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Preface

Claude Brezinski and Ahmed Sameh

Walter Gautschi is a world-renowned numerical analyst whose research contribu-
tions cover a wide range of topics including numerical conditioning, special func-
tions, interpolation and approximation, orthogonal polynomials, quadrature, linear
recurrence relations, ordinary differential equations, and history of mathematics.
His contributions have had a significant impact on the field, and his papers are
widely cited. Walter has published 3 books, 34 book chapters, 160 refereed journal
papers, 7 refereed papers in conference proceedings, translated 3 books, and edited
5 conference proceedings. His papers are characterized by their clarity of exposition
and will remain excellent resources for researchers in the field. Walter has 4820 cita-
tions in Google Scholar and 174,000 citations in Google. His two books: Numerical
analysis — an introduction, published by Birkhäuser, and Orthogonal polynomials
— computation and approximation, published by Oxford University Press, have set
a high standard for graduate textbooks in their respective subjects.

Walter’s 65th birthday was celebrated by a conference held in his honor in De-
cember 1993 at Purdue University, attended by leaders in the field, such as Richard
Askey, Carl de Boor, John Butcher, Ward Cheney, Paul Erdős, Gene Golub, Bill
Gragg, Arieh Iserles, Charles Micchelli, Frank Olver, John Rice, Ted Rivlin, Ed
Saff, Frank Stenger, Richard Varga, Jet Wimp, among others. The proceedings of
this conference were published by Birkhäuser in 1994. Since then, Walter has added
significantly to his contributions to warrant this publication (also by Birkhäuser)
of his selected works together with commentaries by foremost experts in the re-
spective areas of Walter’s contributions. Volume 1 collects papers on numerical
conditioning, special functions, interpolation and approximation; Volume 2 those
on orthogonal polynomials — on the real line and on the semicircle —, and quadra-
ture — of Chebyshev, Gauss, and Kronrod type —; and Volume 3 papers on linear
recurrence relations, ordinary differential eqations, computer algorithms and soft-
ware packages, history and biography, and miscellaneous topics.
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2 Claude Brezinski and Ahmed Sameh

The papers included are chosen by Walter, and the editors wish to thank the
publishers of Walter’s papers for permission to reprint them here. The editors also
express their gratitude to the commentators for their excellent reviews and prompt
response.

Finally, we wish to thank Birkhäuser for their wonderful cooperation to produce
these volumes, thereby preserving and making easily accessible Walter’s contribu-
tion to Computational Mathematics. We also thank Professor Michela Redivo-
Zaglia of the University of Padua for lending a hand to one of the editors with
Birkhäuser’s latex style in the early phase of the work.

We present these volumes, honoring Walter and the memory of his late brother
Werner, as a tribute to Walter — an inspiring and valued colleague. We are proud
to call him a great friend.

Claude Brezinski
Ahmed Sameh

December 17, 2012



Part I

Walter Gautschi

In the article of Section 3, numbers in brackets refer to the numbered list of

works.
papers in Section 4, those in boldface type to papers included in these selected
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Biography of Walter Gautschi

Claude Brezinski and Ahmed Sameh

primary subject, with physics, physical chemistry, and actuarial mathematics as
secondary subjects. In the early 1950s he became an assistant of Professor Alexan-
der M. Ostrowski, obtaining a Ph. D. in 1953 under his supervision with a thesis
on graphical integration of ordinary differential equations. He then received a two-
year fellowship for study abroad from the Janggen-Poehn foundation in St. Gallen,
of which he spent the first year at the Istituto Nazionale per le Applicazioni del
Calcolo in Rome, founded and directed by Mauro Picone, and a second year at the
Harvard Computation Laboratory. It was at the Harvard Computation Laboratory
where he got his first hands-on experience with electronic computers, program-
ming (in machine code) on Professor Aiken’s MARK III computer. In 1956, under
a contract with the American University, he joined the staff of the Computation
Laboratory at the National Bureau of Standards in Washington, D. C. (now the
National Institute of Standards and Technology). There, his major project was the
preparation of two chapters of the Handbook of Mathematical Functions edited by
Milton Abramowitz and Irene A. Stegun. Abramowitz introduced Walter to the
work of J. C. P. Miller on backward recurrence, which became one of the early
areas of emphasis in Walter’s research. Because of employment difficulties related
to Walter’s Swiss citizenship, he had to leave the Bureau in 1959 and he joined
Alston Householder’s Mathematics Panel at the Oak Ridge National Laboratory.
Through contacts with chemists at the laboratory, he became interested in the
numerical aspects of Gaussian quadrature and orthogonal polynomials, which was
to become one of the principal areas of Walter’s research contributions. During
the four years at the Oak Ridge laboratory he was twice invited to lecture at the
Michigan University Engineering Summer Conferences then organized by Robert
C. F. Bartels.

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 1: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7034-2 2,
© Springer Science+Business Media New York 2014

Walter Gautschi was born on December 11, 1927 in Basel, Switzerland, together
with his twin brother Werner. He attended primary and secondary schools in
Basel, graduating in 1947 from the Mathematisch-Naturwissenschaftlichen Gym-
nasium. He then enrolled at the University of Basel to study mathematics as the

5



6 Claude Brezinski and Ahmed Sameh

In 1960, after the untimely death of Walter’s twin brother Werner in 1959, he
married his widow, Erika Wüst, and adopted their son Thomas, born only after
Werner’s death. The marriage brought forth three more children, Theresa, Doris,
and Caroline, born respectively in 1961, 1965, and 1969.

In 1963, Walter started his academic career, accepting a professorship jointly
at the then (1962) newly established Department of Computer Sciences and the
Department of Mathematics at Purdue University. It was to become a life-long as-
sociation, interrupted only by sabbatical years, 1970–1971 as a Fulbright scholar at
the Technical University of Munich, and 1976–1977 at the University of Wisconsin.
Walter regularly taught the beginning graduate course on Numerical Analysis, an
advanced course on the numerical solution of ordinary differential equations, and
occasionally courses on numerical linear algebra and optimization. Notes prepared
over the years on the first two of these courses, and also notes prepared for summer
courses taught repeatedly in Perugia, Italy, in the 1970s, led in 1997 to the publi-
cation of his book on Numerical Analysis by Birkhäuser Boston. A second edition
of this book appeared in 2012. Another book, that grew out of seminars held on
the constructive aspects and applications of orthogonal polynomials, was published
by Oxford University Press in 2004.

Throughout his academic career, Walter participated and lectured at numerous
national and international meetings and was a frequent visitor at other academic
institutions, notably the Polytechnics of Milan and Turin, the University of Padua,
the ETH in Zurich, and his alma mater, the University of Basel. For many years
he was also a consultant at Argonne National Laboratory.

In 2001, Walter was elected a Foreign and Corresponding Member of two Euro-
pean Academies, respectively the Bavarian Academy of Sciences in Munich and the
Turin Academy of Sciences (once the Royal Society). He was also named a SIAM
Fellow in 2012.

From 1966 to 1999, Walter was a member of the Editorial Committee of Math-
ematics of Computation and its Managing Editor from 1984 to 1995. His metic-
ulous attention to details was legendary. Other journals for which he served as
an Associate Editor are Numerische Mathematik, 1971 to the present (Honorary
Editor since 1991), the SIAM Journal on Mathematical Analysis, 1970–1973, and
Calcolo, 1975–1987. In addition, in 1981–1983, Walter served as a Special Editor
of Linear Algebra and its Applications. On the 50th anniversary of Mathematics of
Computation, Walter edited an AMS proceedings volume entitled A half-century of
computational mathematics, and he was co-editor of a number of other proceedings
volumes. He was also active as a translator, translating (jointly with R. Bartels
and C. Witzgall) the text Numerische Mathematik by J. Stoer, preparing an an-
notated translation of H. Rutishauser’s Vorlesungen über numerische Mathematik,
and (jointly with his wife Erika) an English translation of E. A. Fellmann’s Leonhard
Euler.



2. Biography of Walter Gautschi 7

Walter officially retired from Purdue University in 2000 with the title of Profes-
sor Emeritus, but both his research and lecturing activities continued unabatedly
ever since.

For more details on Walter’s life, and especially his early research activities,
see also Walter Gautschi’s “Reflections and recollections” in Approximation and
Computation — a festschrift in honor of Walter Gautschi (R. V. M. Zahar, ed.),
pp. xvii–xxxv, Birkhäuser, Boston, 1994.



3

A brief summary of my scientific work and

highlights of my career

Walter Gautschi

I have worked in a number of different areas of (mostly computational) mathematics.
They are organized here in thirteen sections. For the sake of brevity, when referring
to joint papers, coauthors are not identified explicitly.

1. Numerical conditioning. The general theme here is to analyze the sensitivity
of a problem to small perturbations in the data. This has been an area of continued
interest to me, given my predilection to fundamental issues.

An example of this is the extensive work on the condition of Vandermonde and
Vandermonde-like matrices. The former [16, 19, 34, 51, 52, 62, 110] are shown to
be always ill-conditioned, exponentially so or worse, if the nodes are real. They are
usually well-conditioned if the nodes are complex. A noteworthy example [120] is
the n× n Vandermonde matrix whose nodes are the first n members of an infinite
sequence of complex numbers on the unit circle, for example the Van der Corput
sequence. The (spectral) condition number is then shown to be bounded by

√
2n.

In the case of (real) Vandermonde-like matrices whose entries are not powers of
the nodes, but orthogonal polynomials evaluated at the nodes, the matter depends
on the Christoffel numbers, or Christoffel function (evaluated at the nodes) of the
underlying measure, more precisely, on the ratio of their arithmetic and harmonic
means [83]. Another interesting problem treated very recently pertains to optimally
scaled and optimally conditioned Vandermonde and Vandermonde-like matrices
[200]. For a survey, see also [118].

Other instances of work in this area are the condition of polynomial bases [43,
66], the condition of algebraic equations [45], and most notably, the condition of
moment maps in the theory of orthogonal polynomials and related quadratures [40,
81, 98].

2. Special functions. My contributions to this subject are four-fold: numerical
evaluation, inequalities, asymptotics, and expository work.

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 1: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7034-2 3,
© Springer Science+Business Media New York 2014
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10 Walter Gautschi

In the first of these categories, the influential work [29] should be mentioned
on computational aspects of three-term recurrence relations. This centers around
the concept of minimal solution of three-term recurrence relations and related
algorithms involving continued fractions. The latter have been successfully applied
to the computation of many special functions, such as Bessel functions [23],
Legendre functions [24], Coulomb wave functions [28, 33, 35], incomplete beta and
gamma functions [22, 158], repeated integrals of the error function [13, 59, 60],
and Stieltjes transforms of orthogonal polynomials [75]. Special mention deserves
an efficient algorithm developed for computing the complex error function [36, 39]
(a Stieltjes transform of the Hermite weight function), which relies on similar ideas
and which has found widespread use in the physics and nuclear engineering com-
munities. In the paper [63], attention is drawn to a continued fraction of Perron
as a useful alternative to the more customary Gauss-type continued fraction for
evaluating ratios of modified Bessel functions of a real argument. A variety of tech-
niques, including Taylor series and continued fraction expansions, are employed in
the calculation of incomplete gamma functions [68, 69, 70]. Applying Gaussian
quadrature led to useful procedures for computing hypergeometric and confluent
hypergeometric functions [168], Bessel and Airy functions [169], modified Bessel
functions of complex orders [178], and Kontorovich–Lebedev integral transforms
[181]. High-precision nonstandard Gaussian quadrature rules are also employed to
compute certain integrals involving the Lambert W-function [199].

With regard to inequalities, the two-sided inequalities for gamma function ratios
[9], published in 1959, have been most widely noted (and now bear my name),
although they were obtained in the context of more general two-sided inequalities for
the incomplete gamma function. Of a quite different nature are the harmonic mean
inequalities for the gamma function [47, 48], obtained in the 1970s. In [72], clas-
sical inequalities of Laguerre for the largest zero of Jacobi, Laguerre, and Hermite
polynomials are sharpened. Beginning in 2007, in a series of papers [182, 190, 191,
192, 203], a number of far-reaching conjectures are set forth regarding inequali-
ties for zeros of Jacobi polynomials, all based on extensive numerical computation.
Bernstein’s inequality for Jacobi polynomials is analyzed in [193] with regard to
sharpness and extended to larger domains of the Jacobi parameters. The compu-
tational work therein also suggests a numerical value for the best constant in the
Erdélyi–Magnus–Nevai conjecture on orthonormal Jacobi polynomials.

There is one short paper on asymptotics [10] generalizing an asymptotic formula
of G. Blanch for exponential integrals.

Most important among my expository work on special functions are the two
chapters [20, 21] on the exponential integrals and the error function in the famous
handbook of Abramowitz and Stegun.

3. Interpolation and approximation. An early paper [11] deals with bivariate
linear interpolation of an analytic function in the complex plane and the respective
error committed.
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According to a classical result of Erdős and Turán, Lagrange interpolation of any
continuous function on [−1, 1] at the n zeros of an orthogonal polynomial of degree n
converges in the mean as n → ∞. Does the same conclusion hold if one inserts n+1
additional points in a well-specified manner (similar to Kronrod’s method in the
theory of quadrature)? This is explored in [132] with mixed success: the answer is

conjectured to be “yes” for Jacobi polynomials P
(α,β)
n with parameters α, β suitably

restricted, but is proved to be “no” for Chebyshev polynomials of the first, third,
and fourth kind (the answer being trivially “yes” for Chebyshev polynomials of
the second kind). For quadrature convergence in the sense of Erdős and Turán,
however, the answer is “yes” for all four Chebyshev polynomials, as is proved in
[147]. Under an additional interlacing condition on the interpolation points, we
also established necessary and sufficient conditions for quadrature convergence to
hold and conjectured them to be satisfied for Jacobi polynomials with parameters
|α| ≤ 1

2 , |β| ≤ 1
2 .

Inspired by work in physics, I became interested in approximating a function
in such a way that as many of its moments as possible are preserved. I began by
considering functions f on R+ and approximation by piecewise constant functions
with both the location and height of their jumps being freely variable [89]. The
problem was generalized in [100] to approximation on R+ by spline functions of fixed
degree and variable (positive) knots. Interestingly, under appropriate conditions the
problem has a unique solution expressible in terms of the nodes and weights of a
Gaussian quadrature formula relative to a weight function which depends on f .
Unique existence is always assured if f is completely monotonic on R+. Analogous
problems on a finite interval can also be solved [102] and involve generalized Gauss–
Radau and Gauss–Lobatto formulae. For a summary of this work and related work
by others, see [131].

Other approximation-theoretic problems considered pertain to continued frac-
tions [61, 87, 127], Padé approximation [86], Fourier analysis [41], and the summa-
tion of slowly convergent series [93, 124, 125, 175].

4. Orthogonal polynomials on the real line. The constructive theory of orthog-
onal polynomials is an area of work for which I am probably best known. (I have
been called Mr. Orthogonal Polynomials by some of my colleagues!) I was the
first to take up the problem of computationally generating orthogonal polynomials
relative to essentially arbitrary weight functions or measures. While the solution
via moments, in principle, is classically known, it is problematic computationally
because of severe ill-conditioning. The major effort, indeed, was to carefully ana-
lyze the degree of ill-conditioning and to find methods that successfully surmount
this ill-conditioning. The approach I have taken was to either replace moments by
so-called modified moments (an idea that had been floating around at the time)
and study the condition number of the relevant moment map; or else, to discretize
the underlying inner product and take the corresponding discrete orthogonal poly-
nomials to approximate the desired ones. The former approach led to two algo-
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rithms, one based on Cholesky decomposition [40], and another, more efficient one
[81, §2.4], given the name modified Chebyshev algorithm, because I could trace its
origin to an 1859 memoir of Chebyshev dealing with ordinary moments of a dis-
crete measure. The second appoach, often more effective, is entirely original with
me [31]. It led to what I called a discretized Stieltjes procedure [81, §2.2], since
Stieltjes in 1884 briefly alluded to an algorithm of this kind (without discretiza-
tion). A Fortran program implementing the method has been published in [32].
Both algorithms are extended in [145] to Sobolev orthogonal polynomials, which
are orthogonal with respect to an inner product also containing derivatives and
accompanying measures. They are applied in [153] to illustrate theoretical results
about the asymptotic distribution of zeros of Sobolev orthogonal polynomials and
their derivatives. Very special Sobolev orthogonal polynomials involving a deriva-
tive of fixed order with an associated one-point atomic measure are discussed in
[151] along with their zeros.

The algorithms thus developed, sometimes in conjunction with analytic or sym-
bolic variable-precision tools, have been used to generate (recursion coefficients
of) orthogonal polynomials with special, sometimes unusual, weight functions, for
example the reciprocal gamma function [80], weight functions of interest in theoret-
ical chemistry that are supported on two separate intervals [90], Einstein and Fermi
functions [93], Freud and half-range Hermite weight functions [195], refinable [161]
and densely oscillating, or rapidly exponentially decaying, weight functions [176],

5. Orthogonal polynomials on the semicircle. An entirely new kind of (complex)
orthogonal polynomials was introduced in 1985: polynomials orthogonal on the
semicircle [95]. The novelty here is the non-Hermitian nature of the underlying
inner product. Yet, many properties of these new polynomials, and also of the
respective zeros, resemble properties known for classical orthogonal polynomials
with positive definite or Hermitian weight functions. This was further developed in
a number of papers, [97, 104, 113] and summarized in [116].

6. Chebyshev quadrature. The majority of my papers is dedicated to problems
of quadrature. My early work in this area, suggested by a visitor (Hiroki Yanagi-
wara) from Japan, deals extensively with weighted Chebyshev and Chebyshev-type

and sub-range Jacobi weight functions [205].
Other important algorithms studied pertain to modifications of the weight func-

tion, for example multiplying it by a positive rational function [77], [179, §2.6]. A
notable special case is multiplication by the square of the respective orthogonal

mials. They are relevant, e.g., in the problem of extended interpolation mentioned
in §3. Repeated modifications by linear divisors are studied in [206] and applied
to generate special Gaussian quadrature rules for dealing with nearby poles. Some
of these algorithms can also be used to “neutralize” singularities other than poles
[207].

polynomial, which gives rise to what in [134] are called induced orthogonal polyno-
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formulae. The former are weighted quadrature rules with equal (real) coefficients,
distinct (real) nodes, and polynomial degree of exactness equal to the number of
nodes. From a celebrated result of Bernstein (relative to constant weight functions)
one can expect such quadrature rules to exist only for a finite, typically small, num-
ber of nodes. A severe case in point is exhibited in [50]. In all remaining instances
one can try to find substitute formulae by relaxing the exactness condition in one
way or another. This is the kind of problem studied by me and co-workers in the
mid-1970s [46, 50, 53, 57, 58]. A historical summary is provided in [55].

7. Kronrod and other quadratures. Gauss–Kronrod formulae give rise to intrigu-
ing problems of existence, that is, of determining if and when all nodes are real and
distinct. This has been studied, using algebraic tools, for Jacobi weight functions
in [109]. Other instances of such formulae, [111, 114], involve weight functions of
Bernstein–Szegő type, i.e., Chebyshev weights of any of the four kinds divided by a
quadratic polynomial which remains positive on [−1, 1], or weights whose orthog-
onal polynomials have a three-term recurrence relation with ultimately constant
coefficients [148]. Computing Gauss–Kronrod formulae is a topic discussed in [99,
108]. For a review up to about 1987, see [107].

A convergence result for interpolatory quadrature rules with Chebyshev nodes
(already studied by Fejér), when applied to improper integrals having monotonic
singularities at the endpoints ±1, is proved in [30]. The result is of interest in the
generation of orthogonal polynomials by the discretized Stieltjes procedure (cf. §4).

Evaluating the Hilbert transform (a Cauchy principal value integral) of the
classical Jacobi, Laguerre, and Hermite measures and of the respective orthogonal
polynomials is discussed in [103, 166]. The latter satisfy the same three-term re-
currence relation as the one for the orthogonal polynomials themselves, but exhibit
a phenomenon of pseudostability (cf. §9). A case of computing singular integrals is
studied in [105].

In [160], a new look is taken at adaptive quadrature employing, among other
devices, a 4-point Gauss–Lobatto formula and two successive Kronrod extensions
thereof. The procedure has been incorporated into one of the Matlab quadrature
routines, quadl.

A challenging integral involving an integrand that is densely oscillating near one
of the endpoints of the interval of integration, with amplitudes tending to infinity,
is evaluated in [188] by elementary means.

8. Gauss-type quadrature. The larger part of my work on numerical quadrature,
however, concerns Gauss-type quadrature rules and, apart from [31, 40, 65], be-
gan to appear around 1981 after my long historical essay [74] on Gauss-Christoffel
quadrature rules, written on the occasion of Christoffel’s 150th anniversary of birth.
The work can be divided into five parts: (i) geometric properties, (ii) explicit for-
mulae and computation, (iii) validation, (iv) error estimation for analytic functions,
and (v) polynomial/rational formulae.
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(i) In 1961, P. J. Davis and Philip Rabinowitz proved that the classical Gauss–
Jacobi formula has weights which, when suitably normalized and plotted over the
corresponding nodes, come to lie on the upper half of the unit circle, asymptotically
for large orders. In 2006, I have shown [180] that this pretty “circle theorem” is
true for a much larger class of weight functions, essentially the Szegő class, not only
for Gauss formulae, but also for Gauss–Radau, Gauss–Lobatto, and, under more
restictive conditions, even for Gauss–Kronrod formulae.

(ii) There is a large number of papers dealing with the numerical calculation not
only of Gaussian formulae (which essentially amounts to the numerical generation
of the respective orthogonal polynomials – see §4 – followed by an eigenvalue/vector
computation involving the Jacobi matrix of the orthogonal polynomials), but also
of ordinary [163, 164] and generalized [173], [194] Gauss–Radau and Gauss–Lobatto

(iii) The problem of validation, considered in [84], consists in assessing a poste-
riori the accuracy of the nodes and weights of a Gaussian quadrature formula, once
computed in one way or another. In view of the severe ill-conditioning mentioned
in §4, this is a nontrivial problem.

(iv) The remainder term of weighted Gaussian quadrature formulae over a finite
interval applied to analytic functions can be estimated by contour integration tech-
niques. This is the subject of the frequently cited work [85] and of [119]. Additional
work on this topic is done in [121, 123], where the same techniques are applied to
Gauss–Radau and Gauss–Lobatto quadratures.

(v) Quadrature formulae with polynomial degrees of exactness are of limited
use when the function to be integrated has poles, especially poles near the interval
of integration. In such cases, it is more meaningful to include among the func-
tions that are integrated exactly also rational functions having the same, or at least
the more important, poles. It turns out that such polynomial/rational n-point
quadrature formulae (that exactly integrate m rational functions, 0 < m ≤ 2n,
with prescribed poles of given multiplicities and polynomials of degree 2n−m− 1)
can be constructed in terms of classical (polynomial) Gauss formulae with mod-
ified weight functions and hence can be computed by methods described earlier.
This is discussed, and illustrated by a number of examples, in [137], and imple-
mented in a computer algorithm in [159]. Integrals over half-infinite intervals and
exact for special rational functions are considered in [128]. Polynomial/rational
versions of other quadrature rules, specifically Gauss–Kronrod, Gauss–Turán rules,
and quadrature procedures for Cauchy principal value integrals, are developed in
[162] and (favorably) compared with the polynomial counterparts. For an updated
summary that includes also estimates of the remainder term and an additional

formlae, especially of very high order, as well as Gauss–Turán formulae [154, 211]
(which involve derivative values of the function to be integrated up to some even
order). For Gauss–Radau and Gauss–Lobatto formulae with double endpoints and
Chebyshev weight functions of all four kinds, explicit formulae for the boundary
weights are derived in [126].
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example, see [167]. Applications to Fermi–Dirac and Bose–Einstein integrals and
comparisons with results in the physics literature are made in [136].

The theory and algorithms described in §§4–5 and §§7–8 and various applications
thereof, are the subject of a monograph [B3] published in 2004 by Oxford University
Press. For additional surveys, see also [65, 92, 94, 112, 115, 117, 122, 130, 140, 157].

9. Linear difference equations. As already mentioned in §2, linear homoge-
neous difference equations of order two (i.e., three-term recurrence relations) are
an important tool for computing special functions. So are inhomogeneous difference

numerical stability of initial and boundary value problems for such difference equa-
tions is discussed systematically using the concept of amplification factors. Special
attention is given to a phenomenon of “pseudostability” (stability in theory, but
instability in practice). Its adverse effects on computing are illustrated in [135]
in the case of discrete orthogonal polynomials when computed by their three-term
recurrence relation (cf. also [150, §3.4.2]).

10. Ordinary differential equations. I acquired an interest in this topic early
on, already during my doctoral thesis work. I obtained error bounds [5] for special
Runge–Kutta methods developed by Zurmühl for single differential equations of
arbitrary order, following work of Bieberbach on the classical Runge–Kutta method
for first-order differential equations. In 1961 I developed numerical methods based
on trigonometric rather than algebraic polynomials [14], anticipating methods later
called “exponentially fitted”. Only recently, they have attracted renewed interest
in the context of oscillatory second-order differential equations and also in time
integration schemes for Maxwell equations in three dimensions. An early expository
account of the theory of one-step and multistep methods is given in [15], which for
the first time includes Dahlquist’s theory of stability and convergence of linear
multistep methods. Later in 1975, in the paper [54] dedicated to Mauro Picone,
it is proposed to estimate the global error (not the local error, as is usually done)
of one-step methods by integrating numerically the variational differential equation
along with the main differential equation. For multistep methods, this is done in

certain coefficients of interest in Adams, Störmer, and Cowell multistep methods.
The last paper on differential equations [73] appeared in 1980. Within a class of
stable multistep methods it determined the method which has minimum coefficient
in the asymptotic formula for the global error.

11. Software. Much of my work on computing special functions is sup-
ported by pieces of software, initially written in Algol and Fortran and published
in separate algorithms, and later written in Matlab and placed on my home-
page. I also wrote major software packages in support of my work on orthog-
onal polynomials and quadrature: the Fortran package ORTHPOL [141] and the

equations of order one (for example, see [12, 26, 27, 37, 38, 44]). In [42, 150], the

my book [B2, §6.3.5 of the 2d edition]. Asymptotic estimates are derived in [56] for
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Matlab package OPQ [174, 179, http://www.cs.purdue.edu/ archives/2002/wxg

/codes/OPQ.html]. Some of the routines in the latter package have been rewritten
in symbolic Matlab and collected in the package SOPQ [http://www.cs.purdue.edu
/archives/2002/wxg/codes/SOPQ.html], and can therefore be run in variable-
precision arithmetic. This, incidentally, provides another approach to overcome
the ill-conditioning mentioned in §4: simply do the computation with as many dig-
its as are required to compensate for the loss of accuracy caused by ill-conditioning.

12. History and biography. Every so often, I took time out to review the history
of a subject I had been working on myself. This led to a number of special-topic
surveys, for example on computational methods in special functions [49], advances
in Chebyshev quadrature [55], questions of numerical condition related to polyno-
mials [64], Gauss-Christoffel quadrature formulae [74], Gauss-Kronrod quadrature
[107], remainder estimates for analytic functions [129], applications and computa-
tion of orthogonal polynomials [146], the incomplete gamma function since Tricomi
[155] (written on the occasion of Tricomi’s 100th anniversary of birth), and the
interplay between classical analysis and numerical linear algebra [170], a tribute to
Gene H. Golub. There are also appreciations of the work, and sometimes the life,
of individual personalities, for example Yudell L. Luke [91] (an obituary), Philip
Rabinowitz [143], Luigi Gatteschi [144, 189], Alexander M. Ostrowski [82], [196]
(published on the occasion of the 100th anniversary of the Swiss Mathematical
Society), and, above all, Leonhard Euler [187]. Two of
my articles deal specifically with Euler’s handling of slowly convergent series [183]
and with Euler’s curious attempt [186] (communicated in a 1734 letter to his friend
Daniel Bernoulli) to interpolate the common logarithm from the known values

log 10k = k, k = 0, 1, 2, 3, . . . .

13. Miscellanea. Additional work not easily subsumed under any of the cate-
gories above concerns a proof, under weaker assumptions, of a necessary condition
of Picone in the calculus of variation [7] and an extension thereof to double in-
tegrals [6], families of algebraic test equations [71], the error behavior in optimal
relaxation methods [78], monotonicity and complete monotonicity properties re-
lated to the successive remainder terms of the exponential series [79], an algorithm
for simultaneous orthogonal transformation of several positive definite matrices to
nearly diagonal form [96], summation procedures [175] for evaluating the interesting
Hardy–Littlewood function H(x) =

∑∞
k=1 sin(x/k)/k, and the analytic smoothing

of the discrete spiral of Theodorus [197].

——–ooOOoo——–

Apart from my election in 2001 to two prominent European Academies – the
prestigious Bavarian Academy of Sciences and Humanities, founded in 1759, and the

Joseph-Louis Lagrange [210], 
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Turin Academy of Sciences, once the Royal Academy, founded in 1761 by Lagrange
and others – and the designation of SIAM Fellow in 2012, there are two highlights
in my career that stand out. The first is my collaboration in 1984 with Louis
de Branges on the proof of the Bieberbach conjecture [101]. De Branges knew
that the validity of the Bieberbach conjecture for the nth coefficient hinges on the
validity of a system of n inequalities involving integrals of Jacobi polynomials (in
fact 3F2 hypergeometric functions). I was able to use my software package [141] for
orthogonal polynomials to verify computationally that these inequalities are indeed
valid for all n up to 30. More importantly, I made a now famous telephone call to
Richard Askey, which led to the incredible discovery that these inequalities are true
not only for n ≤ 30 but for all n, being a special case of results proved several years
earlier by Askey and Gasper. That finished off de Branges’s proof of the Bieberbach
conjecture. The second highlight was the Euler lecture I was invited to give as part
of the Euler 300th anniversary year before an audience of some 3,000 attendees of
the ICIAM 2007 Congress in Zürich. An expanded version of the lecture has been
published in [187], and a preliminary rendition thereof given and recorded at Purdue,,
University; the video is made available with
the ISBN of Vol. 1, 978-1-4614-7033-5, and click on EulerLect.avi

permission at springer.com (type in
).
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2012]

B3. Orthogonal polynomials: computation and approximation, Oxford University
Press, Oxford, 2004.

Proceedings Edited

P1. (with G. Allasia, L. Gatteschi, and G. Monegato) International conference on
special functions: theory and computation, Rend. Sem. Mat. Univ. Politec.
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