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For my parents, who made it possible



“Surely there is nothing more basic to
thought and language than our sense of
similarity. [. . . ]
And every reasonable expectation depends on
resemblance of circumstances, together with
our tendency to expect similar causes to have
similar effects.”

Willard V.O. Quine



Foreword

The SIMBAD project was a Future and Emerging Technologies (FET) project
funded by the European Commission between 2008 and 2011. It brought together
an extraordinary group of talented researchers with a broad spectrum of different
perspectives on the central theme of using non-Euclidean similarity functions as
the basis for learning. This approach was in contrast with the use of kernel func-
tions that had become the de facto standard at the time of the project’s launch
in 2008.

The SIMBAD project took a broad view of the problem of so-called non-
Euclidean learning: analysing the extent to which this was essential in a particu-
lar problem, developing alternative learning strategies that could successfully learn
from non-Euclidean similarity functions, developing methods of learning Euclidean
representations from probabilistic models and similarity data, and so on. These ap-
proaches were not studied just in the abstract but rather were grounded in a series of
concrete problems from application domains where it was known or suspected that
the Euclidean assumption was unrealistic.

The number and depth of the papers that arose from this research agenda was
very impressive, with significant innovations made on all of the fronts listed above.
However, the research was not merely a shotgun attack on several divergent fronts,
but rather represented the coherent development of the leitmotiv of the project: the
use of similarity functions in learning.

Given the breadth of the reach and impact of the research, the project reviewers
were fearful that this coherence might be lost in the variety of journals, conferences,
and particular problems considered, hence risking that the main message become
lost in the plethora of individual results.

It was therefore proposed that a book bringing together the themes of the project
and its main results could help champion and communicate the SIMBAD message in
one coherent volume. This carefully constructed book is the result of that proposal.
It is a distillation of the main themes and results of the project into an accessible
and cross-referenced volume. For those interested in learning about the potential
and importance of learning from similarity functions, this work is undoubtedly the
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key reference from which to begin their study and it is likely to remain so for many
years to come.

John Shawe-TaylorVirginia Water
June 2013



Preface

This book provides a thorough description of a selection of results achieved within
SIMBAD, an EU FP7 project which represents the first systematic attempt at bring-
ing to full maturation a paradigm shift that is just emerging within the pattern recog-
nition and machine learning domains, where researchers are becoming increasingly
aware of the importance of similarity information per se, as opposed to the classical
(feature-based) approach.

SIMBAD started in April 2008 and ended in September 2011, and involved the
following six partners:

• University of Venice, Italy (scientific coordinator)
• University of York, UK
• Delft University of Technology, The Netherlands
• Instituto Superior Tecnico, Lisbon, Portugal
• ETH Zurich, Switzerland
• University of Verona, Italy.

The very end of the project marked also the launch of the SIMBAD workshop series
http://www.dsi.unive.it/~simbad

whose first edition was held in Venice, in September 2011, in conjunction with the
project’s final review meeting. These biennial workshops aim to consolidate and
promote research efforts in this area and to provide and informal discussion forum
for researchers and practitioners.

Within the SIMBAD project we undertook a thorough study of several aspects
of purely similarity-based pattern analysis and recognition methods, from the the-
oretical, computational, and applicative perspective. We covered a wide range of
problems and perspectives. We considered both supervised and unsupervised learn-
ing paradigms, generative and discriminative models, and our interest ranged from
purely theoretical problems to real-world practical applications. The chapters col-
lected in this book aim to provide a coherent overview of our main achievements
and to serve as a starting point for graduate students and researchers interested in
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this important, yet diverse subject. More details on the project’s activities can be
found on our website

http://simbad-fp7.eu
and in the published papers referenced in this book.

A project like SIMBAD could not have been done without the help and support
of many people and institutions, and it is a pleasure to take this opportunity to ex-
press my gratitude to them. In the first place, I’d like to acknowledge the Future
and Emerging Technology (FET) Programme of the 7th Framework Programme for
Research of the European Commission which funded the SIMBAD project, and I
am very grateful to our project officer, Teresa De Martino, and to the reviewers,
Georgios Sakas, Christoph Schnörr and John Shawe-Taylor, whose insightful sug-
gestions and constant encouragement have been instrumental to make SIMBAD a
better project.

It has been my good fortune to collaborate for almost four years with a fantastic
group of people, whose genuine enthusiasm and exceptional professional compe-
tence made SIMBAD a unique, intellectually stimulating experience. In particular,
I’m grateful to my fellow principal investigators who coordinated the activities of
the various research units: Joachim Buhmann, Bob Duin, Mario Figueiredo, Ed-
win Hancock, and Vittorio Murino; to their deputies: Manuele Bicego, Umberto
Castellani, Ana Fred, Marco Loog, Volker Roth, and Richard Wilson; and to all
PhD students and postdocs who have worked within the project.

In Venice, I’ve been helped by many people in my group, and I’d like to thank
them all for their support. In particular, I wish to thank Andrea Torsello for the assis-
tance he gave me at various stages of the project, and Veronica Giove for her valu-
able work concerning all administrative aspects. Special thanks are due to Samuel
Rota Bulò for his constant support throughout the project and for helping me assem-
ble this book.

I’d like to thank the editorial staff at Springer, in particular Wayne Wheeler for
supporting the idea of publishing this book, and Simon Rees for his advice through-
out the production of the volume and for gently tolerating my procrastinations.

My deepest gratitude, however, go to my wife, Rosanna, and my children, Clau-
dia and Valerio, without whose endless patience and understanding the SIMBAD
project, and hence this book, would have not seen the light.

Marcello PelilloVenice
July 2013

http://simbad-fp7.eu
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5 Learning Similarities from Examples Under the Evidence
Accumulation Clustering Paradigm . . . . . . . . . . . . . . . . . . 85
Ana L.N. Fred, André Lourenço, Helena Aidos, Samuel Rota Bulò,
Nicola Rebagliati, Mário A.T. Figueiredo, and Marcello Pelillo

Part III Embedding and Beyond

6 Geometricity and Embedding . . . . . . . . . . . . . . . . . . . . . 121
Peng Ren, Furqan Aziz, Lin Han, Eliza Xu, Richard C. Wilson, and
Edwin R. Hancock

7 Structure Preserving Embedding of Dissimilarity Data . . . . . . . 157
Volker Roth, Thomas J. Fuchs, Julia E. Vogt, Sandhya Prabhakaran,
and Joachim M. Buhmann

xiii



xiv Contents

8 A Game-Theoretic Approach to Pairwise Clustering and Matching 179
Marcello Pelillo, Samuel Rota Bulò, Andrea Torsello,
Andrea Albarelli, and Emanuele Rodolà

Part IV Applications

9 Automated Analysis of Tissue Micro-Array Images on the Example
of Renal Cell Carcinoma . . . . . . . . . . . . . . . . . . . . . . . . 219
Peter J. Schüffler, Thomas J. Fuchs, Cheng Soon Ong, Volker Roth,
and Joachim M. Buhmann

10 Analysis of Brain Magnetic Resonance (MR) Scans
for the Diagnosis of Mental Illness . . . . . . . . . . . . . . . . . . 247
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Chapter 1
Introduction: The SIMBAD Project

Marcello Pelillo

Abstract This introductory chapter describes the SIMBAD project, which repre-
sents the first systematic attempt at bringing to full maturation a paradigm shift
that is just emerging within the pattern recognition and machine learning domains,
where researchers are becoming increasingly aware of the importance of similarity
information per se, as opposed to the classical (feature-based) approach.

1.1 Motivations

The challenge of automatic pattern analysis and recognition (or machine learning)
is to develop computational methods which learn, from examples, to distinguish
among a number of classes, with a view to endow artificial systems with the ability
to improve their own performance in the light of new external stimuli. This ability
is widely recognized to be instrumental in building next-generation artificial cogni-
tive systems (ACSs) which, as opposed to traditional machine or computer systems,
can be characterized “as systems which cope with novel or indeterminate situa-
tions, which aim to achieve general goals as opposed to solving specific problems,
and which integrate capabilities normally associated with people or animals.”1 The
socio-economic implications of this scientific endeavor are enormous, as ACSs will
have applications in a wide variety of real-world scenarios ranging from industrial
manufacturing to vehicle control and traffic safety, to remote and on-site (environ-
mental) sensing and monitoring, and to medical diagnostics and therapeutics.

As a matter of fact, despite their technological applications, pattern recognition
and machine learning can arguably be considered as a modern-day incarnation of
an endeavor which has challenged mankind since antiquity. Fundamental questions
pertaining to categorization, abstraction, generalization, induction, etc. have, in fact,
been on the agenda of mainstream philosophy, under different names and guises,

1From: Artificial Cognitive Systems in FP7: A Report on Expert Consultations for the EU Seventh
Framework Programme 2007–2013 for Research and Technology Development.
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2 M. Pelillo

since its inception. Indeed, as pointed out in [7], the very foundations of pattern
recognition can be traced back to Aristotle and his mentor Plato who were among the
firsts to distinguish between an “essential property” from an “accidental property”
of an object, so that the whole field of pattern recognition can naturally be cast as the
problem of finding such essential properties of a category. As Watanabe put it [20,
p. 21]: “whether we like it or not, under all works of pattern recognition lies tacitly
the Aristotelian view that the world consists of a discrete number of self-identical
objects provided with, other than fleeting accidental properties, a number of fixed
or very slowly changing attributes. Some of these attributes, which may be called
‘features,’ determine the class to which the object belongs.” Accordingly, the goal of
a pattern recognition algorithm is to discern the essences of a category, or to “carve
the nature at its joints.” In philosophy, this view is known as essentialism and has
contributed to shape mainstream machine learning research in a such a way that it
seems legitimate to speak about an essentialist paradigm.

During the nineteenth and the twentieth centuries, the essentialist world-view
was subject to a massive assault from several quarters and it became increasingly
regarded as an impediment to scientific progress. Strikingly enough, this conclusion
was arrived at independently in at least three different disciplines, namely physics,
biology, and psychology. In physics, anti-essentialist positions were held (among
others) by Mach, Duhem, Poincaré, and in the late 1920s Bridgman, influenced by
Einstein’s achievements, put forcefully forward the notion of operational definitions
precisely to avoid the troubles associated with attempting to define things in terms
of some intrinsic essence [4]. For example, the (special) theory of relativity can
be viewed as the introduction of operational definitions for simultaneity of events
and of distance, and in quantum mechanics the notion of operational definitions
is closely related to the idea of observables. This point was vigorously defended
by Popper [15], who developed his own form of anti-essentialism and argued that
modern science (and, in particular, physics) was able to make real progress only
when it abandoned altogether the pretension of making essentialist assertions, and
turned away from “what-is” questions of Aristotelian-scholastic flavor.

In biology, the publication of Darwin’s Origin of Species in 1859 had a devastat-
ing effect on the then dominating paradigm based on the static, Aristotelian view of
species, and shattered 2000 years of research which culminated in the monumental
Linnaean system of taxonomic classification. According to Mayr [14], essentialism
“dominated the thinking of the western world to a degree that is still not yet fully
appreciated by the historians of ideas. [. . . ] It took more than two thousand years
for biology, under the influence of Darwin, to escape the paralyzing grip of essen-
tialism.”

More recently, motivated by totally different considerations, cognitive scientists
have come to a similar discontent towards essentialist explanations. Indeed, it has
become increasingly clear that the classical essentialist, feature-based approach to
categorization is too restrictive to be able to characterize the intricacies and the mul-
tifaceted nature of real-world categories. This culminated in the 1970s in Rosch’s
now classical “prototype theory” which is generally recognized as having revolu-
tionized the study of categorization within experimental psychology; see [13] for an
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extensive account, and the recent paper by von Luxburg et al. [19] for a machine
learning perspective.

Nowadays, anti-essentialist positions are associated with various philosophical
movements including pragmatism, existentialism, decostructionism, etc., and is also
maintained in mathematics by the adherents of the structuralist movement, a view
which goes back to Dedekind, Hilbert and Poincaré, whose basic tenet is that “in
mathematics the primary subject-matter is not the individual mathematical objects
but rather the structures in which they are arranged” [16, p. 201]. Basically, for an
anti-essentialist what really matters is relations, not essences. The influential Amer-
ican philosopher Richard Rorty nicely sums up this “panrelationalist” view with the
suggestion that there are “relations all the way down, all the way up, and all the way
out in every direction: you never reach something which is not just one more nexus
of relations” [17]. As an aside, we note that a similar dissatisfaction with the essen-
tialist approach can also be found in modern link-oriented approaches to network
analysis [8, 12].

Now, it is natural to ask: What is the current state of affairs in pattern recognition
and machine learning? As mentioned above, the fields have been dominated since
their inception by the notion of “essential” properties (i.e., features) and traces of
essentialism can also be found, to varying degrees, in modern approaches which
try to avoid the direct use of features (e.g., kernel methods). This essentialist atti-
tude has had two major consequences which have greatly contributed to shape the
fields in the past few decades. On the one hand, it has led the community to focus
mainly on feature-vector representations. Here, each object is described in terms of
a vector of numerical attributes and is therefore mapped to a point in a Euclidean
(geometric) vector space, so that the distances between the points reflect the ob-
served (dis)similarities between the respective objects. On the other hand, this has
led researchers to maintain a reductionist position, whereby objects are seen in iso-
lation and which therefore tends to overlook the role of relational, or contextual,
information.

Feature-vector representations are indeed extremely attractive because geomet-
ric spaces offer powerful analytical as well as computational tools that are simply
not available in other representations. In fact, classical pattern recognition meth-
ods are tightly related to geometrical concepts and numerous powerful tools have
been developed during the last few decades, starting from linear discriminant anal-
ysis in the 1920s, to perceptrons in the 1960s, to kernel machines in the 1990s.
However, there are numerous application domains where either it is not possible
to find satisfactory features or they are inefficient for learning purposes. This mod-
eling difficulty typically occurs in cases when experts cannot define features in a
straightforward way (e.g., protein descriptors vs. alignments), when data are high
dimensional (e.g., images), when features consist of both numerical and categorical
variables (e.g., person data, like weight, sex, eye color, etc.), and in the presence of
missing or inhomogeneous data. But, probably, this situation arises most commonly
when objects are described in terms of structural properties, such as parts and rela-
tions between parts, as is the case in shape recognition [3]. This led in 1960s to the
development of the structural pattern recognition approach, which uses symbolic
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data structures, such as strings, trees, and graphs for the representation of individ-
ual patterns, thereby, reformulating the recognition problem as a pattern-matching
problem.

It is clearly open to discussion to what extent the lesson learnt from the historical
development of other disciplines applies to machine learning and pattern recogni-
tion, but it looks at least like that today’s research in these areas is showing an
increasing propensity towards anti-essentialist/relational approaches. Indeed, in the
last few years, interest around purely similarity-based techniques has grown consid-
erably. For example, within the supervised learning paradigm (where expert-labeled
training data is assumed to be available) the now famous “kernel trick” shifts the
focus from the choice of an appropriate set of features to the choice of a suitable
kernel, which is related to object similarities. However, this shift of focus is only
partial as the classical interpretation of the notion of a kernel is that it provides an
implicit transformation of the feature space rather than a purely similarity-based rep-
resentation. Analogously, in the unsupervised domain, there has been an increasing
interest around pairwise algorithms, such as spectral and graph-theoretic clustering
methods, which avoid the use of features altogether. Other attempts include Balcan
et al.’s theory of learning with similarity functions [2], and the so-called collective
classification approaches, which are reminiscent of relaxation labeling and similar
ideas developed in computer vision back in the 1980s (see, e.g., [18] and references
therein).

Despite its potential, however, presently the similarity-based approach is far from
seriously challenging the traditional paradigm. This is due mainly to the sporadic-
ity and heterogeneity of the techniques proposed so far and the lack of a unifying
perspective. On the other hand, classical approaches are inherently unable to deal
satisfactorily with the complexity and richness arising in many real-world situa-
tions. This state of affairs hinders the application of machine learning techniques to
a whole variety of relevant, real-world problems.

The main problem with purely similarity-based approaches is that, by departing
from vector-space representations, one is confronted with the challenging problem
of dealing with (dis)similarities that do not necessarily possess the Euclidean behav-
ior 2 or not even obey the requirements of a metric. The lack of the Euclidean and/or
metric properties undermines the very foundations of traditional pattern recognition
theories and algorithms, and poses totally new theoretical/computational questions
and challenges. In fact, this situation arises frequently in practice. For example,
non-Euclidean or non-metric (dis)similarity measures are naturally derived when
images, shapes or sequences are aligned in a template matching process. In com-
puter vision, non-metric measures are preferred in the presence of partially occluded
objects [27]. Other non-metric examples include pairwise structural alignments
of proteins that focus on local similarity [5], variants of Hausdorff distance [18],

2A set of distances D is said to be Euclidean (or geometric) if there exists a configuration of
points in some Euclidean space whose interpoint distances are given by D. In the sequel, the terms
geometric and Euclidean will be used interchangeably. The term (geo)metric is an abbreviation to
indicate the case of a distance that satisfies either the Euclidean or the metric properties.
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normalized edit-distances [5], and also some probabilistic measures such as the
Kullback–Leibler divergence. As argued in [27], the violation of the metric prop-
erties is often not an artifact of poor choice of features or algorithms, and it is in-
herent in the problem of robust matching when different parts of objects (shapes)
are matched to different images. The same argument may hold for any type of local
alignments. Corrections or simplifications may therefore destroy essential informa-
tion.

In summary, there is an urgent need to bring to full maturation a paradigm shift
that is just emerging within the pattern recognition and machine learning domains,
where researchers are becoming increasingly aware of the importance of similarity
information per se, as opposed to the classical feature-based (or vectorial) approach.
Indeed, the notion of similarity (which appears under different names such as prox-
imity, resemblance, and psychological distance) has long been recognized to lie at
the very heart of human cognitive processes and can be considered as a connection
between perception and higher-level knowledge, a crucial factor in the process of
human recognition and categorization [9, 10].

1.2 The Structure of SIMBAD

SIMBAD represented the first systematic attempt towards the goal alluded to above.
Within the project, we undertook a thorough study of several aspects of similarity-
based pattern analysis and recognition methods, from the theoretical, algorithmic,
and applicative perspective, with a view to substantially advance the state of the art
in the field and contribute towards the long-term goal of organizing this emerging
field into a more coherent whole.

We focused on two main themes, which basically correspond to the two funda-
mental questions that arise when abandoning the realm of feature-vector represen-
tations, namely:

1. How can one obtain suitable similarity information from object representations
that are more powerful than, or simply different from, the vectorial?

2. How can one use similarity information in order to perform learning and classi-
fication tasks?

Although the two issues are clearly interrelated, it is advantageous to keep them
apart as this allows one to separate the similarity generation process (a data mod-
eling issue) from the learning and classification processes (a task modeling issue).
According to this perspective, the very notion of similarity becomes the pivot of
non-vectorial pattern recognition in much the same way as the notion of feature-
vector plays the role of the pivot in the classical (geometric) paradigm. This results
in a useful modularity, which means that all interactions between the object repre-
sentation and the learning algorithm are mediated by the similarities, which is where
the domain knowledge comes into the scene.
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An important part of the project concerned the application of the developed tech-
niques. To this end, we focused mainly on biomedical problems, which lend them-
selves particularly well to similarity-based approaches. Specifically, we applied the
new methods developed within the project to inference tasks in the field of med-
ical image analysis, i.e., to Tissue Micro Array (TMA) analysis and to Magnetic
Resonance (MR) brain imaging.

Accordingly, the project (and hence this book) was structured around the follow-
ing strands:

• Foundational issues
• Deriving similarities for non-vectorial data
• Embedding and beyond
• Applications

which we now briefly describe.

1.2.1 Foundational Issues

One of the first objectives within SIMBAD was to explore the causes and origins of
non-Euclidean (dis)similarity measures and how they influence the performance of
classical classification algorithms. In particular, we distinguished between the situ-
ation where the informational content associated with the violation of the geometric
properties is limited, or is simply an artifact of the measurement process, and that
where this is not the case. This distinction is important as, depending on the ac-
tual situation, two different strategies can be pursued: the first attempts to impose
geometricity by somehow transforming or re-interpreting the similarity data, the
second does not and works directly on the original similarities. Chapter 2 provides
a comprehensive summary of our findings. It also discusses several techniques to
convert non-Euclidean data into Euclidean and provides real-world examples which
show that the non-geometric part of the data might be essential for building good
classifiers.

A second line of investigation within this strand concerned fundamental ques-
tions pertaining to the very nature of the pattern recognition endeavor. Indeed, the
search for patterns in data requires a mathematical definition of structure and a com-
parison function to rank different structures, thereby providing insights into the
invariances in the problem class at hand. Motivated by an analogy between com-
munication and learning, Chap. 3 describes an information-theoretic perspective to
the problem and attempts to address the question of model selection and validation
or, in other words, the tradeoff between informativeness and robustness. Accord-
ing to the proposed view, the notion of a pattern is interpreted as an element of
an interpretation space (the “hypothesis class”) endowed with a “natural” neigh-
borhood system, or topology. By generalizing Shannon’s random coding concept,
the framework is able to determine which hypotheses are statistically indistinguish-
able due to measurement noise and how much we have to coarsen the hypothesis
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class. The framework is thought to be applicable to more general questions arising
in computer science concerning algorithm evaluation as well as (robust) algorithm
design.

1.2.2 Deriving Similarities for Non-vectorial Data

The goal here was to develop suitable similarity measures for non-vectorial data. We
focused primarily on structured data (e.g., strings, graphs, etc.), because of their ex-
pressive power and ubiquity, and on geometric measures as they allow one to employ
the whole arsenal of powerful techniques available in the geometric pattern recogni-
tion literature. We pursued our goal by developing suitable kernels, which are known
to be in correspondence with geometric (dis)similarities and considered in particular
information-theoretic kernels. These are based on the assumption that the objects
of interest are generated by some probabilistic mechanism (a source, in informa-
tion/coding theoretic terms) and then proceed by defining (dis)similarity measures
or kernels between (or among) models of these probabilistic sources. Chapter 4
reviews a recent approach which exploits the probabilistic nature of the so-called
generative embeddings, by using information-theoretic kernels defined on proba-
bility distributions. This leads to a new class of hybrid generative/discriminative
methods for learning classifiers whose effectiveness has been tested on two medical
applications (see also Chaps. 9 and 10).

An alternative to this “kernel tailoring” approach consists in learning good simi-
larities directly from training data. Within SIMBAD we investigated a strategy based
on the evidence accumulation clustering paradigm, which aims to combine the re-
sults of multiple clusterings into a single data partition by viewing each cluster-
ing result as an independent evidence of data organization. Chapter 5 describes an
approach which exploits the duality of similarity-based and probabilistic interpreta-
tions of the learned co-association matrix in order to produce robust and informative
consensus solutions. This leads to two clustering methods: a “hard” method which
explores embeddings over learned pairwise associations, and a unified probabilistic
approach that we called PEACE (Probabilistic Evidence Accumulation for Cluster-
ing Ensembles), leading to soft assignments of objects to clusters.

1.2.3 Embedding and Beyond

Within this research strand, we aimed at developing computational models that do
not depend on the actual object representation and rely only on (available) similarity
information. As pointed out above, the analysis carried out in Chap. 2 suggests two
complementary approaches. On the one hand, when the information content of non-
geometricity is limited or simply caused by measurement errors, it is a plausible
strategy to perform some correction on the similarity data (or finding an alternative
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vectorial representation) in an attempt to impose geometricity, and then use con-
ventional geometric techniques. On the other hand, when the information content
of non-geometricity is relevant, one needs brand new tools, as standard approaches
would not work in this case.

The former approach is known as “embedding,” which is a well-established tech-
nique for vector-based representations, and is the subject of Chaps. 6 and 7. In par-
ticular, Chap. 6 focuses on two contrasting approaches to the problem. In the first
part, it describes spectral methods for embedding structured data such as weighted
graphs in a geometrically meaningful way. The resulting embeddings are then used
to construct generative models for graph structure. To this end, the chapter explores
the idea of “spherical” embedding, whereby data is embedded onto the surface of
sphere of optimal radius. Instead of approximating the original (dis)similarities by
Euclidean distances, the second approach tries to preserve the underlying group
structure of the data. Within this context, the second part of Chap. 6 shows that a
polynomial characterization derived from the Ihara zeta function leads to an embed-
ding of hypergraphs which captures interesting structural properties.

Chapter 7 also focuses on these “structure-preserving” embeddings and restricts
the discussion to the case of partition-based clustering problems. It is shown that a
classical pairwise clustering cost function possesses an interesting shift-invariance
property which amounts to saying that the choice of a partition is not influenced
by additive constant shifts in the off-diagonal elements of the affinity matrix. An
approximate version of this property is shown to hold in a more general probabilistic
setting which is capable of selecting the number of clusters in a data-adaptive way.
These findings raise intriguing questions concerning the role of structure-preserving
embedding in the context of a theory of similarity-based pattern recognition.

When there is significant information content in the non-(geo)metricity of the
data one has to resort to algorithms that work directly on the original similarity
function. To this end, Chap. 8 describes an approach based on game theory which is
shown to offer an elegant and powerful conceptual framework that serves well our
purpose. The main point made by game theorists is to shift the emphasis from opti-
mality criteria to equilibrium conditions, namely to the search of a balance among
multiple interacting forces. Interestingly, the development of evolutionary game the-
ory in the late 1970s offered a dynamical systems perspective, an element which was
totally missing in the traditional formulation. From our perspective, one of the main
attractive features of game theory is that it imposes no restriction whatsoever on the
structure of the similarity function. Chapter 8 describes our attempts at formulating
classical pattern recognition problems from a purely game-theoretic perspective. In
particular, the chapter focuses on data clustering and structural matching and dis-
cusses some successful computer vision applications.

1.2.4 Applications

Pattern recognition and machine learning are essentially application-oriented fields
with well-established validation techniques. These were used to quantitatively eval-
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uate the success of the proposed research on large-scale applications with clear
societal impact. In particular, within SIMBAD we devoted substantial effort to-
wards tackling two large-scale biomedical imaging applications. With the direct in-
volvement of leading pathologists and neuroscientists from the University Hospital
Zurich and the Verona–Udine Brain Imaging and Neuropsychology Program, we
contributed towards the concrete objective of providing effective, advanced tech-
niques to assist in the diagnosis of renal cell carcinoma, one of the ten most fre-
quent malignancies in Western countries, as well as of major psychoses such as
schizophrenia and bipolar disorders. The results of our research are summarized in
Chaps. 9 and 10, respectively. These problems are not amenable to be tackled with
traditional machine learning techniques due to the difficulty of deriving suitable
feature-based descriptions. For instance, image segmentation and shape alignment
problems often produce non-(geo)metric dissimilarity data in both application do-
mains, a feature which is indeed present in many other biomedical problems.

1.3 Conclusion and Outlook

There is an increasing awareness of the importance of similarity-based approaches
to pattern recognition and machine learning, and research in this area has gone past
the proof-of-concept phase and is now spreading rapidly. In fact, traditional feature-
based techniques are felt as inherently unable to deal satisfactorily with the com-
plexity and richness arising in many real-world situations, thereby hindering the ap-
plication of machine learning techniques to a whole variety of relevant, real-world
problems. Hence, in general, progress in similarity-based approaches will surely
be beneficial for machine learning as a whole and, consequently, for the long-term
enterprise of building intelligent systems.

We do believe that SIMBAD has contributed substantially towards the advance-
ment of the state of the art in this area. In fact, we have introduced fresh perspectives
to old problems, we have provided a thorough analysis of foundational issues, and
we have demonstrated the applicability of our methodologies in real-world applica-
tions. In conclusion, we went far beyond our original expectations. Of course, we
think there is room for improvement. In this respect, it might probably be useful
to involve people from “external” fields such as cognitive psychology and/or algo-
rithmics, thereby making the research more interdisciplinary. Also, as a matter of
future work, there are promising application areas, such as chemometrics, bioinfor-
matics, social network analysis, etc., which would certainly benefit from the work
done within the project. We do hope that the availability into a single coherent book
of the main results achieved within SIMBAD will foster further progress in this
important emerging field.
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Chapter 2
Non-Euclidean Dissimilarities:
Causes, Embedding and Informativeness

Robert P.W. Duin, Elżbieta Pękalska, and Marco Loog

Abstract In many pattern recognition applications, object structure is essential for
the discrimination purpose. In such cases, researchers often use recognition schemes
based on template matching which lead to the design of non-Euclidean dissimilarity
measures. A vector space derived from the embedding of the dissimilarities is de-
sirable in order to use general classifiers. An isometric embedding of the symmetric
non-Euclidean dissimilarities results in a pseudo-Euclidean space. More and better
tools are available for the Euclidean spaces but they are not fully consistent with the
given dissimilarities.

In this chapter, first a review is given of the various embedding procedures for the
pairwise dissimilarity data. Next the causes are analyzed for the existence of non-
Euclidean dissimilarity measures. Various ways are discussed in which the measures
are converted into Euclidean ones. The purpose is to investigate whether the original
non-Euclidean measures are informative or not. A positive conclusion is derived as
examples can be constructed and found in real data for which the non-Euclidean
characteristics of the data are essential for building good classifiers. (This chapter is
based on previous publications by the authors, (Duin and Pękalska in Proc. SSPR &
SPR 2010 (LNCS), pp. 324–333, 2010 and in CIARP (LNCS), pp. 1–24, 2011; Duin
in ICEIS, pp. 15–28, 2010 and in ICPR, pp. 1–4, 2008; Duin et al. in SSPR/SPR,
pp. 551–561, 2008; Pękalska and Duin in IEEE Trans. Syst. Man Cybern., Part C,
Appl. Rev. 38(6):729–744, 2008) and contains text, figures, equations, and experi-
mental results taken from these papers.)
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2.1 Introduction

Automatic recognition systems work with objects such as images, videos, time sig-
nals, spectra, and so on. They are built in the process of learning from a set of object
examples labeled with the desired pattern classes. Two main steps can be distin-
guished in this procedure:

Representation: Individual objects are characterized by a set of suitable mathemati-
cal descriptors such as vectors, strings of symbols or graphs. A good representation
is the one in which objects can easily be related to each other in order to facilitate
the next step.

Generalization/Discrimination: The representations of the object examples should
enable the mathematical modeling of object classes or class discriminants such that
a good class estimate can be found for new, unseen and, thereby, unlabeled objects
using the same representation.

The most popular representations, next to strings and graphs, encodes objects as
vectors in Euclidean vector spaces. Instead of single vectors, also sets of vectors may
be considered for representing individual objects, as studied, e.g., in [32, 33, 46, 48].
For some applications, representations defined by strings of symbols and attributed
graphs are preferred over vectors as they model the objects more accurately and
offer more possibilities to include domain expert knowledge [6].

On the other hand, representations in Euclidean vector spaces are well suited for
generalization. Many tools are available to build (learn) models and discriminant
functions from sets of object examples (also called training sets) that may be used
to classify new objects into the right class. Traditionally, the Euclidean vector space
is defined by a set of features. These should ideally characterize the patterns well
and be relevant for class differences at the same time. Such features have to be
defined by experts exploiting their knowledge of the application.

The use of features has one important drawback. Features often represent the ob-
jects just partially because they encode their limited characteristics. Consequently,
different objects may have the same representation, i.e., the same feature vector,
when they differ by properties that are not expressed in the chosen feature set.
This results in class overlap: in some areas of the feature space, objects of differ-
ent classes are represented by the same feature vectors. Consequently, they cannot
be distinguished any longer, which leads to an intrinsic classification error, usually
called the Bayes error.

An alternative to the feature representation is the dissimilarity representation de-
fined on direct pairwise object comparisons. If the entire objects are taken into ac-
count in the comparison, then only identical objects will have a dissimilarity zero (if
the dissimilarity measure has the property of ‘identity of indiscernibles’). For such a
representation class, overlap does not exist if the objects are unambiguously labeled,
which means that there are no real world objects in the application that belong to
multiple classes.

Some dissimilarity measures used in practice do not have the property that a
zero dissimilarity can only arise for identical objects. An example is the single-
linkage distance used in clustering: the dissimilarity between two clusters is defined
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as the distance between the two most neighboring vectors. This distance measure
corresponds to defining the smallest distance between the surfaces of two real world
objects as the distance between the objects. A zero value, however, does not imply
that the objects are identical; they are just touching.

Distance measures such as the above, and many others, cannot be perfectly em-
bedded in a Euclidean space. This means that there is no set of vectors in a vector
space of any dimensionality for which the Euclidean distances between the objects
are identical to the given ones. In particular, it holds for non-metric distances, which
are just an example from a large set of non-Euclidean distance measures. As we
want to include non-metric distances (such as the single-linkage distance) we will
use the more general term of dissimilarities instead of distances. They refer to pos-
sibly improper distance measures in the mathematical sense. We will still assume
that dissimilarities are non-negative and that they have a monotonic relation with
object differences: if two given objects are made more different, their dissimilarity
increases.

Non-Euclidean symmetric dissimilarity data can be perfectly embedded into
pseudo-Euclidean spaces. A proper embedding of non-Euclidean dissimilarities and
the training of classifiers in the resulting space are, however, not straightforward.
There are computational as well as fundamental problems to be solved. The question
thereby arises whether the use of non-Euclidean dissimilarity measures is strictly
necessary. Finding the causes of such measures, see Sect. 2.2, is a first step to an-
swer this question. This will be more extensively discussed in Sect. 2.6. We will
investigate whether such measures are really informative and whether it is possi-
ble to make Euclidean corrections or approximations by which no information is
lost.

Two main vectorial representations of the dissimilarity data, the dissimilarity
space and the pseudo-Euclidean embedded space, are presented in Sect. 2.3. Sec-
tion 2.4 discusses classifiers which can be trained in such spaces. Transformations
which make the dissimilarity data Euclidean are briefly presented in Sect. 2.5. Next,
numerous examples of artificial and real dissimilarity data are collected in Sect. 2.7.
Oftentimes, they illustrate that linear classifiers in the dissimilarity-derived vector
spaces are much more advantageous than the traditional 1-NN rule. Finally, we sum-
marize and discuss our findings in Sect. 2.8.

The issue of informativeness of the non-Euclidean measures is the main topic of
this chapter. We will present artificial and real world examples for which the use
of such measures is really informative. We will, however, also make clear that for
any given classifier defined in a non-Euclidean space an equivalent classifier in a
Euclidean space can be constructed. It is a challenge to do this such that the training
of good classifiers in this Euclidean space is feasible. In addition, we will argue that
the dissimilarity space as proposed by the authors [37, 55] is a Euclidean space that
preserves all non-Euclidean information and enables the design of well performing
classifiers.
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2.2 Causes of Non-Euclidean Dissimilarities

In this section, we shortly explain why non-Euclidean dissimilarities frequently
arise in the applications. This results from the analysis of a set of real world objects.
Let D be an N ×N dissimilarity matrix describing a set of pairwise dissimilarities
between N objects. D is Euclidean if it can be perfectly embedded into a Euclidean
space. This means that there exists a Euclidean vector space with N vectors for
which all Euclidean distances are identical to the given ones.

There are N2 free parameters if we want to position N vectors in an N -dimen-
sional space. The dissimilarity matrix D has also N2 values. D should be symmetric
because the Euclidean distance is. Still, there might be no solution possible as the
relation between vector coordinates and Euclidean distances is nonlinear. More on
the embedding procedures is discussed in Sect. 2.3. At this moment, we need to
remember that the matrix D is Euclidean only if the corresponding vector space
exists.

First, it should be emphasized how common non-Euclidean measures are. An
extensive overview of such measures is given in [55], but we have often encountered
that this fact is not fully recognized. Most researchers wrongly assume that non-
Euclidean distances are equivalent to non-metric ones. There are, however, many
metric but non-Euclidean distances, such as the city-block or �1-norm.

Almost all probabilistic distance measures are non-Euclidean by nature. This im-
plies that by dealing with object invariants, the dissimilarity matrix derived from the
overlap between the probability density functions corresponding to the given ob-
jects is non-Euclidean. Also the Mahalanobis class distance as well as the related
Fisher criterion is non-Euclidean. Consequently, many non-Euclidean distance mea-
sures are used in cluster analysis and in the analysis of spectra in chemometrics and
hyperspectral image analysis as spectra can be considered as one-dimensional dis-
tributions.

Secondly, what is often overlooked is the following fact. One may compare pairs
of real world objects by a (weighted) Euclidean distance, yet the complete set of N
objects giving rise to an N ×N dissimilarity matrix D is non-Euclidean. In short,
this is caused by the fact that different parts or characteristics of objects are used
per pair to define the object differences. Even if the dissimilarity is defined by the
weighted sum of differences, as long as there is no single basis of reference for the
comparison of all pairs, the resulting dissimilarity matrix D will be non-Euclidean.
These types of measures often result from matching procedures which minimize
the cost or path of transformation between two objects. Fundamental aspects of this
important issue are extensively discussed in Sect. 2.2.2.3.

In shape recognition, various dissimilarity measures are based on the weighted
edit distance, on variants of the Hausdorff distance or on nonlinear morphing. Usual
parameters are optimized within an application w.r.t. the performance based on tem-
plate matching and other nearest neighbor classifiers [14]. Almost all have non-
Euclidean behavior and some are even non-metric [14].

In the design and optimization of the dissimilarity measures for template match-
ing, their Euclidean behavior is not an issue. With the popularity of support vector
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machines (SVMs), it has become important to design kernels (similarities) which
fulfill the Mercer conditions [12]. This is equivalent to a possibility of an isomet-
ric Euclidean embedding of such a kernel (or dissimilarities). Next sections discuss
reasons that give rise to violations of these conditions leading to non-Euclidean dis-
similarities or indefinite kernels.

2.2.1 Non-intrinsic Non-Euclidean Dissimilarities

Below we identify some non-intrinsic causes that give rise to non-Euclidean dis-
similarities. In such cases, it is not the dissimilarity measure itself, but the way it is
computed or applied that causes the non-Euclidean behavior.

2.2.1.1 Numeric Inaccuracies

Non-Euclidean dissimilarities arise due to the numeric inaccuracies caused by the
use of a finite word length. If the intrinsic dimensionality of the data is lower than
the sample size, the embedding procedure that relies on an eigendecomposition of a
certain matrix, see Sect. 2.3, may lead to numerous tiny negative eigenvalues. They
should be zero in fact, but become nonzero due to numerical problems. It is thereby
advisable to neglect dimensions (features) that correspond to very small positive and
negative eigenvalues.

2.2.1.2 Overestimation of Large Distances

Complicated measures are used when dissimilarities are derived from raw data
such as (objects in) images. They may define the distance between two objects as
the length of the path that transforms one object into the other. Examples are the
weighted edit distance [4] and deformable templates [31]. In the optimization pro-
cedure that minimizes the path length, the procedure may approximate the transfor-
mation costs from above. As a consequence, too large distances are found. Even if
the objects are compared by a (weighted) Euclidean distance measure, the resulting
set of dissimilarities in D will often become non-Euclidean or even non-metric.

2.2.1.3 Underestimation of Small Distances

The underestimation of small distances has the same result as the overestimation of
large distances. It may happen when the pairwise comparison of objects is based
on different properties for each pair, as it is the case, e.g., in studies on consumer
preference data. Another example is the comparison of partially occluded objects in
computer vision.
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Fig. 2.1 Vector space with
the invariant trajectories for
three objects O1, O2 and O3.
If the chosen dissimilarity
measure is defined as the
minimum distance between
these trajectories, triangle
inequality can easily be
violated, i.e., d(O1,O2)+
d(O1,O3) < d(O1,O3)

2.2.2 Intrinsic Non-Euclidean Dissimilarities

The causes discussed in the above may be judged as accidental. They result either
from computational or observational problems. If better computers and observations
were available, they would disappear. Now, we will focuss on dissimilarity measures
for which this will not happen. There are three possibilities.

2.2.2.1 Non-Euclidean Dissimilarities

As already indicated at the start of this section, arguments can be given from the
application side to use another metric than the Euclidean one. An example is the
l1-distance between energy spectra as it is related to energy differences. Although
the l2-norm is very convenient for computational reasons and it is rotation invariant
in a Euclidean space, other distance measures may naturally arise from the demands
in applications, e.g., see [47].

2.2.2.2 Invariants

A fundamental reason behind non-Euclidean dissimilarities is related to the occur-
rence of invariants. Frequently, one is not interested in the dissimilarity between
given objects A and B , but in the dissimilarity between their equivalence classes,
i.e., sets of objects A(θ) and B(θ) in which θ controls an invariant. One may define
the dissimilarity between the A and B as the minimum difference between the sets
defined by all their invariants (see Fig. 2.1 for an illustration of this idea):

d∗(A,B)=min
θA

min
θB

(
d

(
A(θA),B(θB)

))
. (2.1)

This measure is non-metric: the triangle inequality may be violated as for different
pairs of objects different values of θ are found minimizing (2.1).
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2.2.2.3 Sets of Vectors

Complicated objects such as multi-region images may be represented by sets of
vectors. Problems like this are investigated in the domain of Multi Instance Learning
(MIL) [13], or Bag-of-Words (BoW) classification [52]. Distance measures between
such sets have already been studied for a long time in cluster analysis. Many are non-
Euclidean or even non-metric, such as the single linkage distance. This measure is
defined as the distance between the two most neighboring points of the two clusters
being compared. It is non-metric. It even holds that if d(A,B)= 0, then it does not
follow that A≡ B .

For the single linkage dissimilarity measure it can be understood why the dis-
similarity space may be useful. Given a set of such dissimilarities between clouds
of vectors, it can be concluded that two clouds are similar if the two sets of dis-
similarities with all other clouds are about equal. If just their mutual dissimilarity is
(close to) zero, they may still be very different.

The problem with the single linkage dissimilarity measure between two sets of
vectors points to a more general problem in relating sets and even objects. In [33],
an attempt has been made to define a proper Mercer kernel between two sets of
vectors. Such sets are in that paper compared by the Hellinger distance derived from
the Bhattacharyya’s affinity between two pdfs pA(x) and pB(x) found for the two
vector sets A and B:

d(A,B)=
[∫ (√

pA(x)−√pB(x)
)2

]1/2

. (2.2)

The authors state that by expressing p(x) in any orthogonal basis of functions, the
resulting kernel K is automatically positive semidefinite (psd). This is only correct,
however, if all vector sets A,B, . . . to which the kernel is applied have the same
basis. If different bases are derived in a pairwise comparison of sets, the kernel may
become indefinite. This occurs if the two pdfs are estimated in a subspace defined
by a PCA computed from the objects of the two classes A and B only.

This makes clear that indefinite relations may arise in any pairwise compari-
son of real world objects if every pair of objects if first represented in some joint
space in which the dissimilarity is computed. These joint spaces may be different
for different pairs! Consequently, the total set of dissimilarities will likely have a
non-Euclidean behavior, even if each comparison relies on the Euclidean distance,
as in (2.2).

The consequence of this observation is huge for pattern recognition applications.
It implies that a representation defined by pairwise dissimilarities between objects
can only be Euclidean if a common basis between all objects, including the future
test objects, is found for the derivation of such dissimilarities. This is naturally,
by definition, the case for feature vector representations, as the joint space for all
objects is already defined by the chosen set of features. For the dissimilarity repre-
sentation, however, which has the advantage of potentially using the entire objects,


