Wim Vanderbauwhede - Khaled Benkrid
Editors

High-

' Performance
Computing
FPGAS

N Springer

High-Performance Computing Using FPGAs

Wim Vanderbauwhede ¢ Khaled Benkrid
Editors

High-Performance
Computing Using FPGASs

@ Springer

Editors

Wim Vanderbauwhede Khaled Benkrid

School of Computing Science School of Engineering and Electronics
University of Glasgow The University of Edinburgh
Glasgow, United Kingdom Edinburgh, United Kingdom

ISBN 978-1-4614-1790-3 ISBN 978-1-4614-1791-0 (eBook)

DOI 10.1007/978-1-4614-1791-0
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013932707

© Springer Science+Business Media, LLC 2013, corrected at 2" printing 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Foreword

The field programmable gate array (FPGA) was developed in the middle of 1980s
with the original intent to be a prototyping medium. The array of programmable
logic blocks enabled it to be reconfigured to any of a variety of compute functions.
As such it was an attractive vehicle for “in circuit hardware emulation” where
designs could be prototyped and debugged before being committed to silicon. It
was also an attractive teaching vehicle for students learning computer design. It was
with this in mind that I was first introduced to the FPGA by one of the pioneers in
the field, Ross Freeman, the founder of Xilinx (who tragically died just a few years
after Xilinx’s founding).

As the underlying silicon technology improved and the functional potential
was better understood, the FPGA slowly permeated many aspects of computing.
By the 1990s it was an accepted component in most communications technology,
then consumer-electronics and automotive applications became apparent, and by
the early 2000s the FPGA was well established in almost all areas of computing
except high performance computing (HPC). It would seem that HPC is an unlikely
target for FPGAs, as the FPGA with all of its flexibility in both routing and
configuration has a clear disadvantage when compared to custom arithmetic design
when measured in terms of an area time power product. Of course, even then it was
understood that there were some small specialized compute applications for which
the FPGA could offer some significant performance advantages mostly in areas such
as cryptography and specialized arithmetic.

Around 2003 there was a seismic shift in the underlying silicon technology,
and Moore’s law of frequency scaling (processors double performance every 18-24
months) became inoperative because the power densities required to support higher
frequencies could not be economically sustained. The future was parallel in one way
or another. In HPC the obvious approach was to use multicore implementations, but
there is a problem with attempting to scale performance by simply increasing the
number of cores or processors to execute an application. The programming models
that we have developed over the past decade have been oriented toward sequential
processing and not parallel processing. The introduction of paradigms such as layers

vi Foreword

of abstractions that hide the underlying hardware thus makes it difficult to find the
right form of parallelism to best express the execution of an application.

Still the notion of using FPGAs as a fabric to realize HPC for large classes of
applications is surprising to many. It surely was unforeseen a decade ago. So what
enables the FPGA to make its mark in HPC? There are at least three reasons:

1. The aforementioned difficulty in achieving scalable speed up with multicore
implementations.

2. While Moore’s law for frequency scaling ceased in 2003, Moore’s law on
transistor density scaling is still very much active so that over the intervening
decade transistor densities have scaled up on more than an order of magnitude.
These densities enable very large FPGA configurations. An enormous number
of cells are available to realize complex compute engines. And because FPGAs
necessarily operate at lower frequencies, they have not hit the power density
limits of the CPU.

3. The flexibility of the FPGA enables the designer to realize almost any computer
configuration that can be imagined and use any form of parallelism to suit the
application. This flexibility provides the opportunity to create ideal machines for
specific applications and unlike a decade ago where these applications would
necessarily small they now can be of significant scope—really large, important,
and interesting applications.

In a sense we have come full circle: the designer is again using the FPGA to do
emulation but now that emulation is not of some established CPU but an emulation
of an ideal machine for a particular application using techniques, representations,
and processor forms unavailable to conventional processor designs. In effect the
designer is emulating the future of computing high-speed computing.

This extraordinary book brings together the work of the leading technologists in
this important field and points to the direction not only for high speed computing
but also for the very future of computing itself.

Stanford, CA, USA Michael J. Flynn
Palo Alto, CA, USA

Preface

The seamless exponential increase in computing power that scientists, engineers
and computer users at large have enjoyed for decades has come to an end by
the mid-2000s. Indeed, while until then, computer users could rely on computing
power doubling every 18 months or so simply by means of increases in transistor
integration levels and clock frequencies, with no major changes to software,
physical limitations including voltage scaling and heat dissipation meant that this
is no longer possible. Instead, the chip fabrication industry has turned to multicore
chip technology to keep the “possibility” of doubling computer performance every
18 months alive. However, this is just a “potential” performance increase and not
a seamless one as application software needs to be recoded to take full advantage
of the performance potential of multicore technologies. Failing this, the computer
industry would cease to become a growth industry as there would be no need for
computer upgrades for performance sake. Instead, the industry would become a
replacement industry where computers are only bought to replace faulty ones. This
could have serious economic repercussions; hence the explosion of research activity
in industry and academia in recent years aimed at bridging the semantic gap between
applications, traditionally written in sequential code, and hardware, increasingly
parallel in architecture.

The aforementioned semantic gap, however, is also opening a window of
opportunity for niche parallel computer technologies such as field programmable
gate array (FPGAs) and graphics processor units (GPUs) which have become
more mainstream because the problem of parallel programming has to be tackled
for general-purpose processors anyway. FPGAs in particular have the promise of
custom-hardware performance and low power, with the software reprogrammability
advantage of general purpose processors. This is precisely why this technology has
attracted a great deal of attention within the high performance computing (HPC)
community, giving rise to the new discipline of high performance reconfigurable
computing (HPRC).

The aim of this book is to present a comprehensive view of the state of the art
of HPRC to existing and aspiring researchers in the field. This book is split into
three main parts: the first part deals with HPRC applications, the second with HPRC

vii

viii Preface

architectures, and the third with HPRC tools. Each part consists of a number of
contributions from eminent researchers in the field. Throughout the book, emphasis
is made on opportunities, challenges, and possible future developments, especially
in relation to other technologies such as general-purpose multicore processors and
GPUs. Overall, we hope that this book will serve as both a reference and a starting
point for existing and future researchers in the field of HPRC.

Finally, we thank all contributors, reviewers, and Springer’s staff for their efforts
and perseverance in making this book project a reality.

Glasgow, UK Wim Vanderbauwhede
Edinburgh, UK Khaled Benkrid

Contents

PartI Applications

High-Performance Hardware Acceleration of Asset Simulations 3
Christian de Schryver, Henning Marxen, Stefan Weithoffer,
and Norbert Wehn

Monte-Carlo Simulation-Based Financial Computing
on the Maxwell FPGA Parallel Machineoo.. 33
Xiang Tian and Khaled Benkrid

Bioinformatics Applications on the FPGA-Based

High-Performance Computer RIVYERA ... 81
Lars Wienbrandt

FPGA-Accelerated Molecular Dynamics...................................... 105
M.A. Khan, M. Chiu, and M.C. Herbordt

FPGA-Based HPRC for Bioinformatics Applications........................ 137

Yoshiki Yamaguchi, Yasunori Osana, Masato Yoshimi,
and Hideharu Amano

High-Performance Computing for Neuroinformatics Using FPGA 177
Will X.Y. Li, Rosa H.M. Chan, Wei Zhang, Chiwai Yu, Dong Song,
Theodore W. Berger, and Ray C.C. Cheung

High-Performance FPGA-Accelerated Real-Time Search 209
Wim Vanderbauwhede, Sai. R. Chalamalasetti, and Martin Margala

High-Performance Data Processing Over N-ary Trees 245
Valery Sklyarov and Iouliia Skliarova

FPGA-Based Systolic Computational-Memory Array
for Scalable Stencil Computationscoiiiiiiiiiiiii 279
Kentaro Sano

ix

High Performance Implementation of RTM Seismic Modeling

on FPGAs: Architecture, Arithmetic and Power Issues

Victor Medeiros, Abner Barros, Abel Silva-Filho,
and Manoel E. de Lima

High-Performance Cryptanalysis on RIVYERA

and COPACOBANA Computing Systems..........................

Tim Giineysu, Timo Kasper, Martin Novotny, Christof Paar,
Lars Wienbrandt, and Ralf Zimmermann

FPGA-Based HPRC Systems for Scientific Applications

Tsuyoshi Hamada and Yuichiro Shibata
Accelerating the SPICE Circuit Simulator Using an FPGA:

ACase Studyoooviiiiiii

Nachiket Kapre and André DeHon

PartII Architectures

The Convey Hybrid-Core Architecture.............................

Bernd Klauer

Low Cost High Performance Reconfigurable Computing

Javier Castillo, Jose Luis Bosque, Cesar Pedraza, Emilio Castillo,
Pablo Huerta, and Jose Ignacio Martinez

An FPGA-Based Supercomputer for Statistical Physics:

The Weird Caseof Janusoooiiiiiiiiiiiiiiiiin..

M. Baity-Jesi, R.A. Bafios, A. Cruz, L.A. Fernandez,

J.M. Gil-Narvion, A. Gordillo-Guerrero, M. Guidetti, D. Ifiguez,
A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor,

J. Monforte-Garcia, A. Miinoz Sudupe, D. Navarro, G. Parisi,

M. Pivanti, S. Perez-Gaviro, F. Ricci-Tersenghi, J.J. Ruiz-Lorenzo,
S.F. Schifano, B. Seoane, A. Tarancon, P. Tellez, R. Tripiccione,
and D. Yllanes

Accelerate Communication, not Computation!....................

Mondrian Niissle, Holger Froning, Sven Kapferer,
and Ulrich Briining

High-Speed Torus Interconnect Using FPGAs.....................

H. Baier, S. Heybrock, B. Krill, F. Mantovani, T. Maurer, N. Meyer,
1. Ouda, M. Pivanti, D. Pleiter, S.F. Schifano, and H. Simma

MEMSCALE: Re-architecting Memory Resources for Clusters
Holger Froning, Federico Silla, and Hector Montaner

Contents

........... 507

Contents xi

High-Performance Computing Based on High-Speed Dynamic
Reconfiguration i 605
Minoru Watanabe

Part III Tools and Methodologies

Reconfigurable Arithmetic for High-Performance Computing 631
Florent de Dinechin and Bogdan Pasca

Acceleration of the Discrete Element Method: From RTL
to C-Based Designo 665
Benjamin Carrion Schafer and Kazutoshi Wakabayashi

Optimising Euroben Kernels on Maxwelloo.. 695
James Perry, Mark Parsons, and Paul Graham

Assessing Productivity of High-Level Design Methodologies
for High-Performance Reconfigurable Computers........................... 719
Esam El-Araby, Saumil G. Merchant, and Tarek El-Ghazawi

Maximum Performance Computing with Dataflow Engines 747
Oliver Pell, Oskar Mencer, Kuen Hung Tsoi, and Wayne Luk

Part I
Applications

The first part of the book covers research on applications in the emerging field
of High-Performance Reconfigurable Computing. The first two chapters present
work on FPGA-based financial computing, an application field which has grown
considerably in the last decade in both research and industry. These are from
de Schryver et al. of the University of Kaiserslautern, Germany, and Tian et al.
from the University of Edinburgh, UK, respectively. These are followed by four
chapter contributions on FPGA-based bioinformatics and computational biology
(BCB), another application area which has attracted considerable attention in the
last decade, mostly in academia but also industry. These are from Lars Wienbrandt
of the Christian-Albrechts-University of Kiel, Germany, Herbordt et al. from Boston
University, USA, Yamaguchi et al. from the Universities of Tsukuba, Ryukyus,
Doshisha and Keio, in Japan, and Will Li et al. from the City University of Hong
Kong, China. The following two contributions are on FPGA-based data search and
processing, another interesting application in our information age characterised
by an explosion of data. The two contributions are from Vanderbauwhede et al.
of Glasgow University, UK, and the University of Massachussets, USA, and
Sklyarov and Skliarova from the University of Aveiro, Portugal. The next two
contributions are on FPGA-based stencil computations, a very important area with
various applications in computational fluid dynamics, electromagnetic simulation
based on the finite-difference time domain method, and iterative solvers e.g. for
seismic modelling. The two contributions are from Kentaro Sano from Tohoku
University, Japan, and Medeiros et al. from Universidad Federal de Pernambuco,
Brazil. The following chapter from Gneysu et al. of Ruhr-University Bochum,
Germany, Czech Technical University in Prague, Czech Republic, and the Christian-
Albrechts-University of Kiel, Germany, presents dedicated FPGA-based cluster
solutions for high performance efficient cryptanalysis. After this, Hamada and
Shibata from Nagasaki University, Japan, present a contribution which deals with
two floating point scientific applications, namely ocean model simulation with a
particular emphasis on fast inter-task communications, and astronomical N-body
simulations with a particular emphasis on performance per $ and performance

2 I Applications

per Watt measures of FPGAs compared to ASICs, GPUs and general purpose
processors. Finally, Kapre and DeHon from Imperial College London, UK, and
the University of Pennsylvania, USA, present an FPGA-accelerated solution for the
SPICE simulator, a widely used open-source tool for the simulation and verification
of analog circuits.

High-Performance Hardware Acceleration
of Asset Simulations

Christian de Schryver, Henning Marxen, Stefan Weithoffer,
and Norbert Wehn

Abstract State-of-the-art financial computations based on realistic market models
like the Heston model require a high computational effort, since no closed-
form solutions are available in general. Due to the fact that the underlying asset
behavior predictions are mainly based on number crunching operations, FPGAs are
promising target devices for this task. In this chapter, we give an overview about
current problems and solutions in the finance and insurance domain and show how
state-of-the-art market models and solution methods have increased the necessary
computational power over time. For the reason of universality and robustness, we
focus on Monte Carlo methods that require a huge amount of normally distributed
random numbers. We summarize the state-of-the-art and present efficient hardware
architectures to obtain these numbers, together with comprehensive quality inves-
tigations. Build on these high-quality random number generators, we present an
efficient FPGA architecture for option pricing in the Heston model, tailored to
FPGAs. For the problem pricing European barrier options in the Heston model
we show that a Xilinx Virtex-5 device can save up to 97% of energy, providing the
same simulation throughput as a Nvidia Tesla 2050 GPU.

1 The Need for High Performance Computing in Secure
Economies

The happenings on the financial markets all around the world in the last years have
clearly demonstrated the inherent risks prevailing in our current economic system.

C. de Schryver (0<) S. Weithoffer * N. Wehn
Microelectronic Systems Design Research Group, University of Kaiserslautern, Germany
e-mail: schryver@eit.uni-kl.de; weithoffer @eit.uni-kl.de; wehn@eit.uni-kl.de

H. Marxen
Stochastic Control and Financial Mathematics Group, University of Kaiserslautern, Germany
e-mail: marxen @mathematik.uni-kl.de

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs, 3
DOI 10.1007/978-1-4614-1791-0_1, © Springer Science+Business Media, LLC 2013

mailto:schryver@eit.uni-kl.de
mailto:weithoffer@eit.uni-kl.de
mailto:wehn@eit.uni-kl.de
mailto:marxen@mathematik.uni-kl.de

4 C. de Schryver et al.

Due to the permanent news, nowadays every citizen is sensitized to these problems,
even if not everybody (not to say nearly nobody) understands what is really going
on in the financial system right now.

One main reason for the financial crisis was the wrong assessment of financial
products with respect to their values and risks. For example, collateralized debt
obligations (CDOs) considered to be one of the major causes for the crisis [8] are
challenging to evaluate. CDOs bundle other products together and split the resulting
pool again into new tranches with different ratings. Determining realistic risks and
values for these tranches is a highly compute-intensive task.

However, CDOs are just one example of demanding products. Financial institutes
have to price complex product portfolios containing many different ingredients
regularly. In addition to that, countermeasures taken by the governments after the
crisis in 2007 have further increased the demand for a fast simulation environment.
In the European Union, for example the Basel Il and Solvency II regulations for
the financial and insurance sector require frequent monitoring and analysis of the
institutions’ financial situation, in particular of the equity risks.

Besides that, the increasing mathematical complexity of the underlying stock
market models and their calibration has already led to a tremendous increase of
simulation effort in the past. For example, the Heston and jump-diffusion stochastic
differential equations (SDEs) lacking closed-form solutions in general are currently
state-of-the-art [11]. The construction of more and more complicated financial
products has further contributed to this, and since those products are available right
now, there is no perspective that the complexity will decrease again in the future.

The energy needed for portfolio pricing is immense and lies in the range of
several megawatts for a single bigger institute nowadays. Already in 2008 the
available power for the financial center of London had to be clipped to assure a
reliable supply for the Olympic games in 2012 [35]. Therefore, there is an urgent
need for bringing down the energy consumption on the one hand, and to allow even
higher simulation speed in the future on the other hand. This gap can only be bridged
by using optimized hardware accelerators for the simulations.

Most institutes are currently running their simulations on standard CPU clusters,
exploiting the highest flexibility by using pure software models. We will see in
Sect.2 that a lot of simulation methods are based on basic number crunching
operations. So, a standard CPU is certainly not the most efficient architecture for this
task with respect to throughput and energy efficiency. GPUs are currently emerging
in the financial business and are more and more used in productive environments,
for example by JP Morgan Chase, Bloomberg, or BNP Paribas [21]. Optimized
architectures based on FPGAs have a huge potential for saving energy and speed
up the simulations at the same time. However, FPGAs have just been used for
experimental studies in financial business [36, 37], and we are not aware of these
devices being used in productive risk assessment environments today.

In this chapter we cover the following topics:

¢ We introduce the state-of-the-art Heston model and the Multi-Level Monte Carlo
method to solve derivative pricing in this context in Sect. 2.

High-Performance Hardware Acceleration of Asset Simulations 5

* For the application “pricing European double barrier options in the Heston
model” we shortly present a comprehensive benchmark set that allows to
compare implementations on different target architectures transparently.

e We present a hardware accelerator for European barrier option pricing with
the Heston model in Sect. 3, together with throughput and energy measurement
results. We show that hybrid FPGA-CPU systems can already today save far more
than 60% of the energy consumed by a state-of-the-art Nvidia Tesla C2050 GPU.

e In Sect.4 we show efficient hardware architectures to generate normally dis-
tributed high-quality random numbers. These random numbers are key for
efficient Monte Carlo simulations.

2 Pricing Options: Model, Algorithm and Comparison

One problem in financial mathematics is the pricing of derivatives. In this chapter
we focus on the valuation of barrier options in particular. In order to solve this real-
world problem, we need a specific model to reflect the behavior of the underlying
asset. In our case we employ the Heston model that is widely used nowadays and is
a further development of the famous Black—Scholes model.

For the solution of the problem we need an algorithm and an implementation
thereof. A detailed systematic methodology to clearly distinguish between these
terms has been given by de Schryver et al. in 2011 [27].

In this section we give an overview about different Monte Carlo methods and
why they fit well to the problem that we target. Section 3 shows the details of our
hardware implementation.

Besides the implementation itself, evaluating and comparing it to different
algorithms and architectures is a challenge. We suggest to rely on standardized ap-
plication benchmarks for this task. In Sect. 2.3 we propose a meaningful benchmark
set for European barrier option pricing in the Heston model.

2.1 The Heston Model

In 1973 Fisher Black and Myron Scholes have introduced the famous Black—Scholes
model [4]. In the same year Robert C. Merton [19] expanded the mathematical
understanding of the model. Therefore, the model is sometimes called Black—
Scholes—Merton model.

Since prices for European vanilla options were easily calculated and for more
complicated ones one could model the behavior of the asset prices, the Black—
Scholes model has fundamentally changed the way how the financial industry
works. In 1997, Merton and Scholes received the Nobel price for their work.

6 C. de Schryver et al.

The Black—Scholes model consists of certain assumptions on the market behav-
ior. The most important ones are the absence of arbitrage—which is needed to fairly
evaluate prices—and the log normal characteristic of the asset price. The price of an
asset under the risk-neutral measure follows the SDE

dS(r) = S(t)rdr 4+ S(r)cdW(z). (1)

S denotes the price process of the asset, r the risk-less interest rate, W a Brownian
motion and o the volatility. Furthermore, the process has some starting condition
S (0) = 50-

This SDE can be solved. Its solution is

S(r) = S(0)exp ((r— %2> t—i—GW(t)) .

In order to price a derivative of an asset following the SDE above, the funda-
mental theorem of asset pricing states that the price is just the discounted expected
payoff under the risk-neutral measure.

Even though the SDE of the Black—Scholes model can be solved, various
derivatives can only be priced numerically in this setting.

Nevertheless, besides the huge impact on the financial world, the Black—Scholes
model has some drawbacks. The main is that it assumes a constant volatility. From
real market data of asset prices and options it is, however, known that the volatility
is generally not constant.

The Heston model [9] tackles this problem by using a second SDE to describe
the behavior of the volatility process. Under the risk-neutral measure the SDEs of
the Heston model are as follows:

dS(¢) = S(t)rde + S(t)\/V (t)dW5(¢),
dv(t) = k(0 — V(1)) dt + o+/V(t)dW" (r).

The asset price process is denoted by S, and V denotes the volatility process. The
latter process has the important property that it is always non-negative. Under
a certain condition, called the Feller condition, the origin cannot be obtained.
This is important for several mathematical results. However, this condition is
seldom satisfied in real-world applications. The Brownian motions W5 and W" are
correlated, typically in a negative way. This implies that if the stock price falls, the
variance tends to increase and the market becomes more volatile.

The Heston model fits much better to the data observed in real markets and
provides more realistic results compared to the Black—Scholes model. On the other
hand analytic pricing formulas are known for simple European options. This is
especially important to calibrate the model and one of the reasons why the model is
so popular.

High-Performance Hardware Acceleration of Asset Simulations 7

130

120 + B

Asset Price

90 B

80
0 0.2 0.4 0.6 0.8 1

Time

Fig. 1 A modeled asset price path in the Heston model

Figure 1 shows a realization of an asset price path following the Heston SDE.
The erratic behavior is typical for most models and can be seen on the market.

2.2 The Multi-Level Monte Carlo Method

The price of an option is the discounted expected payoff of the option under the
risk-neutral measure. One can analytically calculate the price of a plain European
call or put option in the Heston model, i.e., E(e™"7 - max((S(T) — K),0)), where E
means the expectation value, 7T is the maturity time, and K the strike price. However,
for other options such as barrier options this is not the case. In these situations
numerical methods have to be used to estimate the expectation. There are several
methods available that fit best to different situations. To name the most popular
ones, these are finite difference method, the quadrature scheme, tree-based methods
such as binomial or trinomial trees, and the Monte Carlo method.

We will concentrate on the Monte Carlo method in this chapter. It is not always
the fastest method but very flexible and applicable to a wide range of applications.
The basic idea of the Monte Carlo method comes from the Law of Large Numbers.
To calculate EX for some random variable X, one has to simulate independent
realizations X' of random variables with the same distribution as X. The mean value
of all results is an estimator for the expectation. The variance of the estimator is
depending on the variance of X and the number of simulations. The error introduced
by this is called the statistical error.

8 C. de Schryver et al.

130 T T T T

120

110

Asset Price

100

90

80 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Time

Fig. 2 A simulated Heston path and its discretizations on two different levels

Using Monte Carlo methods for asset simulations in the Heston model, however,
leads to a problem: We cannot simulate S(7T) directly in the Heston setting.
Therefore, the two SDEs are discretized and simulated. This introduces a second
type of error called the bias. The bias is a systematic error and can be decreased
by using more discretization steps. The plain Monte Carlo method now fixes the
number of time steps and simulates many paths with these number of time steps.
The chosen discretization has to be carefully selected, since it directly determines
the bias.

It arises a second difficulty in the discretization of the volatility process in the He-
ston model. As we have seen, the variance process is always non-negative. The
discretized version thereof, however, can become negative, if it is not adjusted. The
obvious adjustment of setting a negative value to zero has turned out to be ineffective
in general. More advanced schemes like the full truncation scheme that only set the
volatility to zero when it is used as an argument of sqrz() perform better [16].

Besides the discretization, the algorithm can be modified as well. The Multi-Level
Monte Carlo method, for example, uses a slightly different approach than the plain
Monte Carlo method. First, one simulates on a very coarse scale, that means with
only a few time steps. These coarse scale simulations can be computed very fast.
Then, iteratively, only the difference to the next finer level is simulated. Level in
this context means a finer discretization (see Fig. 2). The variance of the difference
is smaller and therefore less simulations on the finest level are needed compared to
the plain Monte Carlo method. This gain can be a lot bigger than the cost of the
additional simulations on the coarser levels. The benefits of the Multi-Level method
increase with the required precision.

High-Performance Hardware Acceleration of Asset Simulations 9

However, even though the Multi-Level Monte Carlo method is asymptotically
better, the benefit is not always present in practical situations. Therefore, one has
to be careful when to choose the method. In the Heston setting, a start level
optimization that determines whether to use plain or Multi-Level Monte Carlo is
mandatory. For more details about the Multi-Level Monte Carlo method and also
the different discretization schemes in the Heston model, refer to Marxen et al. [16].

2.3 The Need for Fair Metrics: A Benchmark Proposal
Jor Option Pricing with the Heston Model

Even though the Heston model is state-of-the-art and widely used in the financial
industry, hardware accelerator publications are rare in that field (see Sect.3.1).
However, for the Black—Scholes model a lot of papers presenting sophisticated
hardware architectures based on different methods exist.

The presented speedups look very impressive and the designs are likely well
done. However, comparing the different implementations is a challenging task.
A variety of attributes like speed, accuracy, and energy consumption can be
considered. Furthermore, many different solutions are available in literature: not
only the implementation and the architecture vary but also the algorithm. It is in
many cases not clear by itself to which extent a speedup results from the employed
algorithm and from the implementation. In addition to that, it is not possible to
differentiate whether the presented algorithm or the implementation has the desired
properties only for a special set of parameters, or if it performs well in a more
general framework.

This challenge can only be bridged by using a unified benchmark set on
application level, that means for a specific problem solved with a certain model.
This application benchmark itself has to be independent of the algorithm and
the implementation used. Morris and Aubury [20] already claimed the need for
a benchmark for option pricing in 2007. By giving performance results for a
benchmark set, authors allow their work to be compared fairly with respect to certain
metrics without looking into details of the algorithm or the implementation.

In this section, we will describe our benchmark set for the application “pricing
European double barrier options with the Heston model” presented in 2011 [26].
The benchmark was developed in a joint work with the financial mathematics group
at the University of Kaiserslautern. It is freely available for download,! and we
strongly encourage authors of future publications dealing with this problem to
use it and provide application-specific metrics and therefore to make their work
transparently comparable.

Twelve different settings for the Heston model, including parameter sets that have
to be considered to be important in literature already, are used for the benchmark.

Uhttp://www.uni-kl.de/benchmarking.

http://www.uni-kl.de/benchmarking

10 C. de Schryver et al.

Table 1 One example of the benchmark parameters

Parameters for the x 0 o r So Vo p
Heston model 2.75 0.035 0.425 0 100 0.0384 —0.4644
Option specific ~ Option type Strike Lower Upper Time to maturity (in years)

parameters barrier barrier

Double barrier 90 80 120 1
call

Price of the 5.7538 Precision 0.0001

option

They span a wide range of parameters observable on the markets. Our benchmark
consists of three different components:

e The parameter sets defining the current market situation, such as the current
volatility or the correlation between price and volatility

» The option parameters such as the type of option and the strike price

» The correct reference price or a good approximation thereof, together with a
reference precision

To allow a comparison on application level, we recommend to provide the
following metrics for all presented solutions:

* The consumed energy for pricing one option in joule/option

* The number of priced options per real time in options/second

* The numerical accuracy that is achieved by the proposed design, compared to the
presented benchmark results

* The consumed area on chip for hardware architectures (slices, LUTs or mm? on
silicon)

Table 1 exemplarily shows one of the twelve cases from the benchmark set [26].
The focus is not only on double barrier calls, but also on other types of options such
as puts and digital calls are included.

In this section, we have briefly introduced our terminology, the Heston model,
and the Multi-Level Monte Carlo method that we use in our hardware implementa-
tion described in Sect. 3, together with a benchmark set that allows to fairly compare
different implementation on application level.

The key for Monte Carlo methods is a huge amount of high-quality random
numbers. For hardware architectures, we therefore require efficient architectures
for in our case non-uniform random numbers. We present suitable architectures for
this task in Sect. 4. The next sections shows our proposed design for FPGA-based
acceleration of option pricing in the Heston model.

High-Performance Hardware Acceleration of Asset Simulations 11
3 Hardware Architectures for Asset Simulations

This section gives a short overview of the available FPGA implementations for op-
tion pricing. In the second part, we present an energy efficient FPGA architecture for
this problem, together with detailed measured numbers for energy and throughput.

3.1 Related Work

Although the Heston model including its varieties (for example, the Heston—Hull-
White model or the Heston model with additional jumps) is currently state-of-the-art
in the financial industry [2, 11], the first GPU accelerators for solving this model
have been presented just in 2010.

Zhang and Oosterlee have used the Fourier-Cosine Series Expansions (COS)
method for multiple strike European and Bermudan option pricing in the Heston
model on a NVIDIA GeForce 9800 GX2 GPU [40]. Compared to an Intel Core2Duo
E6550@2.33 GHz CPU, they could achieve speedups between 10 and 100 for
multiple strike European options, depending on the form of the characteristic
function and on the number of strikes computed simultaneously.

Bernemann et al. have put the random number and path generation for Monte
Carlo simulations on a Nvidia GPU, using a hybrid CPU-GPU option pricing system
on top of the C++ QuantLib [23]. They could achieve up to 340 Gflops on a Nvidia
Tesla C1060 GPU, compared to the maximum of about 11 Gflops given by a multi-
threaded C++- implementation with SSE2 running on an Intel Xeon E5620@2.4
GHz [2]. Energy measurements are not provided in this work.

Based on this setup, investigations for exotic option pricing and Heston model
calibration have been presented in 2011 [3]. Here Bernemann et al. have achieved
a speedup between 10 and 50 for option pricing in the Heston model and 4-25 for
simulations in the Heston—Hull-White model using a Hybrid Taus random number
generator (RNG). The results are similar for a Mersenne Twister. For the Heston
model calibration, they achieve a speedup between 15 and 50 with pseudo random
numbers and 15-35 with quasi-random Sobol sequences, depending on the number
of underlyings.

For option pricing in the Black—Scholes model, several FPGA architectures have
been published in the last years [1,5,10,33,34,38]. These works show the wide range
of potential speedups for FPGA-based accelerators, from 10 to more than 100.

In the last years, commercial FPGA systems have emerged for financial domain
specific acceleration. Maxeler Technologies? offers hardware and software solution
bundles for financial computing. They provide Xilinx Virtex-6 based platforms for
professional server environments and desktop workstations. Their MaxCompiler for

2www.maxeler.com.

www.maxeler.com

12 C. de Schryver et al.

general purpose applications takes Java code and splits it into parts that remain
on the host CPU and accelerated kernels executed on the FPGAs. The FPGA
programming, including all the glue and interface logic, is done automatically.

Based on this system, the Maxeler CEO Oscar Mencer et al. presented speedup
results for a single-asset Monte Carlo option pricer based on the Heston model with
additional price jumps at the IEEE Workshop on High Performance Computational
Finance (WHPCF) in November 2011. They have used a professional Maxeler
MaxNode system with four MAX3 FPGA cards and could achieve a speedup
of more than 100x over a 12 thread CPU version running on two Intel Xeon
X5650@2.67 GHz CPUs [18]. Energy aspects have not been considered in this
work.

Further available commercial systems are Wall Street FPGA,* Compaan Design,*
and Impulse Accelerated Technologies.”

Wall Street FPGA uses National Instruments’ LabView to bring a Monte Carlo-
based European call option pricer on a Xilinx Virtex-5 FPGA [29, 30]. They
state that their FPGA accelerated implementation is 131 times faster than the
reference software running on an Alienware Area-51 7500 Dual Core CPU@3.0
GHz. Another application field for Maxeler is oil & gas exploration.

Impulse Accelerated Technologies and Compaan Design do not provide finance
specific tools or benchmarks and cover a much wider application range.

3.2 A Multi-Level Monte Carlo Accelerator for Option Pricing
with the Heston Model

In this section, we describe our dedicated FPGA accelerator architecture for pricing
European double barrier options in the Heston model presented at ReConFig 2011
[25]. We give an overview about the architecture and provide detailed synthesis,
performance, and energy results for a hybrid CPU-FPGA setup.

3.2.1 Architecture

By designing our FPGA-based accelerator, we wanted to achieve the maximum
performance together with a minimal energy consumption. On the other hand, not all
parts of the pricing process described in Sect. 2.1 are suitable for being implemented
in hardware. For example, mathematical operations like exp() or /that are only
needed for the final payoff computation would use up a lot of hardware resources,
but could not contribute very much to increase the overall simulation speed.

3www.wallstreetfpga.com.

4www.compaandesign.com.

Swww.impulseaccelerated.com.

www.wallstreetfpga.com
www.compaandesign.com
www.impulseaccelerated.com

High-Performance Hardware Acceleration of Asset Simulations 13

Therefore we have decided to chose a hardware—software partitioning scheme that
only brings those parts of the computation to hardware that are mainly data-flow
oriented and use up most of the simulation time. We call these parts compute-
intensive kernels. Complex mathematical operations or control driven parts remain
on the host-CPU. This partitioning approach is also used by a number of authors
proposing related accelerator designs [2, 3].

In particular, we have decided to chose the following partition for our
implementation:

e The random number generation, the path simulation, and the barrier checking are
ported to the FPGA. These kernels can be conveniently executed in parallel for
different paths and return the final price for each path.

» The final path prices are transmitted to the host over USB. We have used the FTDI
FT2232H interface module with a top average throughput of measured 6 MB/s.

e The reduction of all path results and the payoff computation remain on the
host CPU.

For the random number generation, we have used a Tausworthe 88 uniform
RNG together with our conversion unit described in Sect.4.2.2. Since it provides
a stream interface with handshaking, it can stall the rest of the design easily if
no random number is present in the current clock cycle. However, any kind of
uniform RNG may be used together with this converter. For example, interleaved
parallel Mersenne Twisters as described in Sect.4.1 that independent streams of
random numbers from a single generator unit seem to be especially beneficial for
high-quality multi-accelerator setups. Nevertheless, by simulating our benchmark
introduced in Sect. 2.3 we have ensured that three Tausworthe 88 instances with
independent seeds provide sufficient randomness for our application (see results in
Sect.3.2.2).

Our hardware has been implemented on a Xilinx ML-507 evaluation kit with a
Virtex-5 XC5VEX70T FPGA. It uses single precision floating point units generated
with the Xilinx CoreGen tool.

We have decided to use a similar approach to the automatically generated designs
proposed by Thomas et al. [31]. However, we use our own host interface framework
on top of the USB connection that allows to transparently read and write registers
and data streams from a software application. Therefore we do not require a bus,
but directly use a handshake-driven stream interface for the output prices and
registers for the parametrization. Our protocol allows to dynamically reconfigure the
accelerator parameters for the Monte Carlo simulation, the market and the option at
runtime.

Our hardware design mainly consists of two parts: the control logic and the actual
data path. In order to bring up the clock frequency to the maximum, our data path
implementation is maximally pipelined. To get rid of additional control logic and to
provide maximum scalability, we have decided to use a packet-based concept in our
design:

14 C. de Schryver et al.

architecture of our hardware Random Number Generator

implementation * v

Fig. 3 High-level |

Control
Logic

v

Data Path

\ 4
\ 4

Queue

Interface to PC

* Each packet describes the current state of a single path, including the price,
volatility, step number, and a validity flag. Instead of having complex early
termination strategies for paths that have hit a barrier, we change the status of
those packets to dummy packets by clearing the validity flag. These packets
remain in the processing pipeline, which decreases the throughput to some extent,
but at the same time drastically reduces the hardware complexity.

* The data path is a pipeline that computes price and volatility for the next step
and performs the barrier checking (see Sect.2.1). It consumes one packet and
produces another one in every clock cycle.

» The pipeline latency with 32-bit single precision floating point numbers is 60.
This means that at every clock cycle, the pipeline outputs a packet that was sent
to it 60 cycles earlier.

* When a packet goes through the pipeline, its contents are updated according to
the selected algorithm for solving the Heston model, that is full truncation with
antithetic variance reduction in our case (see Sect.2.1).

Figure 3 shows the structure of our design and the interaction between the data
path, a queue and the control logic. The queue buffers all packets coming out of
the data path for future processing or final transmission to the host. This decision is
made by the control logic. The depth of the queue has to be greater than the pipeline
length of the data path, which is 60 in our case. We therefore have exploited the
maximum depth of a BRAM36 slice from the target Virtex-5 device for the queue.
It is important to note that the data path block is only made up of simple pipelined
floating point cores, uses handshake-driven stream interfaces, and does not require
support for any stall signals.

The role of the control logic is to act as a broker between the RNG, the data path
and the host system. It follows the following set of rules:

 If the amount of created packets is less than the queue size, a new path is created.

» If enough packets are active, the control logic checks if a packet is available from
the queue.

» If the queue contains a packet, its step number is checked. If the control logic
sees that it was the last step, the final price is sent to the host, and a new packet
is created. If not, the packet is resent to the pipeline along with a new pair of
random numbers.

High-Performance Hardware Acceleration of Asset Simulations 15

Table 2 Single precision floating point components in the data path

Component Adders Multipliers ~ Subtractors sqrt()
Heston step generator 4 6 2 1
Barrier checker 1 1 1 0

The control logic has been implemented equivalently in a bit-true software
model to allow easy testing of the design. Together with a bit-true model of
the hardware RNG, each hardware component can be validated against the
software reference independently. As the processing order of the packets does not
depend on interface delays, this ensured bit-by-bit equivalence between software
and hardware results.

The decomposition between the control logic and the data path further con-
tributes to the reduction of the validation effort:

» The pipeline can be tested separately from the control logic, only considering the
floating point operations.

* The control logic can be checked on its own by using a dummy pipeline that only
counts the steps and has no floating point logic inside at all.

The internal structure of our pipeline is similar to the GARCH example presented
by Thomas et al. [31], but includes the Heston specific modifications. Table 2 shows
the number of floating point units in the Heston step generator part of the pipeline
(that generates successive values for price and volatility) and the subsequent barrier
checking.

We have used THDL++, a high-level approach for HDL design together with
the free VisualHDL tool for the development.6 For this task, the VisualHDL
tool has been enhanced by a data path pipeline designer plugin that is shown in
Fig.4. It allows creating a data path by just dragging-and-dropping operations and
connecting them from the inputs in the upper part of the screenshot to the output at
the bottom.

3.2.2 Results

All synthesis results have been generated for a Xilinx Virtex-5 XC5VFX70T
device (as on the ML-507 evaluation board) with the Xilinx ISE Design Suite 13.1.
The results have been optimized for speed, are post place & route, and include the
host interface logic. Although Xilinx is currently releasing the Virtex-7 family, no
evaluation kits are available at the moment. Therefore we use the ML-507 kit in
order to provide system level results for speed and energy (for all details refer to de
Schryver et al. [25]).

Table 3 shows the number and percentage of resources used for two different
corner scenarios: Using no DSP slices in the dataflow at all (the one remaining is

6visualhdl.sysprogs.org.

visualhdl.sysprogs.org

16 C. de Schryver et al.

r A
< VisualHDL - HestonAcceleratorvhj &@g

File Edit View Project Tools Window Help
FS @ ¢ b 3 9 Donotregenerate VHDL files Stop build after basic metrics are available

HestonTestbench.thp]/Hdun\f:riﬁtr.thp }’ BarrierChecker.thp /Balricr(hﬁ:k:rvvisuaﬁpﬂnc - X
—(iopaseiiee —(adn H .‘T.‘f.t'.e-r-'.‘;?-’:-'_{' e

===

O Floatidders

[0 FloatSubtractor\y/
O FloatMultiplier
[FloatSqriv/

O FloatCompareds/
[0 FixedToFloat

O FloatMax0

[0 NegatelfllpperBarrier
O UpdateBarrierFlag
O IncrementStep

O Interleaver

O Deintereaver

[ReplaceSign

sopdey palony Ge

W double = logic{32)
W BarrierType = logic(3]

W Flag = logic
ug Cutput IQ Errers
Linel, Charl [cursor] Updated BarrierChecker.thp in 0 msec with 0 errors .
Fig. 4 VisualPipeline plugin editing the Heston barrier checker
Table 3 Synthesis results for one instance on a Virtex-5
Minimum DSP usage Maximum DSP usage
Number Percentage (%) Number Percentage (%)
Slices 4,862 43 2,497 22
LUTs 11,382 25 5,481 12
Flip-flops 13,530 30 6,950 15
LUT-FF pairs 15,041 33 8,176 18
DSP48E slices 1 1 43 33
BRAM36 slices 5 3 5 3

Max. frequency 102 MHz 100 MHz

occupied by the RNG from [24]) and using the maximum amount of DSP slices,
depending on the Xilinx CoreGen settings.

From Table 3 we see that (without the triple interface logic) in total three
instances can be put on a single XC5VFX70T device. We assume a three-instance
FPGA accelerator for the following considerations. A Virtex-7 device would provide
enough space for several hundreds of accelerator instances.

High-Performance Hardware Acceleration of Asset Simulations 17

Table 4 Speed and energy results for the laptop-FPGA setup

Laptop only Laptop + FPGA Factor (laptop/FPGA)
Time steps Real time (s) Energy/step (J) Real time (s) Energy/step (J) Real time Energy
32 56 76.31 4 5.38 13.88 14.20
64 116 79.75 8 5.38 14.50 14.84
128 230 79.06 9 3.14 24.64 25.22
256 465 79.84 18 2.46 25.81 32.44
1,024 1,852 79.56 72 2.47 25.60 32.18
4,096 7,344 78.89 287 2.46 25.56 32.13
Average 78.90 3.55 21.66 25.17

Since the host CPU in the hybrid CPU-FPGA setup only computes the final
payoff and performs the communication with the ML-507 board, we have chosen
to use a low-power laptop as host: a Fujitsu Siemens Lifebook E8410 with an Intel
Core 2 Duo T7250@2.0 GHz and 2 GB RAM, running Windows 7 Professional
SP1 64 Bit. In the idle state, the laptop itself consumes around 20 W.

Detailed measured numbers for runtimes and energy consumptions in this setting
are given in Table 4, with and without FPGA acceleration. In each case, ten millions
of paths have been computed.

For the software-only simulations, it can be seen that the measured real time and
consumed energy are linearly related to the number of time steps in the simulation.
This is not surprising, since the power consumption of the laptop with the CPU
fully loaded remains constantly 44 W. In this case, the idle power consumption of
the FPGA board has not been included in the measurements.

Measuring the hybrid setup, the FPGA board with an idle power consumption
of 9W has been added to the 20 W of the laptop, so that we are talking about a
29 W idle load in total. In this setting Table 4 shows that the energy per step is much
higher for small numbers of time steps (32—-128). For 32 and 64 time steps, we
have measured a power consumption of 40 W during the simulations for the whole
system. For 256 and more steps, it remained constant 35 W.

The explanation for this observation is that the host-to-board interface provides
a limited bandwidth. The host CPU also runs the tasks for communicating with the
FPGA board, so that the amount of energy used for communication is very high
for small step sizes, compared to the total energy consumed for one simulation. For
more than 256 step sizes, the computations on the FPGA take enough time, so that
the interface is no longer the limiting factor.

Table 4 also clearly shows that the average speedup of the hybrid system
compared the the CPU-only scenario is 21 times in average, by only consuming
4% of energy per simulation.

Nowadays, financial simulations are performed on high-end CPU and GPU
clusters. To give a fair comparison of our design to the state-of-the-art, we have
implemented our Monte Carlo algorithm on a Nvidia Tesla C2050 graphics card.
Preliminary work in our group has shown that the performance loss of using
OpenCL is insignificant compared to CUDA. Thus, for the reason of higher
flexibility, we have coded our accelerator in OpenCL.

18 C. de Schryver et al.

Table 5 Speed and energy results for the server-GPU setup

Server only GPU accelerated Factor (server/GPU)
Time steps Real time (s) Energy/step (J) Real time (s) Energy/step (J) Real time Energy
32 5 29.06 0.95 9.22 5.25 3.15
64 10 29.06 1.88 9.09 5.33 3.20
128 21 30.88 3.74 9.05 5.69 341
256 41 29.97 7.43 9.00 5.55 3.33
1,024 166 30.20 29.68 8.99 5.60 3.36
4,096 660 29.97 118.46 8.97 5.57 3.34
Average 29.86 9.05 5.50 3.30

The Tesla GPU is hosted by a FluiDyna TWS 1xC2050-1x1Q-8 server work-
station with an Intel Xeon CPU W3550@3.07 GHz and 8 GB RAM running
OpenSuSE Linux 11.4 64 bit with Kernel 2.6.37.6-0.5-default (referred to as server
in the following). The CPU provides four physical cores with hyperthreading, so
that we can count them as eight cores. The idle power consumption for the server
is 87 W without the GPU, and 148 W on average with the Tesla card plugged in.
As in the laptop-FPGA setting, we have removed the GPU for all software-only
measurements.

With the CPU fully loaded (but without the GPU), the server system consumes
186 W in average. If we run the simulations with full load on the GPU, the CPU still
has to compute the payoff at the end of all Monte Carlo simulations. In this case,
the overall power consumption of system is 310 W.

In Table 5 we see all measured runtime and energy results for the server-GPU
setting. Again, we provide the numbers for a software only run on the virtual eight
cores of the server and for the fully loaded GPU setup. We see that on average the
simulations on the GPU run 5.5 times faster than the CPU-only simulations, by only
requiring one third of the energy per simulation. Furthermore, Table 5 shows that the
speedup and energy factors remain constant over different time steps. Therefore we
conclude that in this setting with the fast PCle connection of the GPU the interface
is not a bottleneck, in contrast to the laptop-FPGA setup.

To provide a unified comparison of our four simulation setups including the GPU
and FPGA accelerators, we have normalized the speedup and energy factors to the
fully loaded 8-core server.

As mentioned above, the Virtex-5 device that we use is no longer state of the
art, and the overhead of the ML-507 board for the idle energy consumption is
immense. The complete board consumes 9 W in the idle mode, and not more than
10 W with the FPGA running. To obtain a power estimation for the FPGA itself, we
used the Xilinx XPower Estimator [39] that gave an upper bound of less than 3 W
for our design. The energy efficiency of the system could therefore be drastically
increased by using optimized boards without peripherals, hosting several FPGAs
with a tailored power supply.

To provide an estimation of potential energy savings, we have constructed the
FPGA chip only scenario that assumes the 3 W from the XPower Estimator, with

