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Part I

Commentaries

In all commentaries, reference numbers preceded by “GA” refer to the
in the list of Gautschi’s publications; see Section 4, Vol. 1. Numbers in boldface 

 numbers

type indicate that the respective papers are included in these selected works.



21

Linear recurrence relations

Lisa Lorentzen

Walter Gautschi is a giant in the field of linear recurrence relations. His concern
is with stability in computing solutions {yn}∞n=0 of such equations. Suppose the
recurrence relation is of the form

yn+1 + anyn + bnyn−1 = 0 for n = 1, 2, 3, . . . . (21.1)

It seems so deceivingly natural to start with values or expressions for y0 and y1, and
then compute y2, y3, . . . successively from (21.1). However, this does not always
work. Yet, in every new generation of mathematicians or users of mathematics,
along come some incorrigible optimists with a naive trust in this method. We are
happy, of course, for every new optimist in the field; mathematicians do not get
far without optimism, stamina, creativity, and enthusiasm. But the new ones can
definitely benefit from some sensible guidance. And what they should do, is to
start with Walter Gautschi’s SIAM Review paper [GA29] on three-term recurrence
relations from 1967. This is what most people do, and this is what I did when
I started my study of continued fractions. Continued fractions and recurrence
relations indeed share a substantial intersection which, however, calls for some
degree of alertness.

So what can go wrong if one computes a solution as described above? Several
things, says the Master. But the worst scenario occurs if one tries to compute a
solution {fn}∞n=0 of (21.1) which happens to be minimal. A sequence {fn} is a
minimal solution if (21.1) has a second solution {yn} for which fn/yn → 0. This
second solution is then called a dominant solution. The solution space of (21.1) is
obviously a two-dimensional vector space, so a small error in the initial data, for
example a rounding error, changes {fn} to some dominant solution {αfn + βyn},
β �= 0, with totally different asymptotic behavior. The discrepancy between fn
and αfn + βyn may be catastrophic after only a few computational steps, as so
convincingly demonstrated by Gautschi.

Not every such recurrence relation has a minimal solution, and one may think
that the subspace of minimal solutions is so small – if it exists at all – that the chance

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5 1,
© Springer Science+Business Media New York 2014
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4 Lisa Lorentzen

of encountering one is also minimal. But that is not at all the case. On the contrary,
as so often in mathematics, special cases are often the most interesting ones. A
number of important sequences of special functions are indeed minimal solutions of
linear recurrence relations. And here we are at the heart of the problem: how can
we compute minimal solutions stably and efficiently?

For recurrence relations of the form (21.1) the answer can be found in continued
fraction theory: the continued fraction

−b1
−a1−

b2
−a2−

b3
−a3− · · · = b1

a1−
b2

a2−
b3

a3− · · · (21.2)

has approximants
b1

a1−
b2

a2− · · · bn
an

=
An

Bn
,

where {An−1}∞n=0 and {Bn−1}∞n=0 are solutions of (21.1) with initial conditions

A−1 = 1, A0 = 0; B−1 = 0, B0 = 1.

Gautschi observes the following connection between the continued fraction (21.2)
and minimal solutions of (21.1), and attributes it to Pincherle, who proved it in
an obscure 1894 paper written in Italian: there exists a minimal solution {fn} of
(21.1) satisfying f0 �= 0 if and only if the continued fraction (21.2) converges to a
finite limit. In that case, moreover,

rn :=
fn

fn−1
=

−bn
an−

bn+1

an+1− · · · , n = 1, 2, 3, . . . , (21.3)

provided fn �= 0 for all n.
This immediately suggests a stable way to compute minimal solutions, namely

to compute the continued fractions rn, rn−1, . . . , r1 in (21.3) and then fn from

fn = rnrn−1 · · · r1f0,
assuming f0 is known. For more details, see also Section 11.1, Vol. 2.

But things are not always as easy as they may look on paper. It took a Walter
Gautschi to sort out the problems and work this simple idea into useful, reliable
algorithms. As always, it is the stability analysis, controlling the error, that takes
ingenuity. Via some very nice twists and tricks — see, e.g., Gautschi’s treatment in
[GA29, Sec. 7] and [GA35] of the three-term recurrence relation satisfied by Jacobi
polynomials of purely imaginary parameters and argument — his algorithms work
like a dream; these are not just algorithms on paper.

But what if f0 is unknown? Also this problem was handled by Gautschi: he
replaced the condition “f0 known” by “

∑∞
n=0 λnyn known”, with known coefficients

λn – a situation one often meets in the theory of special functions. Also this was
incorporated into his algorithms. Of course, Walter Gautschi has also treated linear
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recurrence relations of other forms (for example, see [GA150]) with the same care,
and he has applied them to compute important sequences of special functions,
orthogonal polynomials and interesting integrals. What is so very nice about his
algorithms is that they come with such a very careful and convincing stability
analysis. He has forever changed the way one looks at recurrence relations and
continued fractions.

People do not only read his books and papers – they really use his results.
His contributions to the Handbook of Mathematical Functions by Abramowitz and
Stegun are frequently consulted, both his Chapter 7 on the error functions and
Fresnel integrals and Chapter 5 which he wrote with W.F. Cahill on the exponential
integral and related functions. Not to mention his algorithms for the complex error
function, the incomplete gamma functions, the Fresnel integrals etc. in the NAG-
library and other places (cf. Section 6.1, Vol. 1). To me , the very fact that so many
people talk with ease about minimal solutions and stability analysis as if they had
known about it all their lives, is particularly gratifying. And this happens not
only in conferences on recurrence relations, but on special functions, orthogonal
polynomials, continued fractions, and applied mathematics, to mention just a few.

You know your ideas have made a deep impression when fellow mathematicians
begin to name concepts after you. And in the literature one finds references to
the “Gautschi algorithm” number so and so, the “Gautschi method” for stability
analysis, and even (more amusingly) the “Gautschi-type method” as if there were
some people out there of “Gautschi-type”. I think one would have a hard time
finding anyone like Walter Gautschi. After the very sad death of his twin brother,
Walter is unique. His clear mind and his creativity penetrate all his work, and
also his oral as well as written presentations. So I end this short exposition with a
serious advice: dig in and enjoy.



22

Ordinary differential equations

John Butcher

These days everyone talks about “impact” as something that can be measured in
terms of citations within a year or two, but the impact of many important con-
tributions to science can be looked at in other, more perceptive, ways. I believe
this is especially true of [GA14]. This paper is forward-looking to the extent that
its importance has become recognised more and more as time has passed. In my
opinion the impact of this contribution has been tremendous. Over the years it has
become known as a pioneering paper in the fitted type of approach to the solution
of initial value problems. It has been referenced directly soon after its publication
but even more so in recent years. It is related to exponential integration, to ex-
ponential fitting, and to modern approaches to the solution of highly-oscillatory
problems. The ideas and results in the original paper have been rediscovered inde-
pendently by later authors, but the depth and scholarship in Gautschi’s exposition
are unmatched. Here are the key definitions near the start of the paper.

A linear functional L in Cs[a, b] is said to be of algebraic order p if

Ltr = 0 (r = 0, 1, . . . , p);

it is said to have trigonometric order p, relative to period T , if

L1 = L cos
(
r 2π

T t
)
= L sin

(
r 2π

T t
)
= 0 (r = 1, 2, . . . , p).

On this foundation, the paper goes on to analytical questions concerned with the
existence of trigonometric methods, the actual construction of methods, especially of
Adams and Störmer types, numerical investigations, and the sensitivity of numerical
results to the value of T in relation to the exact period.

The chapter [GA15] from Survey of numerical analysis, McGraw-Hill, New York
(1962), written in collaboration with H. A. Antosiewicz, surveys the state of knowl-
edge, at the time, of numerical methods for ordinary differential equations. This
work set the standard for theoretical expositions on this subject, appearing as it
did, a short time prior to the monograph of P. Henrici. Although the work of

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5 2,
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8 John Butcher

Curtiss and Hirschfelder had appeared several years earlier, it was not yet known
and appreciated in the mathematical community. However, a cautionary example
problem,

dy

dx
=

(
0 1

10a2 9a

)

y, y(0) =

(
1
−a

)

,

is presented which, for a > 0, leads to approximations to the solution exp(−ax)y(0)
being eventually, but inevitably, overshadowed by terms which grow like exp(10ax).
After stiffness had become a recognised phenomenon, it would have become more
illuminating to consider a < 0; in this case the difficulty would not have been that
the required solution is buried amongst dominant alternative solutions, but that
the required solution has now become dominant even though its dominance is lost
in computations with classical explicit methods.

Looking now at [GA54], we are reminded of a crucial time in the history of
Runge–Kutta methods. This review paper acknowledged recent work, by Fehlberg
and others, in constructing embedded methods for the purpose of step-size control.
It appeared at a time when Henrici’s monograph was becoming recognised as a
model for exposition in numerical analysis and took the rigorous mathematical style
a step further. But global error bounds based on very reasonable assumptions, such
as the Lipschitz condition, do not necessarily give tight error bounds. This beautiful
paper viewed retrospectively, encapsulates all these ideas.

Paper [GA56] contains short and elegant proofs of the asymptotic behaviour of
the coefficients in Adams and other integration formulae.

For a linear k-step method (ρ, σ), where ρ is given, with zeros satisfying 1 = ζ1 ≥
|ζ2| ≥ |ζ3| ≥ · · · ≥ |ζk|, there is a unique choice of σ to give order p = k+1. The aim
of the paper [GA73] is to determine the method for which |ζi| ≤ γ, i = 2, 3, . . . , k,
0 ≤ γ < 1, that has minimal global error constant. It is shown that in the optimal
solution, ζi = −γ, i = 2, 3, . . . , k. Ramifications of the result are studied in detail.

Somewhere between the appearance of the first and last paper surveyed here, I
met Walter Gautschi in person. I was once his guest at Purdue and met him from
time to time at conferences. I have come to know him as a kind and courteous
person as well as a scholarly, knowledgeable, and original mathematician.



23

Computer algorithms and software packages

Gradimir V. Milovanović

During the preparation of the Handbook of Mathematical Functions, under the
direction of Milton Abramowitz at the Bureau of Standards (now the “National
Institute of Standards and Technology”), Walter Gautschi, then a young research
mathematician, joined this project in 1956. This was the starting point of a period
of intense work with special functions. During the 1960s, in addition to theoretical
work in several domains of special functions (see Section 6, Vol. 1), Walter developed
a number of computer algorithms evaluating special functions: the gamma func-
tion and incomplete beta function ratios [GA22], Bessel functions of the first kind
[GA23], Legendre functions [GA24], derivatives of ex/x, cos(x)/x, and sin(x)/x
[GA27], [GA38], regular Coulomb wave functions [GA28], [GA33], the complex error
function [GA36], repeated integrals of the coerror function [GA60], and incomplete
gamma functions [GA69].

In 1968 Gautschi began to write computer algorithms for Gaussian quadrature
formulas, the first being the one in [GA32]. This opened the door for extensive
work on orthogonal polynomials and their applications (see Sections 11, 12, 14, 15

ORTHPOL, appeared in 1994 as Algorithm 726 in [GA141]. It contains routines,
written in Fortran, that produce the coefficients in the three-term recurrence
relation for arbitrary orthogonal polynomials as well as nodes and weights of Gauss-
type quadrature rules. A more specialized package, GQRAT [GA159], produced Gauss
quadrature rules which are exact for a combination of polynomials and rational
functions. They are useful for integrating functions that have poles outside the
interval of integration.

The package ORTHPOL, as well as the subsequent package OPQ of Matlab rou-
tines, both made available on the internet (http://www.cs.purdue.edu/archives/
2002/wxg/codes), led to a significant boost in the computational use and applica-
tion of orthogonal polynomials. The companion package SOPQ, also available on the
internet, contains symbolic versions of some of the more important routines in OPQ.
They can be used for high-precision work in orthogonal polynomials and Gaussian

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5 3,
© Springer Science+Business Media New York 2014
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inVol. 2), but also for developing related software. The first major software package,
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quadrature. A similar package in Mathematica is OrthogonalPolynomials [1]
(see also [2]).

A very comprehensive account of computational methods and software in Mat-
lab is provided in [GA179]. It illustrates the use of the OPQ routines in an elegant,
interesting, and methodical way.

References

[1] Aleksandar S. Cvetković and Gradimir V. Milovanović. The Mathematica package
“OrthogonalPolynomials”. Facta Univ. Ser. Math. Inform., 19:17–36, 2004.

[2] Gradimir V. Milovanović and Aleksandar S. Cvetković. Special classes of orthogo-
nal polynomials and corresponding quadratures of Gaussian type. Math. Balkanica,
26(1–2):169–184, 2012.
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History and biography

Gerhard Wanner

24.1. Euler

The ICIAM Congress 2007, held in Zürich, happened to be in the year of Euler’s
300th anniversary. It was then clear to the organizers, that one of the invited
talks should be dedicated to Euler and Euler’s work. Fortunately, Walter Gautschi
accepted this invitation and presented a fascinating talk on Euler’s life, his person-
ality, an overview of his work and some selected topics in more detail. This took
place in the largest lecture hall (the “Turnhalle”), filled up to the last seat. I still
remember the total silence in the audience, when Gautschi ran a video of an Euler
gear transmission, turning, as he said, “without any noise”. An expanded version of
this talk [GA187] was prepared for the proceedings of the congress and, by mutual
agreement between the publishers, also appeared in SIAM Review 2008, followed
by a Chinese translation. Two particular items from this talk, Euler’s treatment of
slowly converging series and Euler’s discovery of the convergence to a wrong limit
of interpolatory polynomials for the logarithm, a phenomenon which 100 years later
became known as q-theory, led to two separate publications, [GA183] and [GA186].

24.2. The Bieberbach conjecture

An extraordinary story is told in [GA101], where Gautschi, who had worked all
his life on numerical analysis, quadrature, and orthogonal polynomials, suddenly
had the occasion to complete, in a couple of days, Louis de Branges’s proof of
a long-standing conjecture in pure mathematics. This conjecture, an inequality
for the Taylor coefficients of a 1-1 holomorphic mapping from a circle to a simply
connected domain, was formulated by Bieberbach in 1916 during his early work on
the Riemann mapping theorem. During many decades, this conjecture had resisted
the efforts of the foremost experts in complex analysis. Louis de Branges finally
managed to reduce this conjecture to inequalities for integrals of Jacobi polynomials
and thought that Walter Gautschi, with his algorithms and computers, could help to

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5 4,
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12 Gerhard Wanner

verify them. Gautschi not only did a lot of computer computations, but eventually
found out that the inequalities had been proved a decade earlier by R. Askey and
G. Gasper. I remember that P. Henrici, who lectured on this proof in January of
1985 in Stockholm on the occasion of Dahlquist’s 60th anniversary, concluded his
talk with the observation that a mathematician cannot know everything, but that
“it is always important to know where to ask”.

24.3. Survey articles

Walter Gautschi, with his broad knowledge of numerical analysis and his many
personal contacts with leading experts, was (and is) in excellent position to write
extraordinarily clear survey articles. Even when he wrote on a particular scientist,
his narrative always turned into a beautiful and clear exposition of the underlying
mathematics. We therefore collect them together: the article [GA74] on Gauss-
Christoffel quadrature, the article [GA143] on Philip Rabinowitz and numerical
integration, the papers [GA144] on 2d-iterations and numerical quadrature and
[GA189] on asymptotics and estimation of zeros of special functions summarizing
work of Luigi Gatteschi, and finally [GA170], the interplay between classical analysis
and numerical linear algebra as a special tribute to Gene H. Golub. The same
subject is dealt with in Gautschi’s commentary [GA184], written for the edition of
the selected works of Gene H. Golub.

Finally, in [GA201], Gautschi tells the story of how he came into scientific
contact with G. V. Milovanović (we all have experienced, as referees, receiving a
paper which immediately could be simplified and improved; authors then often react
angrily, but in other situations such as the one described here, this was the starting
point of a long friendship and collaboration). Gautschi’s paper then continues with
a description of Milovanović’s work on Gaussian integration with unusual weight
functions, and moment-preserving spline approximation.

24.4. Biography

The biography, which Gautschi wrote, was for his esteemed teacher Alexander
M.Ostrowski [GA196], one of the great mathematicians of the 20th century. This
paper is an extended version of an earlier paper [GA171] (not reproduced in these
volumes) written in Italian. This account of Ostrowski’s life and work, carefully
written by one of his last students, is highly interesting and needs no further
comment.



25

Miscellanea

Martin J. Gander

Here, five “miscellaneous” papers of Walter Gautschi are commented on, [GA96,
GA124, GA125, GA175, GA197], preceded by some personal reminiscences.

I encountered Walter Gautschi’s work several years before I encountered him in
person. I was a PhD student at Stanford and taking a course given by Gene Golub
on orthogonal polynomials and quadrature. Several faculty members were also
taking this course, among them Andrew Stuart, who became my PhD supervisor,
and Alan Karp. During the lectures, Alan Karp posed an interesting problem of
computing Gauss quadrature nodes and weights for difficult weight functions arising
in radiative transfer. I immediately put to work what I had learned in class, and
failed, since all the methods we had seen were becoming rapidly unstable, and it
was not possible to compute the recurrence coefficients of the required orthogonal
polynomials to sufficiently high accuracy. So I started to search the literature and
came across a paper of Walter Gautschi, [GA141], which describes precisely the
problems I was working on, and also proposes an ingenious discretization procedure,
which allowed me to replace the unstable approaches I tried before by orthogonal
transformations, which are naturally numerically stable. This procedure allowed
us to compute very effectively high-order Gauss quadrature rules for all important
weight functions in this application, and led to the short paper [3].

I met Walter Gautschi for the first time on Sunday, April 26, 1998, when he
came for a seminar to the École Polytechnique in Paris, where I was doing my
postdoc. We hit it off immediately, and when our twins were born in Montreal,
this added a further common bond, since Walter Gautschi also had a twin brother,
Werner Gautschi, a very talented mathematician as well, who unfortunately passed
away too early in life. When I moved to Geneva for a full professorship, I invited
Walter Gautschi to give a talk at our mathematics colloquium, and, happily, he
agreed to come. He gave a very well-received talk about “The spiral of Theodorus,
numerical analysis, and special functions”. To my delight, I found this talk again in
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14 Martin J. Gander

one of the papers I was assigned to study more closely in this tremendous enterprise
of commenting on the selected works of Walter Gautschi. I will do this, however,
in chronological order, so the Theodorus paper will come last.

25.1. The FG algorithm

This paper, [GA96], which is joint work with Bernard Flury from the University
of Bern, appeared when I was still in high school! It is very atypical for the work
of Walter Gautschi I am familiar with, dealing with a topic from numerical linear
algebra. For a given set of symmetric positive definite matrices A1, A2, . . . , Ak, the
authors present an iterative algorithm to compute an orthogonal transformation
B such that the matrices BTA1B,BTA2B, . . . , BTAkB are as close to diagonal as
possible. In order to measure this “closeness”, they introduce (and motivate) the
function

Φ(A1, A2, . . . , Ak;n1, . . . , nk) :=

k∏

i=1

[det(diagAi)]
ni/[det(Ai)]

ni ,

where the ni are given numbers. The best choice of B is one for which

Φ(BTA1B,BTA2B, . . . , BTAkT ;n1, . . . , nk) −→ min .

In order to compute an approximate minimizer, the authors introduce the
FG(Flury–Gautschi) algorithm, which consists of an outer iteration F and an
inner iteration G. The algorithm is described in pseudocode, and the authors prove
convergence of the algorithm. In the case k = 1, their algorithm reduces to the
Jacobi method. In addition to the convergence of the two procedures, the authors
also analyze under which conditions the solution is unique, and they give several
hints for improving the algorithm.

Unfortunately, there was no implementation of the algorithm given in the pa-
per1. Because of my interest in the algorithm, and since several details of the
implementations were only addressed by comments, I decided to implement the
algorithm myself in Matlab (see http:/www.unige.ch/~gander/FG.php)2. The al-
gorithm was tested on the same example as given in the paper. It took quite a while t o
obtain the same results, because the implementation of the stopping criterion, based,

eigenvectors are only unique up to a sign and also come numerically in an arbitrary
order. The current implementation now faithfully reproduces the authors’ Fortran
results. Their implementation on a CDC 170/855, in 1986, took 0.07 seconds of
CPU time for this example to be executed. In Matlab on my Thinkpad T60, in

1With the help of Walter, we later found the Fortran implementation in [2].
2Many thanks to Hui Zhang, who also implemented the algorithm independently, so we could

compare.

as it was, on a comparison of eigenvectors becoming close, is tricky since normalized
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2012, the same example takes 0.03 seconds of CPU time. One wonders where all
the computing power has gone these days3.

Another test, which illustrates why the identity matrix as an initial guess of B
can fail in the F-algorithm, is to simultaneously diagonalize a stiffness and a mass
matrix (where this is actually possible)4. Specifically, the matrices

A1 =

⎡

⎢
⎢
⎣

-2 1 0 0
1 -2 1 0
0 1 -2 1
0 0 1 -2

⎤

⎥
⎥
⎦ , A2 =

⎡

⎢
⎢
⎣

4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4

⎤

⎥
⎥
⎦

give rise to an infinite loop when the initial guess of B in the F-algorithm is the
identity matrix, and one needs to use an alternative random initial guess.

I could imagine that such an algorithm would find many users if it were gen-
erally available in Matlab, since the simultaneous diagonalization of matrices is an
important task.

25.2. Slowly convergent series

The relevant paper on this topic, [GA124], as well as the paper [GA125] in the
next subsection, are more in the core area —numerical quadrature — of Walter
Gautschi’s research interests. The problem is to sum the series

S0 =

∞∑

k=1

kν−1r(k), S1 =

∞∑

k=1

(−1)k−1kν−1r(k),

where r(k) is a rational function. By using a preliminary partial fraction decom-
position, Walter shows that it suffices to consider r of the form

r(s) =
1

(s+ a)m
, �a ≥ 0, m ≥ 1.

Such series can be transformed into integrals by writing the fraction as a Laplace
transform and then changing the order of summation and integration. The result
is a weighted integral of an entire function; it then remains to determine Gauss
quadrature rules for the respective weight function. With the hand of the master,
Walter determines the three-term recurrence coefficients for the required orthogonal
polynomials, which, as I experienced myself, are not always easy to compute to high
precision. From these, one can easily obtain the required Gauss quadrature rules.
He then illustrates the resulting fast summation procedure in the case of five infinite
series, of which the first was communicated to Walter by Professor P. J. Davis who
came upon it in his study of spirals, a topic we will again encounter in the fifth
paper.

3Compilation would make this certainly much faster.
4Many thanks to Ivan Graham for suggesting this useful example during a conference in

Urümqi in August 2012.
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25.3. Slowly convergent series occurring in plate contact problems

This paper is a continuation of the previous paper, and it appeared in the same
journal, right after the previous one. The subject is again the fast summation of
infinite series, this time of the form

∞∑

k=0

(2k + 1)−pz2k+1,

where z is complex with |z| ≤ 1 and p = 2, 3, and also of the more difficult forms

∞∑

k=0

(2k + 1)−p cosh((2k + 1)x)

cosh((2k + 1)b)
,

∞∑

k=0

(2k + 1)−p sinh((2k + 1)x)

sinh((2k + 1)b)
,

where 0 ≤ x ≤ b. Such series occur in the mathematical treatment of unilateral
plate contact problems. After treating some special cases, Walter again uses the
device of introducing a Laplace transform, but now only for part of the general
term of the series. Interchanging summation and integration, as in the earlier
paper, leads to a weighted integral with a weight function similar to the one in
the previous paper. There are, however, cases for the parameters where Gauss
quadrature is no longer effective, and Walter shows how a further transformation
leads to an integral which can be effectively evaluated using a backward recursion
scheme. Faithful to his working style, he gives the needed recurrence coefficients
to high accuracy, and then shows two fully worked out examples to illustrate the
technique.

25.4. The Hardy–Littlewood function

In the short 6-page note [GA175], Walter Gautschi gives a summary of his confer-
ence presentation at the birthday conference for Olav Nj̊astad. The topic was the
summation of the series

H(x) =

∞∑

k=1

sin(x/k)/k, (25.1)

which is important in the study of the polygamma functions. Walter first shows
how the summation can be performed using orthogonal polynomials and polynomial/
rational Gauss quadrature (cf. Section 15.4, Vol. 2), again applying the Laplace trans-
form device. In a first approach, he obtains a formulation in terms of modified Bessel
functions of order zero, the power series expansion of which, however, is only suit-
able for relatively small positive values of x, because otherwise severe cancellation
errors make the approach numerically useless. As an alternative, Walter rewrites
the expression obtained by using an integral representation of the Bessel function, in
which case the trapezoidal rule can be used effectively and without cancellation. He



25.5 The spiral of Theodorus 17

−5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

Fig. 25.1. The spiral of Theodorus

then also uses rational Gauss–Laguerre quadrature directly in the original formu-
lation, and with this approach the range of x-values can be substantially enlarged
before cancellation problems set in. Walter finally shows a completely different
approach, based on direct summation of the first n ≈ x terms combined with an
acceleration procedure, which is very effective for large values of x.

As it turned out, this short paper became the major inspiration for a recent pub-
lication by Kuznetsov [5] on asymptotic approximations to the Hardy–Littlewood
function. Kuznetsov’s goal was to find a value of x for which H(x) in (25.1) satisfies
H(x) < −π/2, in order to provide an explicit counterexample to a conjecture of
Clark and Ismail. (The value of x found was extremely large, of the order 1021!)
Kuznetsov in his paper says “This turns out to be a surprisingly hard problem”,
and then goes on to use and extend the techniques introduced by Walter in order
to solve it.

25.5. The spiral of Theodorus

On May 22, 2003, Walter Gautschi visited us in the Section of Mathematics at the
University of Geneva, and gave a colloquium lecture precisely on the topic of the
paper [GA197]. It was a fascinating lecture, I remember it very well. Like the paper,
it started with an intriguing spiral, the spiral of Theodorus, shown in Figure 25.1.
As one can see, the spiral is constructed starting at the point (1, 0) by always moving
in the direction orthogonal to the current position vector, and going precisely a
distance of length 1. This gives for the second point (1, 1), with a distance

√
2 from

the origin (just use Pythagoras), for the third point a location with distance
√
2 + 1

from the origin (use Pythagoras again), for the fourth point a distance
√
3 + 1, the
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general point numbered n having a distance
√
n from the origin. The distribution

of the angles in the spiral of Theodorus has interesting number-theoretic properties
(see [4], where the spiral is given the name “Quadratwurzelschnecke”5).

Using complex variables, one can also describe this spiral for α = 1, 2, . . . by the
recurrence relation

T (α+ 1) =

(

1 +
i√
α

)

T (α), T (1) = 1, (25.2)

which gives T (2) = 1 + i, T (3) = (1 + i√
2
)(1 + i) = 1 − 1√

2
+ i(1 + 1√

2
), etc. The

spiral of Theodorus is thus obtained by applying a Forward Euler Method (with
step 1) to the differential equation

T ′(α) =
i√
α
T (α), (25.3)

which has as a solution the circle, the dynamics of which, however, slows down
more and more as one moves along the circle.

The problem treated by Walter Gautschi, however, is a different one. Professor
Davis [1, p. 33ff] had been wondering if it is possible to interpolate the spiral of
Theodorus by a smooth, if possible analytic, curve. This problem is similar to a
problem Euler faced when he tried to interpolate the factorial function, which led
to his discovery of the gamma function. Davis, inspired by Euler’s work, found the
following interpolant:

T (α) =
∞∏

k=1

1 + i/
√
k

1 + i/
√
k + α− 1

, α ≥ 0.

This product also satisfies the recurrence relation (25.2), and can be evaluated for
any value α ≥ 0. It therefore produces a continuous (in fact, analytic) version of
the Theodorus spiral.

Unfortunately, the product is very slowly convergent, and thus not suitable for
numerical evaluation. This is where Walter Gautschi comes in: using logarith-
mic differentiation, he derives a polar representation for the continuous spiral of
Theodorus, in which there now appears a slowly convergent series. For a particular
point on the spiral (where it crosses the positive real axis for the first time), the
series is given by

∞∑

k=1

1

k3/2 + k1/2
,

the so-called Theodorus constant, and it is with this series that Davis had aroused
Walter’s interest in this problem. Using again Laplace transforms (cf.

5square-root snail

Section 25.2),
Walter shows how the summation of the series can be transformed into a problem
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integration, which can be solved very effectively by Gaussian quadrature — “an
absolute gem of numerical analysis” according to Davis [1, p. 42].

With regard to identifying T (α) in terms of known special functions, however,
Davis writes [1, pp. 41/42]: “Computation is one thing, and the identification of
T (α) is another matter, and it still eluded me. The Spirit of Euler infused me
constantly, but contributed nothing toward the solution. The mistake I made was
that I had been consulting the wrong Swiss mathematician. I should have consulted
the Swiss-born-and-trained American mathematician, Walter Gautschi, who . . . in
the course of this work . . . also identified T (α).”

The analytic Theodorus spiral can also be continued backward into a second
sheet of the Riemann surface, as was proposed by J. Waldvogel [6], and Walter
concludes with a figure of what he calls the twin-spiral of Theodorus, a very well-
chosen name, given the context, and one which I will later also explain to my
children.

One could ask what the differential equation might be that describes this twin
spiral. It is certainly not equation (25.3), since this one only gives a circle. Some-
thing to think about!

25.6. Epilogue

My most recent meeting with Walter Gautschi was at the conference in honor of
Claude Brezinski’s 70th birthday in Sardinia, in the fall of 2011. As always, we had
very nice discussions, Walter and I, and Walter gave a lovely presentation about a
real problem from applications [GA204], solved in a very elegant way, how could it
be different, using Gauss quadrature. I hope we will meet many more times in the
future.

of
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Reprints


