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XIX

Foreword

1

The Magic Force That Became a Science

In Heidelberg Castle, among many wonders, one finds the German Pharmacy

Museum (Deutsches Apotheken-Museum). As one wanders through it, one comes

to the object illustrated below (Figure 1). This is Döbereiner’s lighter or igniter,

Döbereinersches Feuerzeug. For about 40 years in the nineteenth century, it was

an object of industrial and middle class utility. Chemical light years behind the

wonders of catalysis described in this book, it was, nevertheless, in its time the

first example of a practical designed application of catalysis. I would like to tell

you its story; as I do I will call it the Feuerzeug, because the German word is more

poetic than its English equivalent.

The story I will tell you is of a catalyst for one of the simplest chemical reactions,

the combustion of hydrogen: 2H2 + O2 → 2H2O. It is also a story of chemistry in

culture, of a Russian–German geopolitical tie that, in the 1820s, helped a Jena

professor to invent a new way of lighting fires using, of all metals, platinum. So,

this is a story of fire too. And one of modern surface chemistry.

2

It Should Go Off, Shouldn’t It?

Is there a problem with the above reaction, hydrogen burning? The hydrogen-

filled balloon set off by a taper is the chemistry lecturer’s favorite demonstration.

You can vary the effect by adjusting the mixture of hydrogen and oxygen in the

balloon – pure hydrogen gas (H2) will give you a respectable pop and a neat flame,

just a little H2 will simply not go off. The most bang for the buck comes from a

mixture of hydrogen and oxygen gas (O2). I remember waking up sleeping dogs in

my class, not to mention students, with this demonstration.

The reaction is highly exothermic: the change in free energy for all gaseous com-

ponents under standard conditions is a very respectable 242 kJ per mole of H2.

And all it takes is a lighted taper or match to set it off.
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Figure 1 Döbereiner’s Feuerzeug, from the German Pharmacy Museum in Heidelberg.

This one is from around 1840. (Reproduced with permission of the Deutschen Apotheken-

Museum Heidelberg.)

“… a match to set it off.” That’s just the point: the radicals in the flame and the

heat of the match initiate the reaction, after which it indeed proceeds, posthaste.

The mixture of hydrogen and oxygen, in the absence of that match or of a cat-

alyst, would just sit there—the activation energy for the uncatalyzed reaction is

very high.

Hydrogen was first well identified by Cavendish in 1766. Its burning to water

and the parallel andmore difficult decomposition of water to H2 and O2 were cor-

nerstones of Lavoisier’s chemical revolution. The reaction was just as reluctant to

go in the 1780s as it is today.There were no safety matches until 1855. So Lavoisier

set it off with an electric spark. And within 50 years, a German chemist, Johann

WolfgangDöbereiner, used the sameH2 andO2 reaction, now catalyzed, as a ready

source of fire, replacing other sources of fire in home and laboratory.

3

Incendiary Acts

How were fires lit before? To begin with, from other fires, of course. Two further

techniques evolved around the world – the first generated heat by rubbing wood

rapidly against wood, the second created sparks by striking hard stones against
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stone or metal. In both cases, the heat or spark had to be “caught” by a flammable

material nearby. Tinder could bemostly anything organic, but certain driedmush-

rooms were particularly valued. The ingenuity in the construction of bows for

rubbing wood sticks or the compact steel-silex-tinder kits of seventeenth-century

soldiers is remarkable.

In the seventeenth and eighteenth centuries, as optics evolved, the burning glass

or mirror became an important fire source, albeit a fair weather one. Ehrenfried

Walther vonTschirnhaus (1651–1708), a natural philosopher andpolymathwith a

practical bent, built the best of these, capable of reaching the highest temperatures

then possible on earth. Sparks also came from thenewly discovered electricity. Still

another sourcewas invented in 1770 andhas a fascinating connection to chemistry

and physics.This is the pneumatic lighter, in which the heat generated in a rapidly

compressed gas is sufficient to inflame tinder.

4

Döbereiner’s Feuerzeug

Johann Wolfgang Döbereiner was born in Hof an der Saale in 1780. His begin-

nings were simple. He was largely self-educated, the son of a coachman. But

Döbereiner’s talents were recognized, and in 1810 he was appointed to a profes-

sorship in Jena. This town was in the Grand Duchy of Saxe-Weimar-Eisenach,

a princely state under the administration at just that time of another Johann

Wolfgang, namely Goethe. Goethe and Döbereiner had an extensive correspon-

dence, inter alia dealing with the tarnishing of silver spoons in red cabbage and

the composition of Madame de Pompadour’s toothpaste. Goethe went to Jena to

study analytical chemistry with Döbereiner [1]1). A contemporary analog would

be if the present French Prime Minister Manuel Valls took off a few weeks to

learn about supramolecular chemistry with Jean-Marie Lehn at the University of

Strasbourg. It would be good for Valls, but…
Döbereiner did much interesting chemistry. For instance, he was responsible

for noting an important regularity in the chemistry of the elements, that of triads,

one of the forerunners of Mendeleev’s periodic table. And Döbereiner observed

in 1823 that when platinum metal (in a finely dispersed form called platinum (Pt)

sponge) was exposed to hydrogen, much heat was generated.The platinum in fact

glowed red hot to white hot, and if more hydrogen were supplied, the hydrogen

burst into a hot but nearly colorless flame.

Döbereiner writes to his Prime Minister Goethe, as follows:

Ich erlaube mir, Eurer Exzellenz von einer Entdeckung Nachricht zu geben,

welche [… ] im hohen Maße wichtig erscheint. Ich finde [… ], dass das rein

metallische staubfeine Platin die höchst merkwürdige Eigenschaft hat, das

Wasserstoffgas durch bloße Berührung [… ] zu bestimmen, dass es sich mit

1) I thank Dr. Linke for introducing me to the Döbereiner story.



XXII Foreword

Sauerstoffgas zuWasser verbindet, wobei eine bis zumEntglühen des Platins

gesteigerte Summe von Wärme erregt wird. [2, 3]

[I allow myself, your Excellency, to give you news of a discovery which

appears to most important. I found that finely divided metallic platinum

has the most remarkable property, to induce hydrogen to combine with

oxygen to give water, on simple contact. In the process heat is released,

sufficient to make the platinum glow.]

And Berzelius, in his Annual Reports on the Progress of Chemistry, writes the

year after:

From any point of view the most important, and, if I may use the expression,

the most brilliant discovery of last year is, without doubt, that fine platinum

powder has the ability to unite oxygen and hydrogen even at low tempera-

tures.

Within days, Döbereiner turned this beautiful observation into a practical

igniter. Figure 2 shows the design. One has a bottle that can be tightly sealed.

Inside a glass cylinder in that bottle hangs a piece of zinc (d). the bottle is filled

with sulfuric acid (typically 25% sulfuric acid (H2SO4)). There is a controlled

outlet from the glass bottle, the stopcock (e). The zinc (Zn) reacts with sulfuric

acid, generating hydrogen gas in situ:

Zn +H2SO4 → Zn2+ + SO4
2− +H2

When the stopcock is opened, the H2 is directed through a thin tube (f ) onto a

bit of platinum sponge (g). A flame lights, essentially instantaneously. When the

stopcock is closed, the flame goes out. More H2 is generated, but comes to a stop

as gas pressure build.

5

Geopolitics and Science

Döbereiner continued his researchwith the catalytic properties of platinum.Actu-

ally Humphry Davy had discovered the phenomenon 6 years ago, heating a fine

platinum wire above a coal gas flame. Davy compared copper, silver, gold, palla-

dium, and iron in this effect, and found that only Pt and Pd initiated exothermic

burning; he was thus the first to focus on selectivity, a matter of some importance

in this book. Döbereiner actually made a supported catalyst (a mainstay of indus-

trial catalysis and automotive catalytic converters today) by shaping small balls of

potter’s clay impregnated with platinum.

The word catalysis came from further north, from the authoritative pen of Jöns

Jacob Berzelius in 1835. In his highly influential Annual Reports (translated into

German andmany other languages; but it is good to see a language besides English

and German in chemistry… ), he wrote the following:
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Figure 2 Schematic of an early Döbereiner lighter. (Adapted from Nordisk familjebok/

Uggleupplagan. Vol. 7. Egyptologi - Feinschmecker, p. 163–164, 1907. From Wikipedia.)

Jag skall derföre… kalla den kroppars katalytiska kraft, sönderdelning

genom denna kraft katalys, likasom vi med ordet analys beteckna åtskiljan-

det af kroppars beståndsdelar medelst den vanliga kemiska frändskapen.

[emphasis in original] [4]

[I shall, therefore… call it that body’s catalytic force, the decomposition of

other bodies by this force catalysis, just as we signify by the word analysis

the separation of the constituents of bodies by the usual chemical affinities.]

Berzelius viewed catalysis as a special force, to some not that different from the

heritage of the Philosopher’s Stone [3]; it took 60 years and the great science and

intuition of Wilhelm Ostwald to point us in another direction.

For his work, Döbereiner needed great supplies of the precious metal, and a

geopolitical note is in order here: platinum originally came from Spanish colonial

mines in the New World, and that is presumably Döbereiner’s original source.

Around 1824, major deposits were discovered in the Urals. How could Döbere-

iner, who was struggling desperately in his laboratory finances, get the precious

white metal? Well, the Empress of Russia, Catherine the Great (1729–1796),

was a German princess from the Duchy of Anhalt-Zerbst. There were close

Russian–German ties throughout this period, and they continued until the

WorldWar I. In Döbereiner’s principality, the wife of Carl Friedrich, the then heir
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to the Grand Duke, was Maria Pavlovna, the daughter of Czar Paul I of Russia.

Platinum from the Urals came easily to Jena; he may have had a kilogram of it.

6

Chemistry in Culture

Döbereiner’s lamp became a commonway to light fires in industrial settings in the

first half of the nineteenth century. Within 5 years of its discovery, 20,000 lamps

were in use in Germany and England. It entered the middle-class home as well.

(Nothing like this could happen today; imagine the horror of today’s risk-avoiding

society at the thought of filling a lamp with sulfuric acid!) And if a utilitarian tech-

nology is to be accepted into society, it must be culturally processed.What I mean

is that it is clothed according to the prevalent esthetics of the time. In 1829, a

Berlin manufacturer could offer “… as a pleasant and useful Christmas present a

lightingmachine, outfittedwith platinum, elegant, clean, and sturdily constructed,

with Chinese and other decoration, insensitive to wetness and cold… ”

In time the safety match, the cerium frictional spark source (see Primo Levi’s

Ce chapter in his Periodic Table), the cigarette lighter and the gas stove electronic

lighter put Döbereiner’s Feuerzeug into the museum.

Look at the Pharmacy Museum Feuerzeug again. The image on the housing is

more than a genre painting. Two young women appear to be playing a game: one

watching and the other active. There is a basin with water (see the jug in front to

replenish the water). And in the basin are two floating “boats,” perhaps made of

wood or paper. In each is a candle.The boats look circular, but their action will be

more pronounced if they were not, or if a piece of the rim of one is cut out a bit.

Try it yourself, please. The young women are doing a scientific experiment. And

one which is fun too.

7

How Does Hydrogen Burn?

Onehundred and seventy-two years afterDöbereiner’s discovery, in 1995, Laurens

K. Verheij and Markus B. Hugenschmidt write:

In recent years many studies on the reaction between hydrogen and oxygen

on metal surfaces have been reported. Although this reaction is expected to

be one of the simplest oxidation reactions, rather complex phenomena are

observed which make a determination of the reaction mechanism difficult.

Even for the water formation reaction on Pt(111), the system which has been

most widely studied, an understanding of the reaction process seems only

just emerging [5].
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Figure 3 Schematic of O2 molecules and

O atoms (gray) adsorbed on a platinum

surface (left). The image generated by the

scanning tunneling microscope reveals

two shapes of oxygen molecules on the

platinum surface (right). Molecules can

appear to form “clover-leaf” (B) or “pear-like”

(F) shapes. In some places, one sees the

molecules dissociated to adsorbed oxygen

atoms (dark circles, marked “o”). (Photo-

graph courtesy of Wilson Ho.)

In the next 20 years, understanding did emerge, as incomplete as it is. It came

through the beautiful work of Gerhard Ertl [6] and of others [7]. The sequence of

events is not simple, not easily revealed, despite the availability of tools unimag-

inable to either Döbereiner or Ostwald, such as scanning tunneling microscopy. I

show a teaser, an image relevant to the very first steps of the reaction, when oxygen

molecules impinge, as they must, on a platinum surface (Figure 3).

At low temperatures, way below room temperature, O2 bonds to the surface

first as a molecule and in several different ways. The clover-leaf pattern is for an

O2 lying across two Pt atoms. Do you know why one “sees” clover-leafs and not

dumbbells? The pear-like features are likely O2 molecules bound at an angle to

the surface, one atom further up than the other. As one heats up the surface, the

diatomic (O2) ruptures into individual oxygen atoms,which sit bonded to triangles

of platinums. At ambient temperatures, it is not likely that an O2 coming onto the

surface survives very long before it breaks apart. The hydrogen molecules break

apart even more readily on the same surface.

Andwhat happens after that?Howdo the chemisorbedH andOatoms find each

other, form water? Good questions, the subject of current research. Something as

simple a burning hydrogen is … not simple.

8

Knowing without Seeing

The stories of the book before you are different fromDöbereiner’s, for they are, for

the most part, tales of catalysis in solution, so-called homogeneous catalysis. This

type of seemingmagic is also old, even if we do not consider themany instances of

catalysis that nature has wrought, and limit ourself to human–crafted interven-

tions. So, in 1860, the aging Liebig found an aldehyde-catalyzed transformation of

some utility from cyanogen to oxamide, shown below [8]:
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On surfaces or in solution (and the distinction is being undermined everyday now

by the catalysis on nanoparticles), modern catalysis operates within the frame-

work of Wilhelm Ostwald’s transformation of catalysis from magic to rate change

(as often slowing down as enhancing, but that is another story). Here is how Ost-

wald put it:

Ein Katalysator ist jeder Stoff, der, ohne im Endprodukt einer chemischen

Reaktion zu erscheinen, ihre Geschwindigkeit verändert [9]

A catalyst is a substance that changes the rate of a chemical reactionwithout

appearing as a product of it.

It took the next hundred years after Ostwald to shift the emphasis from the

observation of a changed rate to the search for the partial establishment of the

underlying mechanism of chemical reactions, both organic and inorganic. These

mechanisms, incredibly rich in their variety, are aLeitmotif of the book before you.

The tools for “seeing” in solution are not yet developed. And I like it so, for it leaves

room for what has always been in my mind the strength of chemistry, its great

intellectual achievement – the marshaling of chemical and physical fragmentary

evidence into a knowing without seeing. People do know, putting together pieces

from kinetics, and from signals fromwithin.The latter detected by the lovely tools

we have invented of spectroscopic attention to those signals, and in turn elicited by

small electromagnetic perturbations. And now theory too. It is absolutely amazing

how much we may know, without seeing per se. That we do that – understand

without direct sight – I think should make sometimes arrogant scientists more

tolerant of the ways of knowing that artists and writers and social scientists have.

They also listen, create, and understand.

Roald Hoffmann
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