

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a
Glance

About the Author��� xiii

About the Technical Reviewers�� xv

About the Contributor��� xvii

Foreword��� xix

Acknowledgments��� xxi

Introduction��� xxiii

Chapter 1: Getting Started: The Android USB Framework■■ ��������������� 1

Chapter 2: Discovering and Managing USB Within Android■■ ���������� 17

Chapter 3: USB Storage■■ ��� 37

Chapter 4: USB Tethering■■ ��� 69

Chapter 5: USB Accessory■■ ��� 79

Chapter 6: USB Audio■■ �� 101

Contents at a Glancevi

Chapter 7: Android Debug Bridge (ADB)■■ �������������������������������������� 125

Appendix A: Battery Charging Using USB■■ ������������������������������������ 139

Appendix B: Using libusb in Android■■ ��� 157

Index��� 167

xxiii

Introduction

The Android open platform, which was introduced in 2007, is now in more than
50 million devices. The application store statistics show billions of downloads.
It has literally conquered the mobile handset market, overtaking many
established players. It is also expanding beyond mobile platforms into unique
products such as the Android Stick, which converts a normal TV to a smart
one.

If you are a developer who works on embedded systems, there is no escape
from this ever-growing platform. This inevitability creates a need for good
reference books for engineers who are interested in getting started with
Android. There are many books in the market covering Android application
programming and its development environment. If you are looking for
something like that in this book, you are in the wrong place. This book is much
more than that. The book explains the complete Android framework, from the
API to the internals of Android, along with the kernel below them.

This book exclusively covers the internals of the Android USB framework. Why
USB? Similar to the Android platform, USB is also inevitable in the embedded
world. On the Android platform, USB is the primary connectivity solution, as an
interface used to debug and also as an interface used to charge the batteries
of the Android device.

Does this mean this book is only for USB engineers? In fact, it will be useful to
any developer working on the Android platform. Why?

If you are a multimedia developer on the Android platform, you need USB for
media transfer or to play back audio. This book explores MTP and USB audio
in both USB device and USB host modes.

If you are a core developer who works on charging, you need to understand
the USB charging specifications, which are explained in the book.

Introductionxxiv

If you are a networking developer interested in tethering, USB plays a role
using the RNDIS specification, which is explained in the book.

If you are an application developer interested in managing USB devices from
an Android platform, this book explores the Android USB Service framework,
which manages USB functionalities.

Last but not least, Android Debug Bridge (ADB), the debugging tool of Android,
is over USB and knowledge of its internals is a definite value-add for any
application or platform developer. This book details the internals of ABD to the
kernel level.

This book covers everything about USB on Android, from the different USB
classes supported in device mode to the USB host framework that manages
the USB devices connected to the Android platform. Each chapter explains
USB class specification before exploring how the functionality (class) is
implemented on the Android platform. This gives readers a clean perspective as
to what the USB specification demands and how it is implemented in Android.

The Android framework has migrated to different versions by now. As a
platform or application developer, it’s important you know about the major
changes each version introduced. The book covers the major changes in the
USB framework between the versions, including interesting bug fixes that were
undocumented in the Android specifications.

Intended Audience
The primary audience for this book are application developers and engineers
who work hands-on with Android. This book is for an application developer
who has an idea for a USB app and wonders how to implement it. This book
will be a definite guide for the developer to manage USB on Android.

Because the book covers APIs to the Linux kernel, core platform developers
will find it easy to put data point to debug. Thus, core Android platform
developers working on USB, audio, media, and others are the next primary
audience for the book.

Technical managers, architects, and senior managers who look for the eagle-
eye view of a system are a secondary audience for the book. The book will
enable them to understand the different blocks of the Android USB subsystem
and help estimate the complexity involved.

Student and engineers can use this book as a do-it-yourself reference, as
it explains the different blocks of the Android USB framework, from the
application level to the kernel.

Introduction

xxv

What You’ll Learn
Understand the Android USB framework, from the APIs to the kernel layer, and
enable advanced USB application development.

Learn all the major USB functionalities by exploring the USB class
specifications not covered in any of the USB books.

Learn the newly introduced Android Open Accessory (AOA) protocol and
explore the developing NFC reader using the AOA protocol.

Learn about critical changes in the Android USB framework among different
Android versions.

Learn how USB charging works, with an explanation of the USB battery
specification.

Learn how to switch between MTP and mass storage and vice versa, in order
to share storage with a host PC.

Salient Features
Real-world useful applications enhance your Android experience, including
reverse tethering, AOA audio, AOA NFC reader, switching between MTP and
UMS, and more. Complete project source is available, which will help you try
it on your own.

Covers advanced technical topics (Android and USB) that aren’t covered in
other texts.

All design diagrams (Microsoft Visio) are on the CD for reuse by developers
and architects.

Covers the major differences in the Android USB framework between
Android versions.

Covers all major USB functions, such as MTP, audio, charging, and mass
storage, along with Google-defined USB functions like ADB and AOA, all by
exploring their specifications.

Chapter Introduction
Though there are different types of Android-powered devices, this book details
the Android USB framework with a mobile hand-held device in mind. The
following section provides a brief description of each chapter in this book.

Introductionxxvi

Getting Started: The Android USB Framework
Android defines its requirement through the Compatibility Definition Document
(CDD) and mandates that Android devices comply with this specification.
This chapter provides a brief overview of the USB requirements defined in the
Android CDD. The chapter subsequently explains various USB-related Android
APIs that the Android framework exports for application developers in order to
manage USB functionalities or devices.

Discovering and Managing USB Within Android
Discovering and managing a device is the first step and a crucial part any
programming activity. This chapter describes how USB function discovery is
made inside the Android framework when an Android device is connected in
USB device mode. The chapter also details how a USB device is detected inside
the Android framework when an Android device is connected in host mode.

USB Storage
Media is one of the key features of mobile devices and is predominantly
managed using USB. Media over USB is managed using two USB
specifications: Media Transfer Protocol (MTP) and Mass Storage Class (UMS).
This chapter briefly details these two specifications and provides an overview
of the USB specification’s requirements. The chapter also details how media
files are transferred to a host PC when the Android device is in USB device
mode (both UMS and MTP).

This chapter also explains how a USB-based external media device (say, a
USB flash drive or an MTP device) is managed by the Android framework in
USB host mode.

USB Tethering
Tethering is a method by which mobile devices shares their Internet
connectivity with other devices, such as personal computers or laptops. An
Android device uses the RNDIS protocol over USB to tether and share Internet
connectivity with other devices. The RNDIS protocol is Microsoft-specific and
is very similar to the USB ECM class specification. This chapter provides a
brief overview of the RNDIS specification and explains the USB part of the
Android framework that facilitates tethering.

Introduction

xxvii

USB Accessory
Android Open Accessory (AOA), an Android-specific class defined by Google,
was introduced in the Ice Cream Sandwich version of Android to facilitate
Android devices in managing external devices. The chapter details the AOA
protocol and its operations with an example application. With the Jelly Bean
version of Android, the AOA protocol was improved to support the USB
Human Interface Device (HID) class. The chapter provides a brief overview of
the USB HID class and its implementation inside the Android framework.

USB Audio
The USB audio specification defines transport that provides an efficient way to
propagate and control digital audio. With the Jelly Bean version of Android, an
Android system in USB device mode supports the USB audio class. This support
of digital audio over USB is packed with the AOA protocol. This chapter provides
a brief overview of USB audio specification and subsequently explains the
Android framework that implements the device audio class. The chapter explains
the device and host audio implementations within the Android framework.

Android Debug Bridge
Android Debug Bridge (ADB) is a command-line client/server debug tool that allows
you to communicate with an Android-powered device using USB as a transport.
This chapter details the ADB protocol defined by Google and subsequently explains
how the Android USB framework implements the ADB protocol.

Appendix A: Battery Charging Using USB
Most battery-powered hand-held devices use a USB port to generate power
for charging the battery. Android-powered hand-held devices also use USB as
the primary power source to charge the battery. This USB class is covered as
part of this appendix since there is no real Android USB framework for battery
management. This is because USB charging specification focuses on the
charging current and other low-level details; there is no USB-level protocol.
This chapter provides a brief overview of the USB charging specification and
subsequently explains the USB part of the Android battery manager framework.

Introductionxxviii

Appendix B: Using libusb in Android
Protocols like USB allow developers to write driver at user space to manage
its functionality. The USB user space driver called libusb is available in almost
all popular desktop operating systems. Since libusb is a generic driver, it can
be used with any USB device. This chapter explores how to write a simple
application over libusb on the Android platform.

1

Chapter 1
Getting Started: The
Android USB Framework

What you will learn:

Android USB CDD requirements	

Overview of Android USB packages	

Architectural diagram of Android USB framework	

Android USB APIs	

Android has become one of the most successful open platforms, powering
up millions of mobile devices and similar embedded devices worldwide.
According to Google, more than a million new Android devices are added
to this statistic every day. This large market presence and continuous
market penetration makes it the ideal platform for developers, SMEs, and
bigger enterprises to portray their presence and reach out to end users. For
Android devices, Google provides the necessary infrastructure to develop
new applications. These devices can reach millions of end users through
Google’s open market platform named “Google Play.”

Such a large development and deployment process necessitates
standardization in order to ensure compatibility of these applications across
the multitudes of Android devices that exist. To facilitate this, Google
created a compatibility program that enables application developers,
end users, and platform manufacturers to maintain program consistency
and a similar user experience across devices. A detailed overview of the
compatibility program is available on Google’s Android web site at
https://source.android.com/compatibility/overview.html. The
compatibility program consists of three key components: Compatibility

https://source.android.com/compatibility/overview.html

CHAPTER 1: Getting Started: The Android USB Framework2

Definition Document (CDD), Android Platform Source Code, and a Compatibility
Test Suite (CTS). Any device that claims to be an “Android” device has to
comply with the Android CDD and successfully pass all CTS test suites.

In order to study the framework within Android, it is important to understand
the aforementioned three key components. Thus, in order to best study
the Android USB framework, it is important to focus and explore what
Android CDD defines as a USB requirement, and how that requirement is
implemented.

This chapter starts with exploring the USB section of the Android CDD, and
subsequently presents a complete overview of the Android USB framework
by providing a break down of the implementation process. Later on, the
chapter will explore various USB APIs that the Android framework exports in
order to assist an application developer in managing the USB functionality
of an Android device.

Android CDD – USB
At the time of this writing, Android 4.4 Kit Kat is the latest version of Android
and Android 4.4 CDD defines the compatibility requirement of the Android
Kit Kat version. You can find the complete list of Android CDDs on Google’s
Android website at http://source.android.com/compatibility/downloads.html.
So, what is an Android CDD? In simple terms, the Android CDD defines the
requirements that must be met in order for a device to claim that it is an
Android-compatible device. To an extent, Android CDD is brief in that it is
a 30-40 page document. This document can point to specifications like the
USB Audio, for example, to indicate the user’s expectation. The CDD also
identifies features as “must,” “must not,” “required,” “shall,” “shall not,”
“should,” “should not,” “recommended,” “may,” and “optional,” as per the
IETF standard that is defined in RFC2119. It is important for developers
to pay attention to these terms and take care while developing Android
applications when using an optional feature or any feature listed as “may.”

When it comes to USB, an Android device can operate in two modes—USB
device mode or USB host mode.

USB Device Mode
When an Android device is connected to a host PC using USB, as illustrated
in Figure 1-1, the Android device is said to be in USB device mode and
power is sourced from the host PC USB port. (A device that needs more
power than the host can provide should have its own power source.)

http://source.android.com/compatibility/downloads.html

CHAPTER 1: Getting Started: The Android USB Framework

3

USB Host Mode
When a USB device is connected to an Android device, as illustrated in
Figure 1-2, the Android device is said to be in USB host mode, and the
Android device has to supply power to the connected device. An Android
device functioning as a USB embedded host or as an On-The-Go (OTG)
host must supply 5V/500mA of power when the connected device is USB
bus powered.

Figure 1-1.  Illustration of an Android device in USB device mode

Figure 1-2.  Illustration of an Android device in USB host mode

There is also a unique Android USB setup, which was introduced during the
Honeycomb version of Android, named the USB accessory mode.

CHAPTER 1: Getting Started: The Android USB Framework4

USB Accessory Mode
In USB accessory mode, an Android device that is in the USB device mode
can manage external devices. This ability is achieved by connecting the
Android device to an external embedded accessory device, which acts as
a USB host. The Android device goes to USB accessory mode in order to
manage devices that connect to the accessory device. Figure 1-3 depicts
Android accessory mode with a simple illustrative example of managing
a camera from an Android device using an accessory device. Accessory
mode is explained in detail in Chapter 5, which will provide you with a better
understanding of the process.

Figure 1-3.  Illustration of an Android device in USB accessory mode

Table 1-1.  Illustration of an Android CDD 4.4 as Defined in USB Device Requirements

USB Device Requirement

The port must be connectable to a USB host with a standard USB-A port.	

The port should use the micro-USB form factor on the device side. 	
Existing and new devices that run Android 4.4 are very strongly
encouraged to meet these requirements in Android 4.4 so that they will
be able to upgrade to future platform releases.

The port should be centered in the middle of an edge. Device 	
implementations should either locate the port on the bottom of the
device (according to natural orientation) or enable software screen
rotation for all apps (including the home screen), so that the display
draws correctly when the device is oriented with the port at the bottom.
Existing and new devices that run Android 4.4 are very strongly
encouraged to meet these requirements in Android 4.4 so that they will
be able to upgrade to future platform releases.

The USB section of Android CDD defines which USB functionalities have to
be supported in the host and device modes. Tables 1-1 and 1-2 capture the
requirements when an Android device acts as a USB device or as a USB host.

(continued)

CHAPTER 1: Getting Started: The Android USB Framework

5

USB Device Requirement

If the device has other ports (such as a non-USB charging port) it 	
should be on the same edge as the micro-USB port.
It must allow a host connected to the device to access the contents of 	
the shared storage volume using either USB Mass Storage Protocol or
the Media Transfer Protocol.

It must implement the Android Open Accessory API and specification 	
as documented in the Android SDK documentation, and also must
declare support for the hardware feature android.hardware.usb.
accessory [Resources, 52].

It must implement the USB audio class (version not mentioned in CDD) 	
as documented in Android SDK documentation (http://developer.
android.com/reference/android/hardware/usb/UsbConstants.
html#USB_CLASS_AUDIO).

It should implement support for USB battery charging specification 	
(version 1.2) [Resources, 64]. Existing and new devices that run Android
4.4 are very strongly encouraged to meet these requirements in Android
4.4, so that they will be able to upgrade to future platform releases.

Device implementations must implement the Android Debug Bridge. 	
If a device implementation omits a USB client port, it must then
implement the Android Debug Bridge via a local area network (such as
Ethernet or 802.11).

Table 1-1.  (continued )

Table 1-2.  Illustration of an Android CDD 4.4 as Defined in USB Host Requirements

USB Host Requirement

It may use a non-standard port form factor, but if so, the device must 	
be shipped with a cable or cables that will adapt the port to a standard
USB-A.

It must implement the Android USB host API as documented in the 	
Android SDK and declare support for the hardware feature
android.hardware.usb.host (http://developer.android.com/guide/
topics/usb/host.html).

These requirements are defined in section 7.7 USB of the Android CDD 4.4,
and you should also note that the requirements are brief and point to the
actual specifications. It is important to note that there are few requirements
that define actual physical characteristics of an Android device. These
physical characteristics will be handy when maintaining compatibility with
external accessories, such as audio docks.

http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO
http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO
http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO
http://developer.android.com/guide/topics/usb/host.html
http://developer.android.com/guide/topics/usb/host.html

CHAPTER 1: Getting Started: The Android USB Framework6

Over and above these two tables, USB requirements can also be found
across other sections such as “Memory and Storage.” The following snippet
captures one such requirement from the storage section of CDD:

“Regardless of the form of shared storage used, device
implementations MUST provide some mechanism to access the
contents of shared storage from a host computer, such as USB
mass storage (UMS) or Media Transfer Protocol (MTP). Device
implementations MAY use USB mass storage, but SHOULD
use Media Transfer Protocol. If the device implementation
supports Media Transfer Protocol:

The device implementation should be compatible 	
with the reference Android MTP host and Android
File Transfer [Resources, 57].

The device implementation should report a USB 	
device class of 0x00.

The device implementation should report a USB 	
interface name of MTP.

If the device implementation lacks USB ports, it must then
provide a host computer with access to the contents of the
shared storage by some other means, such as a network file
system.”

The storage section defines how the storage space of an Android device
should be shared by a host PC over USB. The storage section explains in
detail mandating MTP as the preferred USB protocol for sharing the storage
space.

 DID YOU KNOW?

Have you ever wondered why your Android device is not enumerating as Mass Storage
device from Ice Cream Sandwich and later? The secret lies in Android CDD. From the
following two snippets, it is very apparent that Android has moved from Mass Storage to
MTP as the default mechanism to connect to the host computer.

Android CDD 2.3 – Ginger Bread Version

“It must implement the USB mass storage specification, to allow a host connected to the
device to access the contents of the /sdcard volume.”

CHAPTER 1: Getting Started: The Android USB Framework

7

Android CDD 4.0.3 – Ice Cream Sandwich Version

“Regardless of the form of shared storage used, device implementations MUST provide
some mechanism to access the contents of shared storage from a host computer, such as
USB mass storage (UMS) or Media Transfer Protocol (MTP). Device implementations may use
USB mass storage, but should use Media Transfer Protocol.”

Now that you are able to understand Google Android’s USB requirements,
you can now explore how these requirements are built within the Android
framework.

Android USB Architecture
This section explains Android USB architecture based on the various USB
modes in which an Android device can perform as explained in the initial
section. In simple terms, an Android platform is made of Android Linux
kernel as the base to manage the platform resources. A Java-based Android
framework sits on top of Android Linux kernel, providing the necessary
user experience. Some Android features lay within the kernel, and certain
features are available only at the Android framework. In case of USB, the
functionality is managed between the Android Linux kernel and the user
space Android framework.

DID YOU KNOW?

An important point to note is that the kernel discussed here is called the “Android Linux
kernel” because it’s not same as the generic Linux kernel, and most importantly, not the
same as the Linux USB gadget framework. The USB device stack is referred to as the USB
gadget framework, and is yet to be integrated as part of the mainline kernel.

The following section provides a top-level architectural view of Android USB
in USB device mode, detailing the complete Android USB starting from the
Android Linux kernel to the user space Android framework.

When you connect an Android device to a host PC, the Android device is
said to be in USB device mode and can export multiple USB functionalities
like MTP, ADB, or CDC to the host PC through its descriptors. This type
of USB device is referred as a composite device, where a single USB
device supports multiple USB functions through their interfaces. From the
architecture diagram shown in Figure 1-4, you can infer that the composite
infrastructure is part of the kernel and most of the USB device functions are

CHAPTER 1: Getting Started: The Android USB Framework8

implemented as “class drivers” within the Android Linux kernel. There are
exceptions, like ADB and MTP, which are implemented on both sides, i.e.
the kernel and user space. In such cases, the kernel driver implements just
the transport part of USB, guaranteeing delivery of the data. The Android
framework performs the functional management, implementing the class-
level protocol, which other chapters of this book will explore in more detail
later. The following section provides a brief overview of the architectural
blocks used in the USB device mode, as represented in Figure 1-4.

USB Gadget Driver

Android Composite Driver

Android USB API
(android.hardware.usb)

USB Service

USB Service USB Function
JNI

Java Android
User Space

Android
Kernel Space

USB Controller Driver

Other Infra

Figure 1-4.  Android USB device framework architecture

USB Service
The USB Service framework is the key factor and is the backbone in
Android USB device mode. In a way, the role of this framework is to
listen to and communicate state changes in Android kernel USB driver
and subsequently pass that information on to other interested Android
frameworks. Those frameworks then pass that information further to other
modules by broadcasting their intent with only the necessary information.
This framework also manages USB functions that an Android device has to
share when connected to a host PC. More details about this framework will
be explained further in Chapter 2, entitled “Discovering and Managing USB
within Android.”

CHAPTER 1: Getting Started: The Android USB Framework

9

USB Function
Most of the USB functions are implemented in the Android Linux kernel
space. However, USB functions like ADB or MTP are implemented as
user space daemons integrated within the Android framework. This
block represents the daemons that implement USB Class requirements.
Subsequent chapters on ADB and MTP provide a detailed view on how this
module interacts with the kernel below and other Android frameworks.

android.hardware.usb
Android APIs for USBs are represented as a android.hardware.usb package
and are discussed in further detail in later sections of this chapter. In a USB
device mode, these APIs have a minimal role, as there are no APIs that allow
managing a USB device’s functionality. The exception to this is Android
accessory mode, where developers are required to write applications to
manage external devices over USB device mode.

Other Infra
Within the Android framework there are many other frameworks that are
interested in the USB state changes, like connection, disconnection, or a
switch of USB functionalities. This “other infra” represents Android modules
like storage infrastructure, network daemon infrastructure, and charging
infrastructure, to name a few that are interested in USB state changes.
These other infrastructures hook themselves up to the USB framework
for the Intent that the USB Service module generate. In Chapter 2, we
will provide some insight into how to listen to USB states changes. Other
chapters will deal with storage and tethering, including details of how they
hook and receive the necessary information.

This module also represents the user interface part of Android that
communicates USB state changes to the user over the Notification panel.
The Android USB architecture is the same in USB accessory mode and USB
device mode, as accessory mode is nothing but the USB device mode with
some deviation.

Now that you understand how the Android framework in USB device mode
works, you can explore the Android framework in USB host mode. Similar
to device mode, host mode keeps most of the class functions implemented
within the Linux kernel, but classes like MTP host mode are implemented
in Android user space. It is important to note that, unlike the device stack
(gadget driver), which differs from the mainline Linux kernel, the USB host
stack is same as the mainline Linux kernel. Though Linux kernel has support
for almost all USB devices, an Android device in USB host mode might not

