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Preface

Adjuvants play a crucial role in vaccine formulations by boosting the 
immunogenicity of antigens, thereby enhancing vaccine efficacy. While 
antigens can initiate immune responses independently, adjuvants amplify 
these responses. They do so by stimulating antigen-presenting cells and 
facilitating the maturation of these cells to effectively present antigenic 
peptides to both T and B cells. The main objective of this book is to pro-
vide readers with an in-depth understanding of the latest advancements in 
adjuvant technology. Ultimately, the book aims to drive progress in vaccine 
research, paving the way for the development of more potent and safer 
vaccines to address global health threats.

This book provides a comprehensive overview of the evolving land-
scape of vaccine adjuvants, encompassing a wide range of topics critical 
to their design, development, and application. Chapter 1 is an introduc-
tory chapter on adjuvants and Chapter 2 presents the cutting-edge field 
of in silico adjuvant design and validation, shedding light on computa-
tional approaches to optimize adjuvant properties. The chapter explores 
the intricate relationship between adjuvants and immunity (Chapter 3), 
elucidating how these immunomodulators enhance vaccine responses. 
Novel formulation strategies for vaccines incorporating adjuvants are 
discussed (Chapter 4), along with detailed characterization methods to 
ensure their quality and performance. The book also highlights the role 
of adjuvants in licensed vaccines (Chapter 5), emphasizing their con-
tribution to vaccine efficacy. Emerging nanomaterial-based adjuvants 
(Chapter 6) and innovative non-invasive routes of vaccine delivery 
(Chapter 7) are explored as promising avenues for future vaccine devel-
opment. Regulatory guidelines governing vaccine adjuvants are outlined 
to navigate the complex landscape of vaccine approval and licensing 
(Chapter 8). Importantly, the book addresses vaccine safety concerns asso-
ciated with adjuvants (Chapter 9), discussing strategies to mitigate risks.  



xvi Preface

Chapter  10 highlights the limitations of adjuvants and explores future 
directions to advance the field of vaccinology.

The Editors
Vivek P. Chavda

Vasso Apostolopoulos
November 2024
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Adjuvants Boosting Vaccine Effectiveness
Vasso Apostolopoulos*

School of Health and Biomedical Sciences, RMIT University,  
Melbourne VIC, Australia

Abstract
Vaccine development has evolved significantly with the identification and isola-
tion of specific antigens, leading to subunit vaccines. Adjuvants, crucial in mod-
ern vaccine design, enhance antigen immunogenicity, allowing for more effective 
vaccines that stimulate both humoral and cell-mediated immunity. Conventional 
adjuvants, including aluminum salts, SAF-1, QS-21, and squalene-based adju-
vants such as MF59 and AS03, play pivotal roles in enhancing vaccine efficacy. 
Particulate adjuvants, including liposomes, immunostimulatory complexes, and 
emulsions like MF59 and AS03, offer improved antigen stability and targeted 
delivery. Additionally, immunostimulatory adjuvants like Toll-like receptor 
agonists, monophosphoryl lipid A, cytokines, and CpG oligodeoxynucleotides 
directly activate immune responses. Approved adjuvants, AS01, AS03, AS04, 
MF59, Matrix-M, and virosomes are key adjuvants in approved human vaccines, 
enhancing immune responses and vaccine efficacy. Despite advancements, ongo-
ing research is required to optimize adjuvant safety and efficacy in order to develop 
safer and more effective vaccines against infectious diseases and cancers.

Keywords: Adjuvants, vaccination, AS01, MF59, Matrix-M, virosomes, SAF-1, 
QS-21

1.1 Vaccines Over the Years

The history of vaccination spans over a millennium, with early attempts 
to prevent infectious diseases dating back to 1000 A.D. in China, where 
smallpox vesicles were used for inoculation. Edward Jenner’s work in 

*Email: vasso.apostolopoulos@rmit.edu.au

mailto:vasso.apostolopoulos@rmit.edu.au
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the late 1700s marked a significant advancement when he observed that 
individuals who had contracted cowpox were protected against smallpox. 
By 1796, Jenner successfully immunized a young boy with cowpox, con-
firming protection against smallpox. Louis Pasteur furthered the field by 
demonstrating the use of attenuated pathogens as vaccines in the late 19th 
century. He attenuated Pasteurella septica to develop a vaccine against fowl 
cholera and later applied a similar approach to Bacillus anthrax, achiev-
ing remarkable success in protecting farm animals. Additionally, Pasteur’s 
work with rabies marked a significant milestone in the development of live 
virus vaccines. In the realm of dead organism vaccines, the Salk vaccine 
against poliomyelitis, developed in 1960, had a profound impact on disease 
incidence before being succeeded by the Sabin vaccine. Challenges per-
sisted in producing killed vaccines due to potential destruction of import-
ant antigenic components.

The identification and isolation of specific antigens responsible for pro-
tection paved the way for “subunit” and “extract” vaccines. For instance, 
diphtheria and tetanus toxoids were purified and inactivated using forma-
lin, retaining their antigenicity but reducing adverse reactions. Despite these 
advancements, the history of vaccine development is not without setbacks. 
Disasters such as the Lubeck Disaster in 1932, where infants were mistakenly 
given Mycobacterium tuberculosis instead of BCG vaccine, and the Cutter 
Disaster in 1955, where a faulty polio vaccine led to cases of poliomyelitis, 
highlighted the need for stringent quality control and safety measures. As 
public awareness and standards for vaccine safety have increased, modern 
vaccinology has embraced advancements in genetics, chemistry, peptide 
synthesis, protein production methods, DNA, mRNA, x-ray crystal struc-
tures, molecular biology, and immunology, allowing for the development of 
safer and more efficient vaccines [1]. However, there are still many obstacles 
for their clinical use, and the limited immunogenicity of many of these can-
didates has hindered their development as potential vaccines. Strategies to 
enhance the immunogenicity of candidate vaccines are therefore critical. As 
such, adjuvants have been developed to enhance immunogenicity of vac-
cines, aiming to overcome their limited efficacy. These advancements are 
critical for optimizing the clinical potential of novel vaccine candidates.

1.2 Adjuvants in the Modern Era

Adjuvants play a pivotal role in modern vaccine development, enhancing 
the immune response to antigens and thereby improving vaccine efficacy 
[2–4]. While antigens alone can stimulate the immune system to some 
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extent, adjuvants amplify this response, making vaccines more effective at 
inducing both humoral and cell-mediated immunity. This is particularly 
crucial for subunit vaccines, which consist of purified antigens and often 
require adjuvants to boost their immunogenicity. Additionally, adjuvants 
can help reduce the amount of antigen needed per dose, which is benefi-
cial for both vaccine production and delivery. Adjuvants enable the use of 
novel vaccine technologies, such as synthetic peptides and recombinant 
proteins, which may otherwise lack sufficient immunogenicity to elicit a 
protective immune response [5]. Despite their importance, the develop-
ment and use of adjuvants in human vaccines have been limited by safety 
concerns, requiring the need for rigorous testing and evaluation. As the 
area of vaccine development continues to advance, the discovery and opti-
mization of safe and effective adjuvants remain a critical area of research, 
holding the potential to revolutionize vaccine design and contribute to 
global health by combating infectious diseases more effectively [6].

1.3 Conventional Adjuvants

Adjuvants play a crucial role in enhancing antigen immunogenicity, ampli-
fying both humoral and cell-mediated immune responses. A widely used 
adjuvant in experimental animals is complete Freund’s adjuvant (CFA), a 
water-in-oil emulsion containing killed M. tuberculosis. Despite its effec-
tiveness and long sustained immune responses, CFA is not suitable for 
human use due to its propensity to induce granulomas, fever, and inflam-
mation. Incomplete Freund’s adjuvant, which lacks the mycobacterial 
component, has been evaluated, which does not induce granulomas and 
is safer than CFA, but it is still not approved for human vaccines due to 
other safety concerns. However, aluminum salts approved for human use 
in the 1930s, being either as aluminum hydroxide or aluminum phosphate, 
are the most widely used adjuvants in human vaccines. They enhance the 
immune response by forming a depot at the injection site, facilitating anti-
gen uptake by antigen-presenting cells and stimulating cytokine secretion 
[7–9]. Alum primarily stimulates humoral immune responses and is used 
in vaccines against diphtheria, tetanus, and hepatitis B. However, alumi-
num-based adjuvants primarily stimulate humoral immune responses and 
are limited in cell-mediated immune stimulation (Figure 1.1). Emerging 
conventional adjuvants include the following:

a.  SAF-1: Comprising squalene oil, threonyl-MDP, and 
non-ionic block polymers, SAF-1’s block polymers act as 
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adhesive molecules, enhancing antigen presentation and 
have been used in malaria and influenza vaccine studies 
[10–12].

b.  QS-21: QS-21 is a potent vaccine adjuvant sourced by 
extraction from the Chilean soapbark tree (Quillaja sap-
onaria). QS-21 exhibits freeze-thaw stability and has shown 
promise as an adjuvant for inducing specific CD8+ T-cell 
responses and exhibits minimal toxicity [13]. Quil A is also 
derived from Quillaja saponaria tree.

c.  Monophosphoryl Lipid A: A derivative of lipopolysaccharide 
has been used as an adjuvant in vaccines to enhance antibody 
and T-cell immune response to antigens. Monophosphoryl 
lipid A binds to Toll-like receptor 4 (TLR4) on antigen- 
presenting cells stimulating pro-inflammatory cytokines, 
maturation, and activation of antigen-presenting cells [14, 
15]. AS04 is the best known formulation, which incorporates 
both monophosphoryl lipid A and aluminum hydroxide.

d.  Ribi Formulation: Incorporating mycobacterial cell 
walls and monophosphoryl lipid A, this formulation has 
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demonstrated superior antibody titers and both humoral 
and cellular immune responses compared to aluminum 
hydroxide adjuvants [14, 16, 17].

e.  Squalene-Based Adjuvants: MF59 by Novartis approved 
in 1997 and AS03 by GlaxoSmithKline approved in 2013 
are oil-in-water emulsions containing squalene, a natu-
rally occurring lipid. MF59 and AS03 adjuvants enhance 
antigen uptake by antigen-presenting cells and stimulate 
immune cells at the injection site, resulting in activation of 
both humoral and cell-mediated immune responses. MF59 
is used in seasonal influenza vaccines for older adults, 
whereas AS03 is used in some pre-pandemic (H5N1) and 
pandemic influenza vaccines [5, 18–20].

f.  Bacterial Toxoids: Toxoids, such as detoxified forms 
of tetanus and diphtheria toxins, can serve as adjuvants 
when co-administered with antigens [21]. They provide 
T cell help and can enhance the immune response to the 
co-administered antigen as were shown to be effective in 
anti-cancer peptide based vaccines [22–27].

g.  Mineral Salts: Besides aluminum salts, other mineral salts 
like calcium phosphate and calcium carbonate have been 
used as adjuvants to stabilize antigens and enhance their 
immunogenicity. These salts can adsorb antigens and facili-
tate their uptake by antigen-presenting cells.

Conventional adjuvants have been instrumental in the success of several 
vaccines by improving their efficacy and durability. However, they often 
have limitations, such as inducing primarily humoral immune responses 
or having reactogenicity concerns, which have driven the search for novel 
adjuvants with improved safety profiles and broader immunostimulatory 
capabilities.

1.4 Particulate Adjuvants

Particulate adjuvants are a class of adjuvants that consist of particles 
designed to enhance the immune response to co-administered antigens. 
These adjuvants are often formulated as nanoparticles, liposomes, or other 
particulate structures to improve antigen delivery, uptake by antigen- 
presenting cells and subsequent activation of the immune system. Some 
notable types of particulate adjuvants include the following:
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a.  Liposomes: Liposomes, phospholipid-based vesicles, have 
been extensively studied since the 1970s for targeted drug 
delivery and immunoadjuvant applications [28]. They offer 
a versatile platform for adjuvant design, with the ability 
to entrap antigens, cytokines, and other immunomodu-
lators [29]. As such, enhanced immune responses with 
liposome-entrapped antigens compared to free antigens 
have been shown, including some of the original studies 
30 years ago against influenza virus A/PR/8 envelope pro-
teins [30, 31]. Liposomal-based vaccines hold promise for 
more effective and tailored approaches in the design of vac-
cines against infectious diseases, cancer, and other health 
challenges.

b.  ISCOMs (Immunostimulatory Complexes): ISCOMs, com-
posed of Quil A adjuvant and peptides, achieve enhanced anti-
gen immunogenicity with reduced adjuvant concentrations. 
These complexes induce both humoral and cell-mediated 
immune responses and have demonstrated promise in various 
animal models, including vaccines against hepatitis B, hepati-
tis C, influenza virus, malaria, human immunodeficiency, and 
certain veterinary vaccines [32–37].

c.  Emulsions: Emulsion-based adjuvants, such as MF59  and 
AS03, consist of oil-in-water or water-in-oil formula-
tions. They can stabilize antigens, promote their uptake by 
 antigen-presenting cells, and enhance immune responses, 
particularly in elderly individuals. Indeed, MF59 is used in 
seasonal influenza vaccines for elderly individuals who have 
not responded to standard influenza vaccines [19, 38, 39]. In 
addition, MF59 has been evaluated in vaccines against menin-
gococcus B, SARS-CoV-2, and malaria [40].

d.  Virosomes: Virosomes are reconstituted viral envelopes 
devoid of viral genetic material. They can encapsulate anti-
gens and fuse with cell membranes, facilitating antigen 
delivery and uptake by antigen-presenting cells. Virosomes 
are used in vaccines like Inflexal V for influenza [41].

e.  Nanoparticles: Nanoparticles made of biodegradable poly-
mers or inorganic materials can be used to encapsulate 
antigens and/or adjuvants [42]. These nanoparticles can 
protect antigens from degradation, target them to specific 
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cell types, and promote antigen uptake and presentation by 
antigen-presenting cells [43–45].

f.  Microparticles: They are larger than nanoparticles but 
smaller than cells and can be made from various materi-
als, including polymers and proteins. They can be designed 
to secrete antigens and adjuvants in a controlled manner, 
enhancing antigen presentation and immune stimulation. 
Key findings 30 years ago noted that size of the particle was 
important to stimulate different arms of the immune sys-
tem [46].

g.  Nanogels: Nanogels are hydrogel-based nanoparticles, 
which encapsulate antigens and adjuvants. They provide 
sustained release of encapsulated components, improve 
stability, and enhance antigen uptake and presentation by 
antigen-presenting cells.

Particulate adjuvants offer several advantages, including improved anti-
gen stability, targeted delivery, and enhanced immune stimulation. They 
are being studied for use in various vaccines against infectious diseases, 
cancers, and other conditions to improve vaccine efficacy and facilitate the 
development of novel vaccine formulations.

1.5 Immunostimulatory Adjuvants

Immunostimulatory adjuvants enhance the immune response by directly 
activating immune cells or signaling pathways. Such examples include the 
following:

a.  TLR Agonists: TLR agonists, such as Poly I:C (TLR3) 
and R848, mimic pathogen-associated molecular patterns 
to stimulate innate immune responses [47]. In addition, 
imiquimod, a synthetic imidazoquinolinone compound, 
binds to TLR7 stimulating pro-inflammatory immune 
responses. Alum Plus is an improved adjuvant, which com-
bines aluminum salts with TLR agonists.

b.  Monophosphoryl Lipid: Stimulates immune cells via bind-
ing to TLR4.

c.  Cytokines: Incorporation of cytokines into adjuvants and 
vaccine formulations has been shown to enhance immune 
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responses, such as interleukin (IL)-1, IL-2, interferon (IFN)-
gamma, and granulocyte-macrophage colony- stimulating 
factor (GM-CSF).

d.  CpG Oligodeoxynucleotides: These synthetic DNA sequences 
stimulate TLR9, promoting a Th1-biased immune response. 
CpG adjuvants are being investigated for various vaccines, 
including those against infectious diseases and cancer [48–51].

1.6 Approved Adjuvants for Human Use

Improved adjuvants are essential for enhancing the efficacy of vaccines by 
boosting the immune response to antigens. While aluminum salts have 
been key in human vaccines, their limitations, such as variable efficacy 
and lack of cell-mediated immune stimulation, have directed research 
into novel adjuvant formulations (Figure 1.1). Several adjuvants have been 
approved in human vaccines:

a.  AS01: The adjuvant used in the Shingrix vaccine against 
shingles is a combination of monophosphoryl lipid A and 
QS21 inducing robust immune responses even in older 
adults [52–54].

b.  AS03: AS03 adjuvant is an oil-in-water emulsion based on 
squalene, a natural lipid, polysorbate 80, and a-tocopherol, 
a form of vitamin E. It was approved in 1997 by Novartis to 
be used in influenza vaccines. AS03 was also present in the 
Pandemrix influenza vaccine of the H1N1 influenza pan-
demic 2009-2010. Even though Pandemrix showed strong 
immune responses and protection against H1N1 infections, 
there were increased risks of narcolepsy. As such, the use 
of Pandemrix was discontinued in several countries, and 
alternative vaccines without the AS03 adjuvant were used 
for subsequent influenza seasonal and pandemic response 
vaccines.

c.  AS04: This adjuvant combines aluminum hydroxide with 
monophosphoryl lipid A, a detoxified derivative of bacte-
rial lipopolysaccharide, which has been shown to enhance 
both humoral and cell-mediated immune responses espe-
cially in human papilloma virus (HPV) vaccines. Indeed, 
Cervarix vaccine against HPV types 16 and 18; the Gardasil 
vaccine against HPV types 6, 11, 16, and 18; and Gardasil 
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9 against HPV types 11, 16, 18, 31, 33, 45, 52, and 58 com-
prise the adjuvant AS04 [55–58].

d.  MF59: This is composed of squalene oil, polysorbate 80, 
and sorbitan trioleate and has been used in seasonal influ-
enza vaccines. MF59 stimulates immune response, partic-
ularly in older individuals who have reduced response to 
standard influenza vaccines.

e.  Matrix-M: A saponin-based adjuvant, purified from Quillaja 
saponaria Molina tree, combined with cholesterol and phos-
pholipids to form 40-nm–like nanoparticles. Matrix-M 
enhances Th1 and cellular immune responses to several anti-
gens and has a favorable safety profile. In fact, the Novavax 
(NVX-CoV2373) COVID-19 vaccine includes matrix-M 
adjuvant [59].

f.  Virosomes: These are reconstituted viral envelopes con-
taining no viral genetic material but capable of fusing with 
cell membranes and antigen uptake. Virosomal adjuvants 
are used in the influenza vaccine, Inflexal V, to enhance 
immune responses [41, 60–63].

1.7 Conclusion

The history of vaccination, spanning over a millennium, has witnessed 
remarkable advancements, from early inoculations in China to the mod-
ern era of sophisticated vaccine technologies. Edward Jenner and Louis 
Pasteur laid the foundation for vaccine development, whereas the iden-
tification of specific antigens enabled the creation of subunit and extract 
vaccines. Despite these strides, challenges such as safety concerns and lim-
ited immunogenicity persist, driving the need for innovative solutions like 
adjuvants. Adjuvants, crucial in modern vaccine development, enhance 
immune responses, making vaccines more effective and enabling the use 
of novel technologies. While conventional adjuvants like aluminum salts 
have been foundational, their limitations have spurred research into safer 
and more efficient options. Particulate adjuvants, such as liposomes and 
ISCOMs, offer improved antigen stability and targeted delivery, whereas 
immunostimulatory adjuvants like TLR agonists and cytokines directly 
activate immune cells, enhancing vaccine efficacy. Approved adjuvants, 
AS01, AS03, AS04, Matrix-M, MF59, and virosomes, have revolutionized 
vaccine formulations, enhancing immune responses against diseases like 
shingles, influenza, and HPV. Matrix-M™ in the Novavax COVID-19 
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vaccine exemplifies the potential of innovative adjuvants in pandemic 
responses. In conclusion, the ongoing evolution of vaccine technologies 
and adjuvants holds promise for safer and more effective vaccines. In the 
face of persistent global health challenges, enhancing vaccine design and 
delivery is essential to ensure the well-being of people worldwide.
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