susceptibility 
and progression. A goal of this volume is to integrate available information on struc-
tural and functional differences in primate immunity with data on the evolutionary 
analysis of gene sequences, pathogen life cycles, and evolutionary history.  

Primates, Pathogens and Evolution: An Introduction
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    Clinical Implications of Primate–Pathogen Coevolution 

 As a consequence of primate–pathogen evolutionary interactions, primates exhibit 
strong interspecies and interpopulation differences in immune response to a broad 
range of pathogens, some of which are major agents of human disease. Many lin-
eages of African nonhuman primates have hosted immunodefi ciency viruses (IV) 
over millions of years and their extant descendents do not develop the overt 
immune activation and white blood cell loss that typifi es late stage IV infection 
(AIDS) in comparatively new hosts such as humans or Asian monkeys [reviewed in 
Pandrea and Apetrei  2010 ; see also Greenwood et al.  2013 ]. Nonhuman primate 
Herpes simian B virus infections in their natural hosts are fairly asymptomatic or 
manifest mildly, in a manner similar to human herpes simplex mucosal blisters. 
When transmitted to naïve primate hosts, including humans, these herpes infections 
can progress to encephalopathy (Artenstein et al.  1991 ; Chellman et al.  1992 ; Estep 
et al.  2010 ; Vizoso  1975 ). Unless severely immunocompromised, humans infected 
with the brain and muscle parasite  Toxoplasma gondii  are asymptomatic or develop 
a self-limited disease characterized by fever and enlarged lymph nodes (Jones et al. 
 2007 ). By contrast,  T. gondii  infections in New World monkeys are characterized 
by loss of strength, respiratory diffi culty, and high mortality (Epiphanio et al.  2003 ; 
Catão-Dias et al.  2013 ). Research on the molecular mechanisms responsible for 
such variation in disease manifestation among different primate species involves 
multiple, often disparate areas of study, which contributes to gulfs between research 
on immune function, research on primate–pathogen evolution, and the clinical 
application of the resultant fi ndings. 

 Arguably, the molecular mechanisms of immunodefi ciency virus infection in 
primates are the best understood primate–pathogen interactions. The severity of the 
HIV pandemic and a strong interest in developing viable therapies have encouraged 
the examination of disease susceptibility and progression in primates, but mainly in 
a limited selection of catarrhine species. Primate-IV studies often use a comparative 
evolutionary approach as a starting point for the analysis of primate immunity and 
disease progression. An important advance in HIV therapy research has been the 
fi nding that IVs have emerged multiple times in the course of primate evolution and 
have closely coevolved with their hosts over millions of years (Pandrea and Apetrei 
 2010 ; Santiago et al.  2002 ; Switzer et al.  2005 ; Van Heuverswyn et al.  2006 ; Zhu 
et al.  1998 ). Comparative studies of primate-IV interactions have led to the identifi -
cation of several immune factors thought to be under selective pressure from IVs 
and might serve as therapeutic targets including TRIM5α (Ortiz et al.  2006 ), 
APOBEC3G (Sawyer et al.  2004 ,  2005 ), Tetherin/BST2 (Jia et al.  2009 ), IL-4 
(Koyanagi et al.  2010 ; Rockman et al.  2003 ), TLR7 (Mandl et al.  2008 ), TRAIL 
(Kim et al.  2007 ), CCR5 (Wooding et al.  2005 ), and MHC I (de Groot et al.  2002 ). 
A limited number of broader interspecies differences in the proportion of immune 
cell types, activation of immune cells, expression of immune genes, and stimulation 
of cell death that may affect disease progression have also been noted (Kim et al. 
 2007 ; Mandl et al.  2008 ; Soto et al.  2010 ). While primates serve as models for the 
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study of other diseases and have been examined as xenotransplantation subjects, 
what we currently know about interspecies differences in primate immune function 
is largely derived from comparative IV-primate research. 

 Although the genetic and functional differences identifi ed through IV research 
may also contribute to a clearer picture of general immune responses to pathogens, 
we do not know how many of these immune factors are activated across primate 
species or whether this activation is stimulated in a similar way by other pathogens. 
This gap points to fundamental problems in our understanding of primate–pathogen 
interactions. First, current research is biased toward a limited number of species 
such as rhesus macaques ( Macaca mulatta ), humans, and sooty mangabeys 
( Cercocebus atys ). Second, these studies typically use a challenge model. As such, 
cross-species examinations of resting/baseline primate immunity are extremely 
limited. How the activation and coordination of multiple immune factors 
coevolved with pathogens has yet, therefore, to be thoroughly investigated. To 
develop a better understanding of how pathogens affect primate speciation, conser-
vation, and health, considerable additional information is needed on the differences 
in resting/baseline immune function and non-IV pathogen–host interactions across 
a greater number of  primate species. Given the expense and special care consider-
ations inherent in acquiring experimental data from primate species, it is particu-
larly important that these efforts are comprehensive and that the resulting reports are 
made readily accessible.  

    The Effects of Increasing Human and Wild Nonhuman 
Primate Contact on Primate–Pathogen Interaction 

 In areas where human settlements and nonhuman primate habitats overlap, the  
 potential for interspecies disease transmission increases dramatically (Chapman 
et al.  2005 ; Daszak et al.  2000 ; Duval and Ariey  2012 ; Reynolds et al.  2012 ; Stothard 
et al.  2012 ; Wheatley and Harya Putra  1994 ). Such transmission events can decimate 
wild primate populations, as new infectious diseases may profoundly affect animal 
 survival, sociality, and reproduction (Berdoy et al.  2000 ; Nunn et al.  2008 ; Nunn 
 2012 ). Increased ecotourism and residential/agricultural contact has led to height-
ened transmission of anthroponotic pathogens to wild primates and subsequently to 
increased mortality in primate populations [e.g., chimpanzees and Polio virus (Wallis 
and Lee  1999 ), gorillas and respiratory disease (Palacios et al.  2011 ), baboons and 
 Schistosoma mansoni  (Farah et al.  2003 ; Murray et al.  2000 ), chimpanzees and para-
myxoviruses (Kondgen et al.  2008 ), chimpanzees and  Schistosoma mansoni  (Stothard 
et al.  2012 ), and baboons and  Mycobacterium  (Keet et al.  2000 )].  Plasmodium falci-
parum  may have been introduced anthropolonotically to the neotropical primates 
during the colonial era, possibly through the forced migration of African slaves dur-
ing the slave trade. Neotropical primate  P. simium  has been proposed to have emerged 
from Asian  P. vivax  during the nineteenth century, and perhaps introduced to South 
America by laborers from East Asia (reviewed in Cormier  2010 ). 
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 The transmission of pathogens from nonhuman primates to humans has also had 
a profound effect on human health. The current HIV-1/AIDS pandemic likely origi-
nated with human consumption of SIV-contaminated nonhuman primate bushmeat 
(Gao et al.  1999 ). The emergence of other diseases in humans has likewise been 
attributed to human and nonhuman primate contact [i.e., Human T-Lymphotropic 
virus 1 (Vandamme et al.  1998 ), Monkeypox (Mutombo et al.  1983 ; Reynolds et al. 
 2012 ), and Malaria (Liu et al.  2010 )]. As humans encroach even farther onto nonhu-
man primate ranges, the need for veterinary and medical intervention will increase. 
To be able to develop appropriate modes of intervention, it is very important to have 
good information on the broad differences and similarities of primate immune systems 
as well as the biochemical mechanics of specifi c primate–pathogen interactions.  

    Research on Primate–Pathogen Interaction Remains 
Scattered and Incomplete 

 Despite the importance of pathogen-primate interactions over the course of primate  
evolution, research on the functional outcomes of pathogen-mediated primate 
evolution is incomplete and scattered across many disciplines. A unifi ed approach 
to the evolution of primate immunity will help better defi ne the mechanisms of 
disease emergence, immune function, resistance, and ecology. 

 To better understand the differences in human and nonhuman primate immunity 
and help guide future research, it is important to integrate information from research-
ers who study the effects of pathogens on the evolution of primate genome diversity, 
cell function, immune response, and gene expression. This volume is one attempt at 
such a synthesis, incorporating contributions from a multidisciplinary group of 
authors who:

    1.    Provide a compilation of current baseline information about primate–pathogen 
interaction and comparative primate immunity.   

   2.    Describe and analyze infectious disease emergence and pathogen escape of host 
defense mechanisms in the context of primate–pathogen coevolution.   

   3.    Explore divergent primate immune functions and the pathogen-mediated molec-
ular evolution of primates.   

   4.    Discuss the human health implications of primate–pathogen evolutionary 
interaction.      

    Overview 

 The fi rst section,  Immunity and Primate Evolution,  includes chapters that discuss major 
elements of the primate immune system (Brinkworth and Thorn; Brinkworth and 
Sterner), the use of primates as models of immune system evolution (Loisel and Tung) 
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and the pathogen-mediated evolution of primates (Gomez et al. and Allen et al.). 
The second section,  Emergence and Divergent Disease Manifestation,   provides data 
on the emergence, biochemical mechanics, and interspecies differences in immune 
response to immunodefi ciency viruses, as well as a range of clinically important, but 
otherwise neglected pathogens. Attention is focused on how some primate pathogens 
have emerged (Harper and Knauf; Greenwood et al.), coevolved with and escaped the 
defenses of their hosts (Wong et al.), and triggered divergent responses in different 
primate species (Catao-Dias et al. and Greenwood et al.). The third and fi nal section, 
 Primates, Pathogens, and Health , focuses on how primate–pathogen coevolution 
affects the health of modern primates. Three papers on the health and evolutionary 
impact of disruptions to human and microorganism association (Rook, Martin and 
Blackwell, and Harper et al.) review and test the hygiene hypothesis. The volume 
closes with an analysis of major human and nonhuman primate cross-species pathogen 
transmission events, the social and biological factors that contributed to those events, 
and what the evolutionary, public health, and conservation consequences of these 
events might be (Harper et al.). We thought it a wonderful chapter with which to close.   

    Conclusion 

 Primate immune systems have been formed through complex evolutionary pro-
cesses, within which pathogens have played an important role. The evolution of 
primate immunity has likely been more nuanced than natural selection driven by 
coevolutionary arms races with pathogens or large pathogen-mediated selective 
sweeps of hosts. Rather, the evolution of the primate immune system has likely been 
considerably shaped by, amongst other possibilities, moderately virulent pathogens, 
pathogen strategies that co- opt normal immunity, viruses integrated into the primate 
genome, commensal microorganism maintenance, autoreactivity, and overt immune 
responses, as well as the evolution of primate developmental stages. As close rela-
tives, animals within the order Primates can be comparatively studied to not only 
clarify how primate immune systems have functionally diverged and highlight 
therapeutic targets for disease, but also to help defi ne how such divergence contrib-
utes to disease emergence and interspecies disease transmission. As such, mapping 
the evolution of the primate immune system can improve our understanding of 
primate speciation, primate conservation, and human health. This volume is one 
effort to unite information on the evolutionary interactions between primate immune 
systems and pathogens. The chapters in this volume represent research from a broad 
range of disciplines involved in the study of primate–pathogen molecular interac-
tion, primate immune function, and primate–pathogen coevolution. The work pre-
sented here discusses primate interactions with both major and neglected pathogens, 
attempts to bridge research on molecular evolution and primate immune function, 
and illustrates the impact of primate–pathogen evolutionary interactions on 
human and nonhuman primate health. With this effort we aim to provide a sound 
base of knowledge for future investigation of human and nonhuman primate evolu-
tion, immunity, and disease.     
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           Introduction 

 Molecular and cellular responses as diverse as RNA interference against viral 
 infections in plants, antimicrobial peptides production in insects, and macrophage 
phagocytosis of  Listeria monocytogenes  bacterium in mammals are all manifesta-
tions of the immune system—an array of defense mechanisms against pathogens, 
cellular debris, and cancerous and dying cells that can secure the survival of host. 
It is an exquisitely organized and regulated system of defenses that has diversifi ed 
over hundreds of millions years and, yet, is suitably conserved such that multiple 
organisms (e.g., insects, lamprey, dogs, rodents, and primates) can serve as immu-
nological models of human health. 

 The practice of studying the immune system within the context of evolution, or 
“comparative immunology”, emerged in the late nineteenth century. The most 
famous early example of a comparative immunological approach is Elie 
Metchnikoff’s 1882 discovery of leukocyte phagocytosis. When Metchnikoff 
inserted rose thorns into starfi sh larvae to determine if the “wandering” cells (leuko-
cytes) of starfi sh responded to bodily invasion by foreign matter (Metchnikoff 
 1893 ), he found the cells aggregated around the thorns. He then reiterated his exper-
iment through the application of microorganisms to increasingly derived species 
(e.g., fl ies, rabbits) known to maintain leukocytes to fi nd that, universally, a subset 
of these cells ingested microbes and offered host protection (Metchnikoff  1887 ). 
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Thus, the innate immune strategy of phagocytosis was discovered. The comparative 
immunological approach Metchnikoff employed goes a step beyond simply  applying 
a representative animal model to a question of immunity. Comparative immunology 
involves comparing differences and similarities in organisms’ immune responses to 
draw broader conclusions about immune system function and its evolution. This 
approach can be useful for the identifi cation of immune system components respon-
sible for particular disease phenotypes, as well as the discovery of novel immune 
mechanisms. The use of other vertebrate animals such as jawless vertebrates, 
amphibians, and rodents as biomedical models can shed light on overriding princi-
ples of immunity. Comparisons of primate immunity in the context of vertebrate 
immune system evolution can be useful for the understanding of biomedical model 
use, primate evolution, and human health. 

 Primates are a recent addition to the comparative exploration of animal immune 
responses. Direct interspecies comparisons of primate immune system function 
emerged in the 1920s but did not become common until decades later. The under-
standing of comparative primate immunity mainly developed through nonhuman 
primate/human xenotransplantation studies in the 1960s, as well as immunodefi -
ciency virus research from the late 1980s onwards (Benveniste et al.  1986 ; Daniel 
et al.  1984 ; Hardy et al.  1964 ; Hitchcock et al.  1964 ; Murphey-Corb et al.  1986 ; 
Reemtsma et al.  1964a ,  b ; Starzl et al.  1964 ). Until the adoption of catarrhine (Old 
World monkey, apes, and humans) species for HIV research, few immunological 
studies using  different primate species compared interspecies differences. It is 
now well established that primates exhibit within-order variation and, sometimes, 
biologically unique manifestations of infectious diseases (Epiphanio et al.  2003 ; 
Ngampasutadol et al.  2008 ; Pandrea and Apetrei  2010 ; Thomson et al.  2009 ; 
Walker  1997 ). Still, monkey and ape species are commonly used in immunologi-
cal research as corollaries for human disease progression due to their biochemi-
cal, physiological, and genetic similarity to humans. Because there are so many 
immune system similarities between primate species, there is a tendency in non-
HIV literature to make the assumption that what is represented in one primate 
species is represented in other primate species and, possibly, other nonprimate 
models. By making this assumption a researcher risks overlooking aspects of 
primate immune systems that are unique and using primates unnecessarily to 
explore immunological traits that they share with many other model organ-
isms. Comparative information on baseline primate immunity, particularly the 
anatomy and function of major immune organs and cell types, is rare and scat-
tered across many fields. In certain cases it is entirely unexplored. The goal of 
this chapter is to illustrate the place of primates in immune system evolution 
by (1) putting the emergence of major primate immune system components in 
the context of the evolution of vertebrate immunity as a whole and (2) illustrating 
how baseline primate immunity has diversifi ed by uniting and highlighting the 
available information on interspecies functional differences in baseline primate 
immune system structures and components.  
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    Overview of the Mammalian Immune System 

 As jawed vertebrates, mammals maintain an immune system that can be broken into 
two major arms based on function. The innate immune response is the more ancient 
of these two arms, having invertebrate origins (Leulier et al.  2003 ; Yoshida et al. 
 1986 ). Innate immune defenses are inherited, germline encoded, nonspecifi c, and 
typifi ed by barriers (e.g., mucosa, skin), antimicrobial peptides, phagocytosis (initi-
ated by cells such as macrophages and neutrophils), and infl ammation (Janeway 
and Medzhitov  2002 ; Kumar et al.  2009 ). This kind of immunity limits initial infec-
tions by recognizing “nonself”, and damage through a variety of sophisticated but 
generalized mechanisms, including inherited pattern recognition receptors (e.g., 
Toll-like receptors, NOD-like receptors) that detect foreign material through molec-
ular patterns associated with pathogens or cellular damage. These patterns can be 
shared broadly by microorganisms or may signal tissue damage. They are conven-
tionally and somewhat imprecisely referred to as pathogen- or danger- associated 
molecular patterns (PAMPS or DAMPS) (Seong and Matzinger,  2004 ). 

 By contrast, adaptive immunity is highly specifi c, not immediate, key to immu-
nological memory, modulated by innate immunity, and acquired over a lifetime. 
While phagocytosis is an important tool in innate immune defenses, the targeting 
of matter bearing specifi c epitopes by lymphocytes (e.g., T and B cells) and the 
retention of some of these target-specifi c lymphocytes is key to adaptive immunity. 
Lymphocytes express membrane receptors (T-cell receptors for T cells and B-cell 
receptors for B cells) that recognize antigens. Unlike innate immunity, which makes 
use of germline encoded receptors, adaptive immunity has been traditionally viewed 
as reliant on receptors and immunoglobulins that are made highly variable through 
recombination activating gene (RAG)-mediated gene rearrangement/somatic 
recombination that occurs during lymphocyte development. From a limited number 
of receptor genes is borne a broad repertoire of specifi c receptors. As a result, rather 
than recognizing pathogens through PAMPS, the lymphocytes and immunoglobu-
lins of the adaptive system recognize and “remember” distinct epitopes [reviewed in 
(Hardy  2003 )]. 

 The simplifi ed view of the vertebrate immune system function is one of immedi-
ate recognition of invading pathogens by the innate immune system and subsequent 
initiation of a specifi c adaptive immune response. In mammals, for example, when 
innate immune cells recognize foreign antigens, they initiate the release of reactive 
signaling proteins known as cytokines. Cytokines degrade pathogens nonspecifi -
cally and initiate activation of an epitope/pathogen-specifi c T and B cell-mediated 
adaptive immune response. T and B cells can become activated when receptors they 
bear belonging to the immunoglobulin receptor superfamily, T- and B-cell receptors 
(TCRs and BCRs), recognize specifi c epitopes that are presented to them via major 
histocompatibility complexes (MHC) on phagocytic cells (e.g., macrophages and 
dendritic cells). B cells can also become activated through direct encounters with 
pathogens bearing these epitopes. Activated T and B cells then clonally replicate in 
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secondary lymphoid tissues, to be released as cytotoxic, phagocytic, or antibody 
producing cells that recognize and attempt to eliminate a specifi c epitope target. 
Engagement of the adaptive immune response typically occurs after the 4th hour of 
infection. The fi rst clonal adaptive immune cells are released ~96 hours from the 
point of initial T- or B-cell activation. The fi rst minutes and days of infection, there-
fore, are mainly mediated by innate immunity. As an infection is cleared over suc-
cessive hours, most clonal T and B cells die off. A small percentage, however, 
remain in circulation as memory T and B cells. Memory cells speed the adaptive 
response to reencountered foreign epitopes and are the basis for immunological 
memory of past infections (Davis and Chien  2003 ; Jenkins  2003 ; Paul  2003 ). 

 Even this simplifi ed description of mammalian immune system function only 
partially represents the immune system of other vertebrate classes as certain key 
components (e.g., lymph nodes, spleen components, and particular immunoglobu-
lins/BCRs) did not appear until the emergence of recent vertebrate classes such as 
birds and mammals. The traditional paradigm of adaptive immunity is that it 
emerged in the last common ancestor of jawed vertebrates (gnathostomata) approxi-
mately 625 million years ago (mya). All lower vertebrates were thought to survive 
microbial assault only by initiating a generalized innate immune response. However, 
in the last decade it has become apparent that some components we associate with 
adaptive immunity emerged much earlier than previously assumed. The fi rst evi-
dence of lymphocyte- derived cytokines and receptors with immunoglobulin (Ig)-
like domains, for example, can be found in sponges (Blumbach et al.  1999 ). In 
2007, fi rst evidence of somatic diversifi cation of antigen receptors in lamprey came 
to light, supporting the existence of an “adaptive” immune system in jawless verte-
brates (agnatha) (Guo et al.  2009 ; Rogozin et al.  2007 ). While these receptors, 
known as variable lymphocyte receptors (VLRs, discussed further below), are not 
related to the immunoglobulin receptor superfamily and are therefore not precursors 
to TCRs and BCRS, they appear to serve a similar function as antigen receptors 
(reviewed in Boehm et al.  2012b ). Since the discovery of VLRs, it now seems pos-
sible that adaptive immune systems based on antigen receptor diversity mediated by 
gene rearrangement/somatic recombination may have evolved more than once in 
Metazoan history (Boehm et al.  2012b ). The possibility that such sophisticated 
immune strategies in diverse vertebrate clades may be the outcome of convergent 
evolution attests to the immense evolutionary pressures that have shaped the verte-
brate immune system.  

    The Evolution of Vertebrate Immunity: 
Major Lymphoid Tissues and Organs 

 Lymphoid tissues function as the sites of lymphoid cell development, selection of 
antigen–receptor repertoires, and effector cell coordination. These structures can be 
divided into primary or secondary lymphoid tissues based on their main function. 
Primary lymphoid tissues are sites of lymphocyte effector cell poiesis and 
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