
Krum
Van

Hevelingen
Kero

Turnbull
McCune

SECOND
EDITION

US $59.99

Shelve in
Linux/General

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Puppet
Pro Puppet, Second Edition, now updated for Puppet 3, is an in-depth guide to
installing, using, and developing the popular configuration management tool Puppet.

Puppet provides a way to automate everything from user management to server
configuration. You’ll learn how Puppet has changed in the latest version, how to use it
on a variety of platforms, including Windows, how to work with Puppet modules, and
how to use Hiera.

Puppet is a must-have tool for system administrators, and Pro Puppet will
teach you how to maximize its capabilities and customize it for your environment.

Become a Puppet expert and install and configure Puppet to immediately start
automating tasks and create reporting solutions. Learn insider tricks and techniques
to better manage your infrastructure.

What You’ll Learn:

• How to use Puppet to administer Linux, Unix, and Windows systems
• Best practices for at-scale deployment
• How to write reusable puppet modules for yourself and for the community
• How to use numerous tools around Puppet such as rspec-puppet, Geppetto,

and PuppetDB
• Advanced Puppet Features such as Hiera and Mcollective

2604007814309

ISBN 978-1-4302-6040-0
55999

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors�� xvii

About the Technical Reviewers�� xix

Acknowledgments�� xxi

Foreword�� xxiii

Chapter 1: Getting Started with Puppet■■ ��1

Chapter 2: Building Hosts with Puppet■■ ���33

Chapter 3: Developing and Deploying Puppet■■ ��73

Chapter 4: Scaling Puppet■■ ��97

Chapter 5: Externalizing Puppet Configuration■■ ��141

Chapter 6: Exporting and Storing Configuration■■ ���155

Chapter 7: Puppet Consoles■■ ���169

Chapter 8: Tools and Integration■■ ��191

Chapter 9: Reporting with Puppet■■ ��217

Chapter 10: Extending Facter and Puppet■■ ��227

Chapter 11: MCollective■■ ���249

Chapter 12: Hiera: Separating Data from Code■■ ���263

Index��295

1

Chapter 1

Getting Started with Puppet

Puppet is an open source framework and toolset for managing the configuration of computer systems. This book
looks at how you can use Puppet to manage your configuration. As the book progresses, we’ll introduce Puppet’s
features and show you how to integrate Puppet into your provisioning and management lifecycle. To do this, we’ll take
you through configuring a real-world scenario that we’ll introduce in Chapter 2. In Chapter 3, we’ll show you how to
implement a successful Puppet workflow using version control and Puppet environments. In Chapter 4, we’ll show
you how to build high availability and horizontal scalability into your Puppet infrastructure. The rest of the book will
focus on extending what you can do with Puppet and its ecosystem of tools, and on gaining unprecedented visibility
into your infrastructure.

In this chapter, you’ll find the following:

A quick overview of Puppet, what it is, how it works, and which release to use.•	

How to install Puppet and its inventory tool, Facter, on RedHat, Debian, Ubuntu, Solaris, •	
Microsoft Windows, Mac OS X, and via RubyGems.

How to configure Puppet and create your first configuration items.•	

The Puppet domain-specific language that you use to create Puppet configuration.•	

The concept of “modules,” Puppet’s way of collecting and managing bundles of •	
configuration data.

How to apply one of these modules to a host using the Puppet agent.•	

What Is Puppet?
Puppet is Ruby-based configuration management software, licensed as Apache 2.0, and it can run in either
client-server or stand-alone mode. Puppet was principally developed by Luke Kanies and is now developed by his
company, Puppet Labs. Kanies has been involved with Unix and systems administration since 1997 and developed
Puppet from that experience. Unsatisfied with existing configuration management tools, Kanies began working
with tool development in 2001, and in 2005 he founded Puppet Labs, an open source development house focused
on automation tools. Shortly after this, Puppet Labs released its flagship product, Puppet Enterprise. Puppet has
two versions available: the open source version and the Enterprise version. The Enterprise version comes with an
automated installer, a web management interface, and support contract. This book will focus on the open source
version of Puppet, but since the software at the core of both tools is the same, the information will be valuable to
consumers of either product.

Puppet can be used to manage configuration on Unix (including OS X), Linux, and Microsoft Windows platforms.
Puppet can manage a host throughout its life cycle: from initial build and installation, to upgrades, maintenance, and
finally to end-of-life, when you move services elsewhere. Puppet is designed to interact continuously with your hosts,
unlike provisioning tools that build your hosts and leave them unmanaged.

Chapter 1 ■ Getting Started with Puppet

2

Puppet has a simple operating model that is easy to understand and implement (Figure 1-1). The model is made
up of three components:

Deployment Layer•	

Configuration Language and Resource Abstraction Layer•	

Transactional Layer•	

Figure 1-1.  The Puppet model

Figure 1-2.  High-level overview of a Puppet configuration run

Deployment
Puppet is usually deployed in a simple client-server model (Figure 1-2). The server is called a Puppet master, the
Puppet client software is called an agent, and the host itself is defined as a node.

The Puppet master runs as a daemon on a host and contains the configuration required for the specific
environment. The Puppet agents connect to the Puppet master through an encrypted and authenticated connection
using standard SSL, and retrieve or “pull” any configuration to be applied.

Importantly, if the Puppet agent has no configuration available or already has the required configuration, Puppet
will do nothing. Puppet will only make changes to your environment if they are required. This property is called
idempotency and is a key feature of Puppet. The whole process is called a configuration run.

Chapter 1 ■ Getting Started with Puppet

3

Each agent can run Puppet as a daemon, via a mechanism such as cron, or the connection can be manually
triggered. The usual practice is to run Puppet as a daemon and have it periodically check with the master to confirm
that its configuration is up-to-date or to retrieve any new configuration (Figure 1-3). However, many people find
that being able to trigger Puppet via a mechanism such as cron, or manually, better suits their needs. By default, the
Puppet agent will check the master for new or changed configuration once every 30 minutes. You can configure this
period to suit your needs.

Figure 1-3.  The Puppet client-server model

Other deployment models also exist. For example, Puppet can run in a stand-alone mode, where no Puppet
master is required. Configuration is installed locally on the host and the puppet binary is run to execute and apply
that configuration. We discuss this method in Chapter 4.

The Configuration Language and Resource Abstraction Layer
Puppet uses a declarative language, the Puppet language, to define your configuration items, which Puppet calls
resources. Being declarative creates an important distinction between Puppet and many other configuration tools.
A declarative language makes statements about the state of your configuration—for example, it declares that a
package should be installed or a service should be started.

Most configuration tools, such as a shell or Perl script, are imperative or procedural. They describe how things
should be done rather than the desired end state—for example, most custom scripts used to manage configuration
would be considered imperative.

Puppet users just declare what the state of their hosts should be: what packages should be installed, what services
should be running, and so on. With Puppet, the system administrator doesn’t care how this state is achieved—that’s
Puppet’s problem. Instead, we abstract our host’s configuration into resources.

Chapter 1 ■ Getting Started with Puppet

4

The Configuration Language
What does this declarative language mean in real terms? Let’s look at a simple example. Suppose we have an
environment with Red Hat Enterprise Linux, Ubuntu, and Solaris hosts and we want to install the vim application on
all our hosts. To do this manually, we’d need to write a script that does the following:

Connects to the required hosts (including handling passwords or keys).•	

Checks to see if •	 vim is installed.

If not, uses the appropriate command for each platform to install •	 vim, for example on RedHat
the yum command and on Ubuntu the apt-get command.

Potentially reports the results of this action to ensure completion and success.•	

Note■■  T his would become even more complicated if you wanted to upgrade vim (if it was already installed) or apply a
particular version of vim.

Puppet approaches this process quite differently. In Puppet, you define a configuration resource for the vim
package. Each resource is made up of a type (what sort of resource is being managed: packages, services, or cron jobs),
a title (the name of the resource), and a series of attributes (values that specify the state of the resource—for example,
whether a service is started or stopped).

You can see an example of a resource in Listing 1-1.

Listing 1-1.  A Puppet resource

package { 'vim':
 ensure => present,
}
 

The resource in Listing 1-1 specifies that a package called vim should be installed. It is constructed as follows:
 
type { title:
 attribute => value,
}
 

In Listing 1-1, the resource type is the package type. Puppet comes with a number of resource types by default,
including types to manage files, services, packages, and cron jobs, among others.

Note■■   You can see a full list of the types Puppet can currently manage (and their attributes) at
http://docs.puppetlabs.com/references/stable/type.html. You can also extend Puppet to support additional
resource types, as we’ll discuss in Chapter 10.

Next is the title of the resource, here the name of the package we want to install, vim. This corresponds exactly to
the argument to the package manager; for example, .apt-get install vim.

Last, we’ve specified a single attribute, ensure, with a value of present. Attributes tell Puppet about the required
state of our configuration resource. Each type has a series of attributes available to configure it. Here the ensure
attribute specifies the state of the package: installed, uninstalled, and so on. The present value tells Puppet we want
to install the package. To uninstall the package, we would change the value of this attribute to absent.

http://docs.puppetlabs.com/references/stable/type.html

Chapter 1 ■ Getting Started with Puppet

5

The Resource Abstraction Layer
With our resource created, Puppet takes care of the details of managing that resource when our agents connect.
Puppet handles the “how” by knowing how different platforms and operating systems manage certain types of
resources. Each type has a number of providers. A provider contains the “how” of managing packages using a
particular package management tool.

The package type, for example, has more than 20 providers covering a variety of tools, including yum, aptitude,
pkgadd, ports, and emerge.

When an agent connects, Puppet uses a tool called Facter (see following sidebar) to return information about
that agent, including what operating system it is running. Puppet then chooses the appropriate package provider for
that operating system and uses that provider to check if the vim package is installed. For example, on Red Hat it would
execute yum, on Ubuntu it would execute aptitude, and on Solaris it would use the pkg command. If the package
is not installed, Puppet will install it. If the package is already installed, Puppet does nothing. Again, this important
feature is called idempotency.

Puppet will then report its success or failure in applying the resource back to the Puppet master.

INTRODUCING FACTER AND FACTS

Facter is a system inventory tool, also developed principally by Puppet Labs, that we use throughout the book.
It is also open source under the Apache 2.0 license. It returns “facts” about each node, such as its hostname, IP
address, operating system and version, and other configuration items. These facts are gathered when the agent
runs. The facts are then sent to the Puppet master, and automatically created as variables available to Puppet at
top scope. You’ll learn more about variable scoping in Chapter 2.

You can see the facts available on your clients by running the facter binary from the command line. Each fact is
returned as a key => value pair:
 
$ facter
operatingsystem => Ubuntu
ipaddress => 10.0.0.10
 
You can then use these values to configure each host individually. For example, knowing the IP address of a host
allows you to configure networking on that host.

These facts are made available as variables that can be used in your Puppet configuration. When combined with
the configuration you define in Puppet, they allow you to customize that configuration for each host. For example,
they allow you to write generic resources, like your network settings, and customize them with data from
your agents.

Facter also helps Puppet understand how to manage particular resources on an agent. For example, if Facter tells
Puppet that a host runs Ubuntu, then Puppet knows to use aptitude to install packages on that agent. Facter can
also be extended to add custom facts for specific information about your hosts. We’ll be installing Facter shortly
after we install Puppet, and we’ll discuss it in more detail in later chapters.

Chapter 1 ■ Getting Started with Puppet

6

The Transactional Layer
Puppet’s transactional layer is its engine. A Puppet transaction encompasses the process of configuring each host,
including these steps:

Interpret and compile your configuration.•	

Communicate the compiled configuration to the agent.•	

Apply the configuration on the agent.•	

Report the results of that application to the master.•	

The first step Puppet takes is to analyze your configuration and calculate how to apply it to your agent. To do this,
Puppet creates a graph showing all resources, with their relationships to each other and to each agent. This allows
Puppet to work out the order, based on relationships you create, in which to apply each resource to your host. This
model is one of Puppet’s most powerful features.

Puppet then takes the resources and compiles them into a catalog for each agent. The catalog is sent to the
host and applied by the Puppet agent. The results of this application are then sent back to the master in the form of
a report.

The transaction layer allows configurations to be created and applied repeatedly on the host. Again, Puppet calls
this capability idempotency, meaning that multiple applications of the same operation will yield the same results.
Puppet configuration can be safely run multiple times with the same outcome on your host, ensuring that your
configuration stays consistent.

Puppet is not fully transactional, though; your transactions aren’t logged (other than informative logging), and so
you can’t roll back transactions as you can with some databases. You can, however, model transactions in a “noop,” or
no-operation mode, that allows you to test the execution of your changes without applying them.

Selecting the Right Version of Puppet
The best version of Puppet to use is usually the latest release, which at the time of writing is the 3.2.x branch of
releases; newer ones are currently in development. The biggest advantage of the 3.2.x branch of releases is improved
performance and built-in Hiera integration. Hiera is Puppet’s external datastore and will be extensively covered in
later chapters.

The 3.1.x releases are stable, perform well, have numerous bug fixes not available in previous versions, and
contain a wide of variety of new features and functions unavailable in earlier releases.

Note■■  T his book assumes you are using either a 3.1.x or later release. Some of the material will work on 2.7.x
versions of Puppet, but not all of it has been tested. Specifically, information about Hiera (see Chapter 12) and functions
is unlikely to be backward-compatible to version 2.7.x.

There are a variety of releases, some older than others, packaged for operating systems. The 2.7.x releases are
broadly packaged. The 3.1.x releases are packaged and distributed in newer versions of operating systems and
platforms. If you can’t find later Puppet releases packaged for your distribution, you have the option of rolling your
own packages, backporting, or installing from source (though we don’t recommend the latter—see the following).
Puppetlabs provides the latest rpms, deb packages, msis, and dmg files on their website and repositories.

Chapter 1 ■ Getting Started with Puppet

7

MIXING RELEASES OF PUPPET

The most common deployment model for Puppet is client-server. Many people ask if you can have different
releases of Puppet on the master and as agents. The answer is yes, with some caveats. The first caveat is that the
master needs to be a later release than the agents. For example, you can have a version 2.7.20 agent connected
to a version 3.1.1 master, but not a version 3.1.1 agent connected to a 2.7.20 master.

The second caveat is that the older the agent release, the less likely it will function correctly with a newer release
of the master. Later versions of masters may not be so forgiving of earlier agents, and some functions and
features may not behave correctly.

Finally, mixing 3.1.x and later release masters with 2.7.x and earlier agents will mean you won’t get the full
performance enhancements available in 3.1.x.

Installing Puppet
Puppet can be installed and used on a variety of different platforms, including the following:

Red Hat Enterprise Linux, CentOS, Fedora, and Oracle Enterprise Linux•	

Debian and Ubuntu•	

OpenIndiana•	

Solaris•	

From source•	

Microsoft Windows (clients only)•	

MacOS X and MacOS X Server•	

Other (that is, BSD, Mandrake, and Mandriva)•	

Most of these are discussed in sections that follow. On these platforms, Puppet manages a variety of configuration
items, including but not limited to these:

Files•	

Services•	

Packages•	

Users•	

Groups•	

Cron jobs•	

SSH keys•	

Nagios configuration•	

For Puppet, the agent and master server installations are very similar, although most operating systems and
distribution packaging systems divide the master and agent functions into separate packages. On some operating
systems and distributions, you’ll also need to install Ruby and its libraries and potentially some additional packages.
Most good packaging systems will have most of the required packages, like Ruby, as prerequisites of the Puppet and
Facter packages. For other features (including some types of reporting that we’ll demonstrate later in this book), you
may also need to install additional packages.

Chapter 1 ■ Getting Started with Puppet

8

We’ll also demonstrate how to install Puppet from source, but we don’t recommend this approach. It is usually
simpler to use your operating system’s package management system, especially if you are installing Puppet on a large
number of hosts.

Installing on Red Hat Enterprise Linux and Fedora
Add the Extra Packages for Enterprise Linux (EPEL) or Puppet Labs repositories to your host and then install
packages, as described in the following sections. Note that at the time of writing you must use the Puppet Labs
repository for Puppet 3 packages.

Installing EPEL Repositories
The EPEL repository is a volunteer-based community effort from the Fedora project to create a repository of high-quality
add-on packages for Red Hat Enterprise Linux (RHEL) and its compatible spinoffs such as CentOS, Oracle Enterprise
Linux, and Scientific Linux.

You can find more details on EPEL, including how to add it to your host, at http://fedoraproject.org/wiki/EPEL
and http://fedoraproject.org/wiki/EPEL/FAQ#howtouse.

You can add the EPEL repository by adding the epel-release RPM(.rpm package manager)as follows:

Enterprise Linux 5:•	
 
rpm -Uvh http://dl.fedoraproject.org/pub/epel/5/i386/epel-release-5-4.noarch.rpm
 

Enterprise Linux 6:•	
 
rpm -Uvh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm

Installing Puppet Labs Repositories
You can install the Puppet Labs repository on Linux 5 and 6 in a similar fashion:

Enterprise Linux 5:•	
 
rpm -ivh http://yum.puppetlabs.com/el/5/products/i386/puppetlabs-release-5-7.noarch.rpm
 

Enterprise Linux 6:•	
 
rpm -ivh http://yum.puppetlabs.com/el/6/products/i386/puppetlabs-release-6-7.noarch.rpm

Installing the EPEL and Puppet Lab Packages
On the master, you need to install the puppet, puppet-server, and facter packages from the EPEL or Puppet Labs
repositories:
 
yum install puppet puppet-server facter
 

The puppet package contains the agent, the puppet-server package contains the master, and the facter package
contains the system inventory tool Facter. As mentioned earlier, Facter gathers information, or facts, about your hosts
that are used to help customize your Puppet configuration.

On the agent, you only need to install the prerequisites and the puppet and facter packages:
 
yum install puppet facter

http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL/FAQ#howtouse
http://dl.fedoraproject.org/pub/epel/5/i386/epel-release-5-4.noarch.rpm
http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
http://yum.puppetlabs.com/el/5/products/i386/puppetlabs-release-5-7.noarch.rpm
http://yum.puppetlabs.com/el/6/products/i386/puppetlabs-release-6-7.noarch.rpm

Chapter 1 ■ Getting Started with Puppet

9

Installing Via RubyGems
Like most Ruby-based applications, Puppet and Facter can also be installed via RubyGems. To do this, you’ll need to
install Ruby and the appropriate RubyGems package for your operating system. On Red Hat, CentOS, Fedora,
SUSE/SLES, Debian and Ubuntu, this package is called rubygems. Once this package is installed, the gem command
should be available to use. You can then use gem to install Puppet and Facter, as shown here:
 
gem install puppet facter

Installing on Debian and Ubuntu
For Debian and Ubuntu, the puppet package contains the Puppet agent, and the puppetmaster package contains the
master. On the master, you need to install this:
 
apt-get install puppet puppetmaster
 

On the agent, you only need to install the puppet package:
 
apt-get install puppet 

Note■■  I nstalling the puppet, puppetmaster, and facter packages will also install some prerequisite packages, such
as Ruby itself, if they are not already installed.

For the latest version of Puppet you can use the following Puppetlabs repositories:

Debian Wheezy:•	
 
wget http://apt.puppetlabs.com/puppetlabs-release-wheezy.deb
dpkg -i puppetlabs-release-wheezy.deb
apt-get update
 

Ubuntu Precise:•	
 
wget http://apt.puppetlabs.com/puppetlabs-release-precise.deb
dpkg -i puppetlabs-release-precise.deb
apt-get update
 

Replace “precise” with other code names for different versions of Debian and Ubuntu.

Installing on OpenIndiana
Installing Puppet on OpenIndiana requires installing Ruby first. Then install Puppet and Facter via a RubyGem. Start
by using the pkg command to install Ruby:
 
pkg install ruby-18
 

RubyGems is installed by default when the ruby-18 package is installed. You can use the gem command to
install Puppet.
 

http://apt.puppetlabs.com/puppetlabs-release-wheezy.deb
http://apt.puppetlabs.com/puppetlabs-release-precise.deb

Chapter 1 ■ Getting Started with Puppet

10

gem install puppet facter
 

The puppet and facter binaries are now installed in this folder:
 
/var/ruby/1.8/gem_home/bin/

Installing on Solaris 10 and 11
On Solaris there are no native packages for Puppet, so you will need to install from OpenCSW packages, RubyGems
or Source. OpenCSW (http://www.opencsw.org/about) is a community-led software packaging project for Solaris.
They have prebuilt Puppet packages for both Solaris 10 and Solaris 11. At the time of writing there is both a puppet3
package and a puppet package. We will use the puppet3 package to get the stable 3.x version.

	 1.	 To begin we will install OpenCSW.
 
pkgadd -d http://get.opencsw.org/now
 
	 2.	 Next install Puppet and dependencies:
 
pkgutil --install puppet3
 

After installation Puppet will be available in /opt/csw/bin.

Installing from Source
You can also install Puppet and Facter from source tarballs. We don’t recommend this approach, because it makes
upgrading, uninstalling, and generally managing Puppet across many hosts difficult. To do this you’ll need to ensure
that some prerequisites are installed, for example Ruby and its libraries, using the appropriate packages for your host
or via source again.

	 1.	 First, download the Facter tarball from the Puppet Labs site:
 
$ cd /tmp
$ wget http://downloads.puppetlabs.com/facter/facter-1.6.18.tar.gz
 

	 2.	 Unpack the tarball and run the install.rb script to install Facter:
 
$ tar -zxf facter-1.6.18.tar.gz
$ cd facter-1.6.18
./install.rb
 

This will install Facter into the default path for Ruby libraries on your host, for example /usr/lib/ruby/ on many
Linux distributions.

	 3.	 Next, download and install Puppet using the same process:
 
$ cd /tmp
$ wget http://downloads.puppetlabs.com/puppet/puppet-3.1.1.tar.gz
$ tar -zxf puppet-3.1.1.tar.gz
$ cd puppet-3.1.1
./install.rb
 

Like the Facter steps, this will install Puppet into the default path for Ruby libraries on your host.

http://www.opencsw.org/about
http://get.opencsw.org/now
http://downloads.puppetlabs.com/facter/facter-1.6.18.tar.gz
http://downloads.puppetlabs.com/puppet/puppet-3.1.1.tar.gz

Chapter 1 ■ Getting Started with Puppet

11

Note■■   You can find the latest Puppet and Facter releases at http://puppetlabs.com/misc/download-options/.

Installing on Microsoft Windows
Puppet does not currently support running a Puppet master on Microsoft Windows. You will need a Unix/Linux
Puppet master for client-server, or you can run Puppet in masterless mode.

Installing on Microsoft Windows Graphically
To install on Microsoft Windows graphically, follow these steps:

	 1.	 Download the latest open source MSI from http://downloads.puppetlabs.com/windows/
(The MSI file bundles all of Puppet’s dependencies, including Ruby and Facter).

	 2.	 Run the MSI as an administrator and follow the installation wizard (Figure 1-4).

Figure 1-4.  Beginning Puppet installation

http://puppetlabs.com/misc/download-options/
http://downloads.puppetlabs.com/windows/

Chapter 1 ■ Getting Started with Puppet

12

	 3.	 You will need to supply the name of your Puppet master to the installer (Figure 1-5). After
that, Puppet will begin running as a Windows service. When the installation is complete
you will see the screen in Figure 1-6.

Figure 1-5.  Configuring Puppet

Chapter 1 ■ Getting Started with Puppet

13

For additional information, such as automating installations, refer to the Windows installation documentation at
http://docs.puppetlabs.com/windows/installing.html.

Installing on Microsoft Windows Using PowerShell
Many Windows administrators, particularly in cloud operations, have begun using PowerShell for remote administration
and scriptable installation. To install open source Puppet, you must first download the Puppet MSI installer from
Puppetlabs.com. There are two ways to do this; older PowerShell versions should use the commands in Listing 1-2, while
version 3 and greater can use the command in Listing 1-3.

Listing 1-2.  Downloading the Puppet MSI on Powershell versions 2 and earlier

$downloads = $pwd
$webclient = New-Object System.Net.WebClient
$url = http://puppetlabs.com/downloads/windows/puppet-3.2.3.msi
$file = "$downloads/puppet.msi"
$webclient.DownloadFile($url,$file)
 

Figure 1-6.  Puppet installation is complete

http://docs.puppetlabs.com/windows/installing.html
http://puppetlabs.com/
http://System.Net.WebClient
http://puppetlabs.com/downloads/windows/puppet-3.2.3.msi

Chapter 1 ■ Getting Started with Puppet

14

PowerShell 3 and greater can use the Invoke-WebRequest commandlet to download the MSI, as shown in Listing 1-3.

Listing 1-3.  Downloading the Puppet MSI on Powershell versions 3 and later

$url = "http://puppetlabs.com/downloads/windows/puppet-3.2.3.msi"
Invoke-WebRequest -Uri $url -OutFile puppet.msi
 

You will see a progress bar across the screen. After the MSI has been downloaded, install it using msiexec, as
shown next. Here we actually shell out to cmd.exe, since msiexec doesn’t currently work in PowerShell.
 
cmd /c "msiexec /qn /i puppet.msi /l*v install.log"
 

By using the /qn argument to msiexec, we have made the installation silent and noninteractive, meaning that no
questions were asked of us and no dialog popped up. This entire exercise can be completed via remote PowerShell
or script. The /l*v install.log argument has made the installation send its log to install.log in the current
directory. If installation is successful, you should see “Installation Successful” at the end of the install.log.

We can verify that Puppet has been installed correctly by running the puppet.bat script as shown here:
 
& 'C:\Program Files (x86)\Puppet Labs\Puppet\bin\puppet.bat' --version
 

The MSI installer, when run in silent mode, will choose puppet as the Puppet master and CA server. If you want to
override these variables, you can use the environment variables shown in Listing 1-4.

Listing 1-4.  Configuring the puppet installation

cmd /c "msiexec /qn PUPPET_MASTER_SERVER=master.example.com
PUPPET_CA_SERVER=puppetcat.example.com /i puppet
.msi /l*v install.log"
 

Unfortunately, at the time of writing, you cannot set other configuration variables, so you would have to modify
puppet.conf manually with notepad or another editor:
 
notepad 'C:\ProgramData\PuppetLabs\puppet\etc\puppet.conf'

Installing on the Mac
In this section we will cover installing Puppet on Mac OS X via the GUI and from the CLI.

Installing Puppet Open Source on Apple Mac OS X via the Graphical Installer
Download the Facter and Puppet .dmg files from the Puppet Labs website, puppetlabs.com.

Then mount the .dmg files and verify that you have two Apple Package installers as shown in Figure 1-7.

http://puppetlabs.com/downloads/windows/puppet-3.2.3.msi
http://PUPPET_MASTER_SERVER=master.example.com
http://PUPPET_CA_SERVER=puppetcat.example.com
http://puppetlabs.com/

Chapter 1 ■ Getting Started with Puppet

15

Double-click the Facter cardboard box icon, which brings you to the welcome screen in Figure 1-8.

Figure 1-7.  Mac OSX pkg files

Figure 1-8.  The Facter Installer

Assume administrator rights, as shown in Figure 1-9, and click Install Software.

Chapter 1 ■ Getting Started with Puppet

16

Once the installation is complete, you’ll see the screen in Figure 1-10.

Figure 1-9.  Enter your administrator password

Figure 1-10.  Facter installation is complete

Excellent! Facter is now installed. Now double-click the Puppet cardboard box to install it as well. The screen in
Figure 1-11 will appear.

Chapter 1 ■ Getting Started with Puppet

17

Figure 1-11.  Enter your adminstrator credentials

Again, assume administrator rights and click the Install Software button (Figure 1-11).
Puppet is now installed! You can verify the installation with puppet –version, as shown in Figure 1-12. In this

case, the Puppet installer did not prompt for a Puppet master server. If you want to use a server other than the DNS
name puppet, you must create /etc/puppet/puppet.conf with server=puppet-master.pro-puppet.com.

Figure 1-12.  Verifying installation with puppet –version

http://server=puppet-master.pro-puppet.com

Chapter 1 ■ Getting Started with Puppet

18

Installing Puppet Open Source on Apple Mac OS X via the Command Line
Download the latest facter and puppet packages from http://downloads.puppetlabs.com/mac/.

Once you have downloaded the .dmg files, you can install them via the command line with the following
instructions:
 
$ curl -O http://downloads.puppetlabs.com/mac/facter-1.7.2.dmg
$ hdiutil mount facter-1.7.2.dmg
$ installer -package /Volumes/facter-1.7.2/facter-1.7.2.pkg/ -target /Volumes/Macintosh\ HD
$ hdutil unmount /Volumes/facter-1.7.2
 

Next install Puppet:
 
$ curl -O https://downloads.puppetlabs.com/mac/puppet-3.2.3.dmg
$ hdiutil mount puppet-3.2.3.dmg
$ installer -package /Volumes/puppet-3.2.3/puppet-3.2.3.pkg -target /Volumes/Macintosh\ HD
$ hdutil unmount /Volumes/puppet-3.2.3/
 

At this point you can run Puppet by cron or with puppet apply. To setup a launchd job to run it in daemon mode,
refer to the official docs:
 
http://docs.puppetlabs.com/guides/installation.html#mac-os-x

Installing on Other Platforms
We’ve just explained how to install Puppet on some popular platforms.

Puppet can also be installed on a wide variety of other platforms, including the following:

SLES/OpenSuSE via •	 http://software.opensuse.org/

Gentoo via Portage•	

Mandrake and Mandriva via the Mandriva contrib repository•	

FreeBSD via ports tree•	

NetBSD via pkgsrc•	

OpenBSD via ports tree•	

ArchLinux via ArchLinux AUR•	

Note■■   You can find a full list of additional operating systems and specific instructions at
https://puppetlabs.com/misc/download-options.

Puppet can also work on some networks such as BIG-IP F5 devices and some Juniper network devices. F5s are
an advanced configuration, configured by way of a proxy agent. Read https://puppetlabs.com/blog/managing-f5-
big-ip-network-devices-with-puppet/ to get started configuring an F5 with Puppet. Some modern Juniper devices
run Puppet natively. Puppet can be installed via a Juniper package called jpuppet. Downloads and more information
are available at https://puppetlabs.com/solutions/juniper-networks/.

http://downloads.puppetlabs.com/mac/
http://downloads.puppetlabs.com/mac/facter-1.7.2.dmg
https://downloads.puppetlabs.com/mac/puppet-3.2.3.dmg
http://docs.puppetlabs.com/guides/installation.html#mac-os-x
http://software.opensuse.org/
https://puppetlabs.com/misc/download-options
https://puppetlabs.com/blog/managing-f5-big-ip-network-devices-with-puppet/
https://puppetlabs.com/blog/managing-f5-big-ip-network-devices-with-puppet/
https://puppetlabs.com/solutions/juniper-networks/

Chapter 1 ■ Getting Started with Puppet

19

Puppet’s tarball also contains some packaging artifacts in the ext directory; for example, there are an RPM spec
file and OS X build scripts that can allow you to create your own packages for compatible operating systems. Now that
you’ve installed Puppet on your chosen platform, we can start configuring it.

Configuring Puppet
Let’s start by configuring a Puppet master that will act as our configuration server. We’ll look at Puppet’s configuration
files, how to configure networking and firewall access, and how to start the Puppet master. Remember that we’re
going to be looking at Puppet in its client-server mode. Here, the Puppet master contains our configuration data, and
Puppet agents connect via SSL and pull down the required configuration (refer back to Figure 1-2).

On most platforms, Puppet’s configuration will be located under the /etc/puppet directory. Puppet’s principal
configuration file is called puppet.conf and is stored at /etc/puppet/puppet.conf on Unix/Linux operating systems
and C:\ProgramData\PuppetLabs\puppet\etc\ on Windows. It is likely that this file has already been created when
you installed Puppet, but if it hasn’t, you can create a simple file using the following command:
 
$ cd /etc/puppet/
$ puppet master --genconfig > puppet.conf
 

Note■■  W e’re assuming your operating system uses the /etc/ directory to store its configuration files, as most Unix/
Linux operating systems and distributions do. If you’re on a platform that doesn’t, such as Microsoft Windows, substitute
the location of your puppet.conf configuration file. But remember that the Puppet master cannot be run on Windows.

The puppet.conf configuration file is constructed much like an INI-style configuration file and divided into
sections. Each section configures a particular element of Puppet. For example, the [agent] section configures the
Puppet agent, and the [master] section configures the Puppet master binary. There is also a global configuration
section called [main]. All components of Puppet set options specified in the [main] section.

At this stage, we’re only going to add one entry, server, to the puppet.conf file. The server option specifies the
name of the Puppet master. We’ll add the server value to the [main] section (if the section doesn’t already exist in your
file, then create it).
 
[main]
server=puppet.example.com
 

Replace puppet.example.com with the fully qualified domain name of your host.

Note■■  W e’ll look at other options in the puppet.conf file in later chapters.

We recommend you also create a DNS CNAME for your Puppet master host, for example puppet.pro-puppet.com,
and add it to either your /etc/hosts file or your DNS configuration:
 
/etc/hosts
127.0.0.1 localhost
192.168.0.1 puppet.pro-puppet.com puppet
 

Once we’ve configured appropriate DNS for Puppet, we need to add the site.pp file, which holds the basics of
the configuration items we want to manage.

http://server=puppet.example.com
http://puppet.example.com/
http://puppet.pro-puppet.com/
http://puppet.pro-puppet.com/

Chapter 1 ■ Getting Started with Puppet

20

The site.pp File
The site.pp file tells Puppet where and what configuration to load for our clients. We’re going to store this file in a
directory called manifests under the /etc/puppet directory.

Note■■   Manifest is Puppet’s term for files containing configuration information. Manifest files have a suffix of .pp.
The Puppet language is written into these files.

This directory and file is often already created when the Puppet packages are installed. If it hasn’t already been
created, create this directory and file now:
 
mkdir /etc/puppet/manifests
touch /etc/puppet/manifests/site.pp
 

We’ll add some configuration to this file later in this chapter, but now we just need the file present.

Note■■   You can also override the name and location of the manifests directory and site.pp file using the manifestdir
and manifest configuration options, respectively. These options are set in the puppet.conf configuration file in the
[master] section. See http://docs.puppetlabs.com/references/stable/configuration.html for a full list of
configuration options. We’ll talk about a variety of other options throughout this book.

Firewall Configuration
The Puppet master runs on TCP port 8140. This port needs to be open on your master’s firewall (and any intervening
firewalls and network devices), and your client must be able to route and connect to the master. To do this, you need
to have an appropriate firewall rule on your master, such as the following rule for the Netfilter firewall:
 
$ iptables -A INPUT -p tcp -m state --state NEW --dport 8140 -j ACCEPT
 

This line allows access from everywhere to TCP port 8140. If possible, you should limit this to networks that
require access to your Puppet master. For example:
 
$ iptables -A INPUT -p tcp -m state --state NEW -s 192.168.0.0/24 --dport 8140 -j ACCEPT
 

Here we’ve restricted access to port 8140 to the 192.168.0.0/24 subnet.

Note■■   You can create similar rules for other operating systems’ firewalls, such as pf or the Windows Firewall. The
traffic between Puppet client and Puppet master is encrypted with SSL and authenticated by client x509 certificates.

http://docs.puppetlabs.com/references/stable/configuration.html

Chapter 1 ■ Getting Started with Puppet

21

Starting the Puppet Master
The Puppet master can be started via an init script or other init system, such as upstart or systemd on most Linux
distributions. On Red Hat or Debian, we would run the init script with the service command, like so:
 
service puppetmaster start
 

Other platforms should use their appropriate service management tools.

Note■■   Output from the daemon can be seen in /var/log/messages on Red Hat–based hosts and /var/log/syslog
on Debian and Ubuntu hosts. Puppet will log via the daemon facility to Syslog by default on most operating systems. You
will find output from the daemons in the appropriate location and files for your operating system. On Microsoft Windows,
Puppet logs go to C:\ProgramData\PuppetLabs\puppet\var\log.

Starting the daemon will initiate your Puppet environment, create a local Certificate Authority (CA), along with
certificates and keys for the master, and open the appropriate network socket to await client connections. You can see
Puppet’s SSL information and certificates in the /var/lib/puppet/ssl directory.
 
ls -l /var/lib/puppet/ssl/
drwxrwx--- 5 puppet puppet 4096 Apr 11 04:05 ca
drwxr-xr-x 2 puppet root 4096 Apr 11 04:05 certificate_requests
drwxr-xr-x 2 puppet root 4096 Apr 11 04:05 certs
-rw-r--r-- 1 puppet puppet 918 Apr 11 04:05 crl.pem
drwxr-x--- 2 puppet root 4096 Apr 11 04:05 private
drwxr-x--- 2 puppet root 4096 Apr 11 04:05 private_keys
drwxr-xr-x 2 puppet root 4096 Apr 11 04:05 public_keys
 

The directory on the master contains your CA, certificate requests from your clients, a certificate for your master,
and certificates for all your clients.

Note■■   You can override the location of the SSL files using the ssldir option in puppet.conf on the master. There will
be much more on the Puppet internal CA in Chapter 4.

You can also run the Puppet master from the command line to help test and debug issues. We recommend doing
this when testing Puppet initially. To do this, we start the Puppet master daemon like so:
 
puppet master --verbose --no-daemonize
 

The --verbose option outputs verbose logging and the --no-daemonize option keeps the daemon in the
foreground and redirects output to standard out. You can also add the --debug option to produce more verbose debug
output from the daemon.

Chapter 1 ■ Getting Started with Puppet

22

A SINGLE BINARY

All the functionality of Puppet is available from a single binary, puppet, in the style of tools like Git. This means you
can start the Puppet master by running this command:
 
puppet master
 
The agent functionality is also available in the same way:
 
puppet agent
 
You can see a full list of the available functionality from the puppet binary by running help:
 
$ puppet help
 
And you can get help on any Puppet subcommand by adding the subcommand option:
 
$ puppet help subcommand

Connecting Our First Agent
Once you have the Puppet master configured and started, you can configure and initiate your first agent. On the
agent, as we mentioned earlier, you need to install the appropriate packages, usually puppet and facter, using your
operating system’s package management system. We’re going to install a client on a host called node1.pro-puppet.
com and then connect to our puppet.pro-puppet.com master.

When connecting our first client, we want to run the Puppet agent from the command line rather than as a
service. This will allow us to see what is going on as we connect. The Puppet agent daemon is run using puppet agent,
and you can see a connection to the master initiated in Listing 1-5.

Listing 1-5.  Puppet client connection to the Puppet master

node1# puppet agent --test --server=puppet.pro-puppet.com
Info: Creating a new SSL key for node1.pro-puppet.com
Info: Caching certificate for ca
Info: Creating a new SSL certificate request for node1.pro-puppet.com
Info: Certificate Request fingerprint (SHA256): 6F:0D:41:14:BD:2D:FC:CE:1C:DC:11:1E:26:07:4C:08:D0:C
7:E8:62:A5:33:E3:4B:8B:C6:28:C5:C8:88:1C:C8
Exiting; no certificate found and waitforcert is disabled 

In Listing 1-5, we executed the Puppet agent with three options. The first option, --server, specifies the name or
address of the Puppet master to connect to.

Tip■■   You can also run a Puppet client on the Puppet master, but we’re going to start with the more traditional
client-server approach. And yes, that means you can use Puppet to manage itself!

http://node1.pro-puppet.com/
http://node1.pro-puppet.com/
http://puppet.pro-puppet.com/
http://puppet.pro-puppet.com/
http://node1.pro-puppet.com/
http://node1.pro-puppet.com/

Chapter 1 ■ Getting Started with Puppet

23

Tip■■  I f we don’t specify a server, Puppet will look for a host called “puppet.” It’s often a good idea to create a CNAME
for your Puppet master, such as puppet.pro-puppet.com. Additionally, Puppet has the ability to query SRV records to find
where the Puppet master and Puppet CA servers are. More on this in Chapter 4.

We can also specify this in the main section of the /etc/puppet/puppet.conf configuration file on the client:
 
/etc/puppet/puppet.conf
[main]
server=puppet.pro-puppet.com
 

Your client must be able to resolve the hostname of the master to connect to (this is why it is useful to have a Puppet
CNAME or to specify your Puppet master in the /etc/hosts file on your client).The --test option runs the Puppet client
in the foreground, outputs to standard out, and exits after the run is complete. By default, the Puppet client runs as a
daemon, and the puppet agent command forks off the Puppet daemon into the background and exits immediately.

In Listing 1-5, you can see the output from our connection. The agent has created a certificate signing request
and a private key to secure our connection. Puppet uses SSL certificates to authenticate connections between the
master and the agent. The agent sends the certificate request to the master and waits for the master to sign and return
the certificate.

At this point, the agent has exited after sending in its Certificate Signing Request (CSR). The agent will need to
be rerun to check in and run Puppet after the CSR has been signed by the CA. You can configure puppet agent not to
exit, but instead stay alive and poll periodically for the CSR to be signed. This configuration is called waitforcert and
is generally only useful if you are also auto-signing certificates on the master. More on that later in this chapter.

Note■■   You can change the time the Puppet agent will wait by using the --waitforcert option. You can specify a time
in seconds or 0 to not wait for a certificate, in which case the agent will exit.

Completing the Connection
To complete the connection and authenticate our agent, we now need to sign the certificate the agent has sent to the
master. We do this using puppet cert (or the puppetca binary) on the master:
 
puppet# puppet cert list
"node1.pro-puppet.com" (SHA256) 6F:0D:41:14:BD:2D:FC:CE:1C:DC:11:1E:26:07:4C:08:D0:C7:E8:62:A5:33:E3
:4B:8B:C6:28:C5:C8:88:1C:C8
 

Tip■■   You can find a full list of the binaries that come with Puppet at http://docs.puppetlabs.com/guides/tools.html.

The list option displays all the certificates waiting to be signed. We can then sign our certificate using the sign option:
 
puppet# puppet cert sign node1.pro-puppet.com
Notice: Signed certificate request for node1.pro-puppet.com
Notice: Removing file Puppet::SSL::CertificateRequest node1.pro-puppet.com at
'/var/lib/puppet/ssl/ca/requests/node1.pro-puppet.com.pem'
 

http://puppet.pro-puppet.com/
http://server=puppet.pro-puppet.com
http://node1.pro-puppet.com/
http://docs.puppetlabs.com/guides/tools.html
http://node1.pro-puppet.com/
http://node1.pro-puppet.com/
http://node1.pro-puppet.com/
http:///var/lib/puppet/ssl/ca/requests/node1.pro-puppet.com.pem

Chapter 1 ■ Getting Started with Puppet

24

You can sign all waiting certificates with the puppet cert sign --all command.

Note■■  R ather than signing each individual certificate, you can also enable autosign mode. In this mode, all incoming
connections from specified IP addresses or address ranges are automatically signed. This obviously has some
security implications and should only be used if you are comfortable with it. You can find more details at
http://docs.puppetlabs.com/guides/faq.html#why-shouldn-t-i-use-autosign-for-all-my-clients.

On the client, two minutes after signing the certificate, you should see the following entries (or you can stop and
restart the Puppet agent rather than waiting two minutes):
 
puppet agent --test
Info: Retrieving plugin
Info: Caching catalog for node1.pro-puppet.com
Info: Applying configuration version '1365655737'
Notice: Finished catalog run in 0.13 seconds
 

The agent is now authenticated with the master, and you may have another message present:
 
puppet agent -t
Info: Retrieving plugin
Error: Could not retrieve catalog from remote server: Error 400 on SERVER: Could not find default
node or by name with 'node1.example.com, node1' on node node1.pro-puppet.com
Warning: Not using cache on failed catalog
Error: Could not retrieve catalog; skipping run
 

The agent has connected and our signed certificate has authenticated the session with the master. The master,
however, doesn’t have any configuration available for our puppet node, node1.pro-puppet.com, and hence we have
received an error message. We now have to add some configuration for this agent on the master.

Caution■■  I t is important for the time to be accurate on your master and agent. SSL connections rely on the clock on
hosts being correct. If the clocks are incorrect, your connection may fail with an error indicating that your certificates are
not trusted. You should use something like NTP (Network Time Protocol) to ensure that your host’s clocks are accurate.
A quick way to sync several servers is to run ntpdate bigben.cac.washington.edu on each of them. This will perform
a one-time NTP sync.

Creating Our First Configuration Item
Let’s get some more understanding of Puppet’s components, configuration language, and capabilities. You learned
earlier that Puppet describes the files containing configuration data as manifests. Puppet manifests are made up of a
number of major components:

Resources: Individual configuration items•	

Files: Physical files you can serve out to your agents•	

Templates: Template files that you can use to populate files•	

http://docs.puppetlabs.com/guides/faq.html#why-shouldn-t-i-use-autosign-for-all-my-clients
http://node1.pro-puppet.com/
http://node1.example.com/
http://node1.pro-puppet.com/
http://node1.pro-puppet.com/

Chapter 1 ■ Getting Started with Puppet

25

Nodes: Specifies the configuration of each agent•	

Classes: Collections of resources•	

Definitions: Composite collections of resources•	

These components are wrapped in a configuration language that includes variables, conditionals, arrays, and
other features. Later in this chapter we’ll introduce you to the basics of the Puppet language and its elements. In the
next chapter, we’ll extend your knowledge of the language by taking you through an implementation of a multi-agent
site managed with Puppet.

In addition to these components, Puppet also has the concept of a “module,” which is a portable collection of
manifests that contain resources, classes, definitions, files, and templates. We’ll see our first module shortly.

Adding a Node Definition
Let’s add our first node definition to site.pp. In Puppet manifests, agents are defined using node statements.

You can see the node definition we’re going to add in Listing 1-6.

Listing 1-6.  Our node configuration

node 'node1.pro-puppet.com' {
 package { 'vim':
 ensure => present,
 }
}
 

For a node definition we specify the node name, enclosed in single quotes, and then specify the configuration
that applies to it inside curly braces { }. The client name can be the hostname or the fully qualified domain name
of the client. At this stage, you can’t specify nodes with wildcards (for example, *.pro-puppet.com), but you can use
regular expressions, as shown here:
 
node /^www\d+\.pro-puppet\.com/ {
 ...
}
 

This example will match all nodes from the domain pro-puppet.com with the hostnames www1, www12, www123,
and so on.

Next, we specify a resource stanza in our node definition. This is the same one from earlier when we were
introducing the Puppet DSL. It will make sure that the vim package is installed on the host node1.pro-puppet.com.

We can run Puppet on node1 and see what action it has performed:
 
root@node1:~# puppet agent --test
Info: Retrieving plugin
Info: Caching catalog for node1.pro-puppet.com
Info: Applying configuration version '1375079547'
Notice: /Stage[main]//Node[node1]/Package[vim]/ensure: ensure changed 'purged' to 'present'
Notice: Finished catalog run in 4.86 seconds
 

We can see that Puppet has installed the vim package. It is not generally best practice to define resources at
node level; those belong in classes and modules. Let’s strip out our vim resource and include the sudo class instead
(Listing 1-7).

http://node1.pro-puppet.com/
http://*.pro-puppet.com
http:///^www\d+\.pro-puppet\.com/
http://pro-puppet.com/
http://node1.pro-puppet.com/
http://node1.pro-puppet.com/

Chapter 1 ■ Getting Started with Puppet

26

Listing 1-7.  Our Node Configuration

node 'node1.pro-puppet.com' {
 include sudo
}
 

Here we specify an include directive in our node definition; it specifies a collection of configurations, called a
class, that we want to apply to our host. There are two ways to include a class:
 
node /node1/ {
 include ::sudo
}
 
node /node2/ {
 class { '::sudo':
 users => ['tom', 'jerry'],
 }
}
 

The first syntax is bare and simple. The second syntax allows parameters to be passed into the class. This
feature, generally called parameterized classes, allows classes to be written generally and then utilized specifically,
increasing the reusability of Puppet code. Notice that the syntax for including a class is very similar to the syntax for
a normal Puppet resource. Modules are self-contained collections of Puppet code, manifests, Puppet classes, files,
templates, facts, and tests, all for a specific configuration task. Modules are usually highly reusable and shareable.
The double-colon syntax explicitly instructs Puppet to use top scope to look up the sudo module. You will learn
much more about this in Chapter 2.

Note■■  P uppet also has an inheritance model in which you can have one node inherit values from another node. You
should avoid doing this. Refer to http://docs.puppetlabs.com/puppet/latest/reference/lang_node_definitions.
html#inheritance for more information.

Creating Our First Module
The next step in our node configuration is to create a sudo module. Again, a module is a collection of manifests,
resources, files, templates, classes, and definitions. A single module would contain everything required to configure a
particular application. For example, it could contain all the resources (specified in manifest files), files, and associated
configuration to configure Apache or the sudo command on a host. We will create a sudo module and a sudo class.

Each module needs a specific directory structure and a file called init.pp. This structure allows Puppet to
automatically load modules. To perform this automatic loading, Puppet checks a series of directories called the
module path. This path is configured with the modulepath configuration option in the [master] section of the
puppet.conf file. By default, Puppet looks for modules in the /etc/puppet/modules and /usr/share/puppet/
modules directories, but you can add additional locations if required:
 
[master]
modulepath = /etc/puppet/modules:/var/lib/puppet/modules:/opt/modules

http://node1.pro-puppet.com/
http://docs.puppetlabs.com/puppet/latest/reference/lang_node_definitions.html#inheritance
http://docs.puppetlabs.com/puppet/latest/reference/lang_node_definitions.html#inheritance

Chapter 1 ■ Getting Started with Puppet

27

Module Structure
Let’s start by creating a module directory and file structure in Listing 1-8. We’re going to create this structure under
the directory /etc/puppet/modules. We will name the module sudo. Modules (and classes) must be normal words
containing only letters, numbers, underscores, and dashes.

Listing 1-8.  Module structure

mkdir –p /etc/puppet/modules/sudo/{files,templates,manifests}
touch /etc/puppet/modules/sudo/manifests/init.pp
 

The manifests directory will hold our init.pp file and any other configuration. The init.pp file is the core of
your module, and every module should have one. The files directory will hold any files we wish to serve as part of
our module. The templates directory will contain any templates that our module might use.

The init.pp file
Now let’s look inside our sudo module, starting with the init.pp file, which we can see in Listing 1-9.

Listing 1-9.  The sudo module’s init.pp file

class sudo {
 
 package { 'sudo':
 ensure => present,
 }
 
 if $::osfamily == 'Debian' {
 package { 'sudo-ldap':
 ensure => present,
 require => Package['sudo'],
 }
 }
 
 file { '/etc/sudoers':
 owner => 'root',
 group => 'root',
 mode => '0440',
 source => "puppet://$::server/modules/sudo/etc/sudoers",
 require => Package['sudo'],
 }
}
 

Our sudo module’s init.pp file contains a single class, also called sudo. There are three resources in the class, two
packages and a file resource. The first package resource ensures that the sudo package is installed, ensure => present.
The second package resource uses Puppet’s if/else syntax to set a condition on the installation of the sudo-ldap package.

Note■■  P uppet also has two other conditional statements, a case statement and a selector syntax.
You can see more details of Puppet’s conditional syntaxes at
http://docs.puppetlabs.com/guides/more_language.html#conditionals.

http://docs.puppetlabs.com/guides/more_language.html#conditionals

