Edited by Lutz H. Gade and Peter Hofmann

Molecular Catalysts

Structure and Functional Design

With a Foreword by Nobel Laureate Roald Hoffmann

Edited by Lutz H. Gade and Peter Hofmann

Molecular Catalysts

Related Titles

Cornils, B., Herrmann, W.A., Beller, M., Paciello, R. (eds.)

Applied Homogeneous Catalysis with Organometallic Compounds A Comprehensive Handbook in Three

Volumes 3 Edition

2015 Print ISBN: 978-3-527-32897-0, also available in digital formats

Wilson, K., Lee, A.F. (eds.)

Heterogeneous Catalysts for Clean Technology

Spectroscopy, Design, and Monitoring

2014 Print ISBN: 978-3-527-33213-7, also available in digital formats

Kamer, P.P., van Leeuwen, P.P. (eds.)

Phosphorus(III) Ligands in Homogeneous Catalysis – Design and Synthesis

2012 Print ISBN: 978-0-470-66627-2, also available in digital formats

Hashmi, A.S., Toste, F.D. (eds.)

Modern Gold Catalyzed Synthesis

2012 Print ISBN: 978-3-527-31952-7, also available in digital formats Che, M., Vedrine, J.C. (eds.)

Characterization of Solid Materials and Heterogeneous Catalysts

From Structure to Surface Reactivity

2012 Print ISBN: 978-3-527-32687-7, also available in digital formats

Beller, M., Renken, A., van Santen, R.A. (eds.)

Catalysis

From Principles to Applications

2012 Print ISBN: 978-3-527-32349-4

Itsuno, S. (ed.)

Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis

2011 Print ISBN: 978-0-470-56820-0, also available in digital formats

van Leeuwen, P.W., Chadwick, J.C.

Homogeneous Catalysts

Activity - Stability - Deactivation

2011 Print ISBN: 978-3-527-32329-6, also available in digital formats

Zhou, Q. (ed.)

Privileged Chiral Ligands and Catalysts

2011 Print ISBN: 978-3-527-32704-1, also available in digital formats Edited by Lutz H. Gade and Peter Hofmann

Molecular Catalysts

Structure and Functional Design

The Editors

Prof. Dr. Lutz H. Gade

Ruprecht-Karls-Universität Heidelberg Anorganisch-Chem. Institut (ACI) Im Neuenheimer Feld 270 69120 Heidelberg Germany

Prof. Dr. Peter Hofmann

Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut (OCI) Im Neuenheimer Feld 270 69120 Heidelberg Germany

Cover picture

Source: BASF Pressefoto

All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33521-3 ePDF ISBN: 978-3-527-67330-8 ePub ISBN: 978-3-527-67329-2 Mobi ISBN: 978-3-527-67328-5 oBook ISBN: 978-3-527-67327-8

Cover Design Adam-Design, Weinheim, Germany Typesetting Laserwords Private Limited, Chennai, India Printing and Binding Markono Print Media Pte Ltd., Singapore

Printed on acid-free paper

Contents

List of Contributors XV Foreword XIX Introduction XXIX

Part I Mechanisms of Elementary Reactions in Catalytic Processes 1 Lutz H. Gade v

1	Quantum Dynamics of Molecular Elementary Processes in Catalytic
	Transformations 5
	Günter Klatt and Horst Köppel
1.1	Introduction 5
1.2	Structural and Energetic Aspects 6
1.3	Quantum Dynamical Calculations 12
1.3.1	Reaction Path Energy Profiles 12
1.3.2	Wave Packet Propagation for Late-Transition-Metal Complexes 13
1.3.3	Norm Decay and Lifetimes 15
1.3.4	Quantum Dynamics of Ethylene Insertion in Chromium
	Complexes 18
1.4	Summary and Outlook 21
	Acknowledgments 21
	References 21
2	Activation of Small Molecules with Metal and Metal Oxide Clusters in
2	Inert Gas Matrixes 25
	Hans-löra Himmel and Olaf Hühner
21	Introduction 25
2.1	The Matrix Isolation Technique Advantages and Limitations 28
2.2	Thermal Evaporation Versus Lasor Ablation 20
2.2.1	Motel or Cal Substrates for the Metrix 20
2.2.2	Formation and Characterization of Matal Atom Dimors and
2.3	Chatere 22
2.4	Clusters 52
2.4	Reactions of Atom Dimers or Clusters 35

vi	Contents	
	2.5	Formation and Characterization of Metal Oxides 38
	2.6	Reactions Involving Metal Oxides 44
	2.7	Concluding Remarks 46
		Acknowledgments 47
		References 47
	2	Toward Circle Malassia Catabasia (2)
	3	Ioward Single-Molecule Catalysis 53
		Arina Ryoina, Marcel Wirtz, Dominik Brox, Rolana Kramer, Gregor Jung, and
	2.1	Dirk-reler Herlen
	2.1.1	Single Melecule Engumelegy 54
	212	Single Molecule Studies in Chemistry 55
	3.1.2	Single-Molecule Studies in Chemistry 55
	3122	Single-Molecule Chemistry in Homogeneous Catalysis 58
	3.1.2.2	Probes for Single-Molecule Chemistry 60
	321	Fluorescence Properties: Overall Considerations 61
	322	Fluorogenic Substrates 62
	3.2.3	Substrates for Reversible Reactions 62
	3.2.4	Substrates for Irreversible Reactions 63
	3.3	Approaching Single-Molecule Studies in Homogeneous
		Catalysis 64
	3.3.1	Fluorophore-Labeled Cu(II) Chelators and Substrates 64
	3.3.2	BODIPY Substrates for Probing Reactions of Double Bonds 71
	3.4	Discussion and Perspectives 75
		Acknowledgments 76
		References 76
	4	Intermediates and Elementary Reactions in Gold Catalysis 81
		A. Stephen K. Hashmi
	4.1	Introduction 81
	4.2	The Initial Step: π -Coordination of the Substrate 81
	4.3	The Nucleophilic Addition: Vinylgold and Alkylgold
		Intermediates 82
	4.4	The Reaction of the Organogold Intermediates with
		Electrophiles 87
	4.5	"Vinylidene" Gold(I) Intermediates 89
	4.5.1	Setting the Stage 89
	4.5.2	An Unexpected Regioselectivity Raises Questions 92
	4.5.3	The Mechanistic Hypothesis 95
	4.5.4	The Other Pathway 97
	4.5.5	Gold Allenylidenes as Analogs of Gold Vinylidenes? 99
	4.5.6	Dual Activation Catalysts 99
	4.6	Protons and Hydride in Gold Catalysis 101
	4./	Future Perspectives 102

References 102

	Content
5	Diastereoselectivity in Alkene Metathesis 107
	Bernd F. Straub and Achim Häußermann
5.1	Introduction 107
5.2	Stereoselective Alkene Metathesis Catalysts 107
5.3	Combining Catalytic Activity and Stereoselectivity in Ruthenium
	Carbenes: an Antagonism? 111
5.4	Stereoselectivity in Ring-Opening Metathesis Polymerization
	(ROMP) 114
5.5	Outlook 116
5.6	Summary 117
	References 117
Part II	New Catalysts – New and Old Reactions 119
	Peter Hofmann
6	Oxidation Catalysis with High-Valent Nonheme Iron Complexes 123
	Peter Comba
6.1	Introduction 123
6.2	Bispidine Ligands 124
6.3	Oxidation of the Ferrous Precursors 125
6.4	Spin States of the Ferryl Catalysts 128
6.5	Redox Properties of the Ferryl Oxidants 130
6.6	Reactivity of the Ferryl Compounds 132
6.6.1	Olefine Oxidation 132
6.6.2	Alkane Oxidation 134
6.6.3	Sulfoxidation 137
6.6.4	Water Oxidation 138
6.6.5	Dioxygen as Oxidant 139
6.7	Conclusion 140
	Acknowledgment 141
	References 141
7	Single-Site Organochromium Catalysts for High Molecular Weight
	Polyolefins 147
	Markus Enders
7.1	Introduction 147
7.2	Ligand Design 148
7.3	Chromium Complexes of Non-Cp Ligands 149
7.3.1	Neutral Tridentate Ligands 149
7.3.2	Anionic Ligands 149
7.4	Chromium Complexes Based on Cp 150
7.4.1	Cp Systems with Covalently Bound Additional Donor
	Functions 151
7.5	Polymerization Behavior of Donor-Functionalized Cp Chromium
	Complexes Developed in Heidelberg 151

VIII	Contents

7.5.1 7.5.2 7.5.3 7.6 7.7	Structural Features151Catalyst Activation and Catalytic Activities152Chain Termination and Molecular Weights155En Route to Tunable Catalysts157Conclusion158References159
8	Ligand Design and Mechanistic Studies for Ni-Catalyzed Hydrocyanation and 2-Methyl-3-Butenenitrile Isomerization Based upon Rh-Hydroformylation Research 161 Peter Hofmann and Michael E. Tauchert
8.1	Introduction 161
8.2	Recent Advances in Ni-Catalyzed Hydrocyanation and Isomerization Reactions <i>164</i>
8.2.1	Hydrocyanation of Vinylarenes 165
8.2.2	Hydrocyanation of 1,3-Dienes <i>165</i>
8.2.3	Hydrocyanation of <i>trans</i> -3-Pentenenitrile 166
8.2.4	Isomerization of 2-Methyl-3-Butenenitrile 167
8.3	Recent Advances in Ni-Catalyzed Hydrocyanation and Isomerization Reactions Employing the TTP-Ligand Family <i>168</i>
8.3.1	Genesis of the TTP-Ligand Family 168
8.3.2	Ni-Catalyzed Isomerization and Hydrocyanation with TTP-Type Phosphonite Ligands 170
8.3.3	Ni-Catalyzed Hydrocyanation Involving TTP-Type Phosphine Ligands <i>171</i>
8.3.4	Applications and Mechanistic Studies of TTP-Type Phosphine Ligands in Ni-Catalyzed 2M3BN Isomerization 174 Acknowledgments 179 References 179
9	Strongly Electron Donating Tridentate N-Heterocyclic Biscarbene Ligands for Rhodium and Iridium Catalysts 183 Doris Kunz and Eva Jürgens
9.1	Introduction 183
9.2	Ligand Systems 184
9.3	Synthesis and Reactivity of the Complexes 186
9.3.1	Synthesis of M(I) Complexes 186
9.3.2	Synthesis of M(III) Complexes 190
9.4	Catalytic Activities of the Rh Complexes 194
9.5	Catalytic Activities of the Ir Complexes 200
9.6	Discussion 202
9.7	Summary, Conclusion, and Outlook 203 References 204

Contents IX

10	NHCP Ligands for Catalysis 207 Peter Hofmann and Marcel Brill
10.1	Introduction 207
10.1	Recent Advances in Catalysis with NHCP Ligands 208
10.2	Cross-Counling Catalysis and Related Reactions 208
10.2.1	Miscellaneous Reactions 214
10.2.2	Recent Advances in Asymmetric Catalysis with Chiral NHCP
10.5	Ligands 216
10.4	Recent Advances in NHCP Chemistry Featuring Bulky
10.1	Flectron-Rich Small-Rite-Angle Ligands 221
10 4 1	Ligand Synthesis of N-Phosphino- and N-Phosphinomethyl
10.1.1	NHC 222
10 4 2	NICS 222 N-Phosphino-NHC Transition-Metal Complexes 224
10.4.2	N-Phosphino-Wite Hansiton-Weta Complexes 227
10.4.5	References 229
Part III	Catalysts in Synthesis 235 Günter Helmchen
11	Ir-Catalyzed Asymmetric Allylic Substitution Reactions – Fundamentals and Applications in Natural Products Synthesis 239 Günter Helmchen
11.1	Introduction 239
11.2	Background on Reaction Mechanism 240
11.3	Dibenzocyclooctatetraene (dbcot) as Ancillary Ligand 242
11.4	Applications in Organic Synthesis 244
11.4.1	Allylic Substitution in Combination with Ring Closing
	Metathesis 245
11.4.2	Domino-Hydroformylation – Cyclization
	(Hydroaminomethylation) 247
11.4.3	The Allylic Substitution in Combination with the Suzuki–Miyaura
	Reaction 248
11.4.4	Reactions of Enines Derived from Allylic Substitution Products 250
11.5	Conclusions 250
	Acknowledgments 251
	References 251
12	Sequential Catalysis Involving Metal-Catalyzed Cycloisomerizations
	and Cyclizations 255
10.1	Thomas J. J. Müller
12.1	Introduction 255
12.2	Sequences Initiated by Cycloisomerizations 256
12.2.1	Sequentially Pd-Catalyzed Sequences Initiated by Cycloisomerizations 256

X Contents

12.2.2	Sequentially Rh-Catalyzed Sequences Initiated by Cycloisomerizations 259
12.3	Sequences Initiated by Ring-Closing Olefin Metathesis 262
12.3.1	Ring-Closing Metathesis – Isomerization Sequences 263
12.3.1	Ring-Closing Metathesis — Oxidation Sequences 267
12.3.2 12 A	Sequences Initiated by Alkynylation and Carbonalladative
12.7	Insertions 268
12.5	Sequences Intercepted by Cyclizations 271
12.6	Conclusion 276
	Acknowledgment 276
	Abbreviations 276
	References 277
10	C. N. Counting Descriptions in Catalutic One Dat Suptheses Using
15	Melocular Crown 4 Catabusta 2021
	wolecular Group 4 Catalysis 201
10.1	Luiz H. Gade and Solverg A. Scholl
13.1	Introduction 281
13.2	Group 4 Metal Catalysts for the Hydroamination and
	Hydrohydrazination of $C-C$ Multiple Bonds as well as Complex
	Reaction Sequences Based Thereon 281
13.3	Case Histories 283
13.3.1	Highly Active Titanium Catalysts for the Hydrohydrazination of
10.0.0	Terminal Alkynes and Aminoguanylation of Carbodiimides 286
13.3.2	A Zirconium-Catalyzed Non-Fischer-Type Pathway to Indoles 287
	References 294
14	Sequential Catalysis for the Stereoselective Synthesis of Complex
	Polyketides 299
	Thomas Debnar and Dirk Menche
14.1	Complex Polyketides 299
14.2	Domino Nucleophilic Addition – Tsuji – Trost Reaction 301
14.2.1	Concise Synthesis of Tetrahydropyrans by a Tandem
	oxa-Michael–Tsuji–Trost Reaction 301
14.2.2	Concise Synthesis of Acetal-Protected 1,3-syn-Diols by a Tandem
	Hemiacetal/Tsuji–Trost Reaction 304
14.2.3	General Concept and Further Applications for Diamine and
	Aminoalcohol Synthesis 306
14.3	Sequential Diyne Cyclization and Regioselective Opening of
	Zirconacyclopentadienes 308
14.4	Conclusion and Perspectives 311
	References 312

Contents XI

15	Modular Assembly of Chiral Catalysts with Polydentate
	Stereodirecting Ligands 313
	Lutz H. Gade
15.1	Introduction 313
15.2	A Modular Synthesis of C_3 - and C_1 -Chiral
	1,1,1-Tris(oxazolyl)ethanes ("Trisox") 314
15.2.1	C_3 -Chirality in Polymerization Catalysis with Rare-Earth Complexes 316
15.2.2	Trisox as a Bidentate Ligand: Chiral Trisoxazolines in Copper(II) Lewis Acid Catalysis and Palladium-Catalyzed Asymmetric Allylic Substitutions <i>318</i>
15.3	The <i>Boxmi</i> Pincer System: a Highly Efficient Modular Stereodirecting Ligand for a Broad Range of Catalytic Reactions 322
15.4	Bidentate N-Heterocyclic Carbene Ligands Incorporating Oxazoline
15.5	New Modular Di- and Tridentate Phospholane Ligands 332
15.5.1	Cyclohydroaminations of y-Allenyl Sulfonamides with Mono Bis
10.0.1	and Trisphospholane Gold(I) Catalysts 335
	Kelerences 337
Part IV	Structures and Mechanisms in Biological Systems 343 Andres Jäschke
16	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347
16	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 Ilme Schlichting
16 16.1	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 Ilme Schlichting Introduction 347
16 16.1 16.2	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 Ilme Schlichting Introduction 347 Cytochrome P450 Enzymes 348
16.1 16.2 16.2.1	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 <i>Ilme Schlichting</i> Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450 _{cam} at High Structural Resolution 348
16.1 16.2 16.2.1 16.2.2	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 <i>Ilme Schlichting</i> Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450 _{cam} at High Structural Resolution 348 Chloroperoxidase Compound 350
16.1 16.2 16.2.1 16.2.2 16.3	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 <i>Ilme Schlichting</i> Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450 _{cam} at High Structural Resolution 348 Chloroperoxidase Compound 350 Photoelectrons – Friend and Foe 353
16.1 16.2 16.2.1 16.2.2 16.3 16.4	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 <i>Ilme Schlichting</i> Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450 _{cam} at High Structural Resolution 348 Chloroperoxidase Compound 350 Photoelectrons – Friend and Foe 353 X-ray Free-Electron Lasers 354
16.1 16.2 16.2.1 16.2.2 16.3 16.4	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 <i>Ilme Schlichting</i> Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450 _{cam} at High Structural Resolution 348 Chloroperoxidase Compound 350 Photoelectrons – Friend and Foe 353 X-ray Free-Electron Lasers 354 References 355
16.1 16.2 16.2.1 16.2.2 16.3 16.4	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 Ilme Schlichting Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450 _{cam} at High Structural Resolution 348 Chloroperoxidase Compound 350 Photoelectrons – Friend and Foe 353 X-ray Free-Electron Lasers 354 References 355
 16.1 16.2 16.2.1 16.2.2 16.3 16.4 	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 <i>Ilme Schlichting</i> Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450 _{cam} at High Structural Resolution 348 Chloroperoxidase Compound 350 Photoelectrons – Friend and Foe 353 X-ray Free-Electron Lasers 354 References 355 The Catalytic Strategy of P–O Bond-Cleaving Enzymes: Comparing
 16.1 16.2 16.2.1 16.2.2 16.3 16.4 	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 Ilme Schlichting Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450 _{cam} at High Structural Resolution 348 Chloroperoxidase Compound 350 Photoelectrons – Friend and Foe 353 X-ray Free-Electron Lasers 354 References 355 The Catalytic Strategy of P–O Bond-Cleaving Enzymes: Comparing EcoRV and Myosin 359
 16.1 16.2 16.2.1 16.2.2 16.3 16.4 	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 Ilme Schlichting Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450 _{cam} at High Structural Resolution 348 Chloroperoxidase Compound 350 Photoelectrons – Friend and Foe 353 X-ray Free-Electron Lasers 354 References 355 The Catalytic Strategy of P–O Bond-Cleaving Enzymes: Comparing EcoRV and Myosin 359 Farooq Ahmad Kiani and Stefan Fischer
 16.1 16.2 16.2.1 16.2.2 16.3 16.4 17 17.1 17.1 	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 Ilme Schlichting Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450 _{cam} at High Structural Resolution 348 Chloroperoxidase Compound 350 Photoelectrons – Friend and Foe 353 X-ray Free-Electron Lasers 354 References 355 The Catalytic Strategy of P–O Bond-Cleaving Enzymes: Comparing EcoRV and Myosin 359 Farooq Ahmad Kiani and Stefan Fischer Introduction 359
 16.1 16.2 16.2.1 16.2.2 16.3 16.4 17 17.1 17.1.1 17.1.1 17.1.1 	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 Ilme Schlichting Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450 _{cam} at High Structural Resolution 348 Chloroperoxidase Compound 350 Photoelectrons – Friend and Foe 353 X-ray Free-Electron Lasers 354 References 355 The Catalytic Strategy of P–O Bond-Cleaving Enzymes: Comparing EcoRV and Myosin 359 Farooq Ahmad Kiani and Stefan Fischer Introduction 359 How Do Enzymes Achieve Catalysis? 359
 16.1 16.2 16.2.1 16.2.2 16.3 16.4 17 17.1 17.1.1 17.1.2 17.1.2 	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 Ilme Schlichting Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450 _{cam} at High Structural Resolution 348 Chloroperoxidase Compound 350 Photoelectrons – Friend and Foe 353 X-ray Free-Electron Lasers 354 References 355 The Catalytic Strategy of P–O Bond-Cleaving Enzymes: Comparing EcoRV and Myosin 359 Farooq Ahmad Kiani and Stefan Fischer Introduction 359 How Do Enzymes Achieve Catalysis? 359 Computational Investigation of Enzymatic Mechanisms 361
 16.1 16.2 16.2.1 16.2.2 16.3 16.4 17 17.1 17.1.1 17.1.2 17.1.3 17.1.3 	Beating and Employing X-Ray-Induced Radiation Damage in StructuralStudies of Hemoproteins347Ilme SchlichtingIntroduction1ht roduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P–O Bond-Cleaving Enzymes: ComparingEcoRV and Myosin359Farooq Ahmad Kiani and Stefan FischerIntroduction359How Do Enzymes Achieve Catalysis?359Computational Investigation of Enzymatic Mechanisms361Enzymes that Catalyze Reactions Involving Phosphate362
 16.1 16.2 16.2.1 16.2.2 16.3 16.4 17 17.1 17.1.1 17.1.2 17.1.3 17.1.4 	Beating and Employing X-Ray-Induced Radiation Damage in StructuralStudies of Hemoproteins347Ilme SchlichtingIntroductionIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P–O Bond-Cleaving Enzymes: ComparingEcoRV and Myosin359Farooq Ahmad Kiani and Stefan FischerIntroduction359How Do Enzymes Achieve Catalysis?359Computational Investigation of Enzymatic Mechanisms361Enzymes that Catalyze Reactions Involving Phosphate362Endonuclease Enzymes363
 16.1 16.2 16.2.1 16.2.2 16.3 16.4 17 17.1 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.1.6 	 Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347 Ilme Schlichting Introduction 347 Cytochrome P450 Enzymes 348 The Reaction Cycle of P450_{cam} at High Structural Resolution 348 Chloroperoxidase Compound 350 Photoelectrons – Friend and Foe 353 X-ray Free-Electron Lasers 354 References 355 The Catalytic Strategy of P–O Bond-Cleaving Enzymes: Comparing EcoRV and Myosin 359 Farooq Ahmad Kiani and Stefan Fischer Introduction 359 How Do Enzymes Achieve Catalysis? 359 Computational Investigation of Enzymatic Mechanisms 361 Enzymes that Catalyze Reactions Involving Phosphate 362 Endonuclease Enzymes 363 NTPase Enzymes 363
 16.1 16.2 16.2.1 16.2.2 16.3 16.4 17 17.1 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.1.6 	Beating and Employing X-Ray-Induced Radiation Damage in StructuralStudies of Hemoproteins347Ilme SchlichtingIntroductionIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P-O Bond-Cleaving Enzymes: ComparingEcoRV and Myosin359Farooq Ahmad Kiani and Stefan FischerIntroduction359How Do Enzymes Achieve Catalysis?359Computational Investigation of Enzymatic Mechanisms361Enzymes that Catalyze Reactions Involving Phosphate362Endonuclease Enzymes363NTPase Enzymes363Participation363Participation363

KII	Contents

17.3	Conclusions 369
17.4	Methods 373
	References 373
18	Selective Hybrid Catalysts Based on Nucleic Acids 377
	Andres Jäschke
18.1	Introduction 377
18.2	Hybrid Catalysis 378
18.3	DNA-Based Hybrid Catalysis 378
18.4	Organometallic Chemistry with Nucleic Acids 380
18.5	Combinatorial Selections of Catalysts from Nucleic Acid Libraries 381
18.6	Site-Specific Internal Functionalization of Nucleic Acids with
	Transition-Metal Ligands and Other Moieties 382
18.7	Metallation of DNA-Ligand Conjugates 385
18.8	Site-Specific Terminal Functionalization of Nucleic Acids with
	Substrates 385
18.9	Allylic Aminations by DNA-Based Hybrid Catalysts 387
18.10	Summary and Outlook 389
	References 390
Part V	Studies of Immobilized Catalysts – Introduction 393
Part V	Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin
Part V V.1	Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin Introduction 393
Part V V.1 V.2	Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin Introduction 393 Covalent Immobilization of Catalysts 394
Part V V.1 V.2 V.3	Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin Introduction 393 Covalent Immobilization of Catalysts 394 Support Materials 395
Part V V.1 V.2 V.3 V.4	Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin Introduction 393 Covalent Immobilization of Catalysts 394 Support Materials 395 Examples of Immobilized Catalyst Systems 397
Part V V.1 V.2 V.3 V.4	Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin Introduction 393 Covalent Immobilization of Catalysts 394 Support Materials 395 Examples of Immobilized Catalyst Systems 397
Part V V.1 V.2 V.3 V.4 19	Studies of Immobilized Catalysts - Introduction 393Oliver Trapp and Johannes TroendlinIntroduction 393Covalent Immobilization of Catalysts 394Support Materials 395Examples of Immobilized Catalyst Systems 397Dendrimers as Platforms for Stereoselective Catalysis 407Lutz H. Gade
Part V V.1 V.2 V.3 V.4 19	Studies of Immobilized Catalysts - Introduction 393Oliver Trapp and Johannes TroendlinIntroduction 393Covalent Immobilization of Catalysts 394Support Materials 395Examples of Immobilized Catalyst Systems 397Dendrimers as Platforms for Stereoselective Catalysis 407Lutz H. GadeIntroduction 407
Part V V.1 V.2 V.3 V.4 19 19.1	Studies of Immobilized Catalysts – Introduction 393Oliver Trapp and Johannes TroendlinIntroduction 393Covalent Immobilization of Catalysts 394Support Materials 395Examples of Immobilized Catalyst Systems 397Dendrimers as Platforms for Stereoselective Catalysis 407Lutz H. GadeIntroduction 407Eixation of Chiral Catalysts on Dendrimers and Hyperbranched
Part V V.1 V.2 V.3 V.4 19 19.1 19.2	Studies of Immobilized Catalysts - Introduction 393Oliver Trapp and Johannes TroendlinIntroduction 393Covalent Immobilization of Catalysts 394Support Materials 395Examples of Immobilized Catalyst Systems 397Dendrimers as Platforms for Stereoselective Catalysis 407Lutz H. GadeIntroduction 407Fixation of Chiral Catalysts on Dendrimers and HyperbranchedPolymers 407
Part V V.1 V.2 V.3 V.4 19 19.1 19.2 19.3	Studies of Immobilized Catalysts - Introduction 393Oliver Trapp and Johannes TroendlinIntroduction 393Covalent Immobilization of Catalysts 394Support Materials 395Examples of Immobilized Catalyst Systems 397Dendrimers as Platforms for Stereoselective Catalysis 407Lutz H. GadeIntroduction 407Fixation of Chiral Catalysts on Dendrimers and HyperbranchedPolymers 407Case Histories 408
Part V V.1 V.2 V.3 V.4 19 19.1 19.2 19.3 19.3.1	Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin Introduction 393 Covalent Immobilization of Catalysts 394 Support Materials 395 Examples of Immobilized Catalyst Systems 397 Dendrimers as Platforms for Stereoselective Catalysis 407 Lutz H. Gade Introduction 407 Fixation of Chiral Catalysts on Dendrimers and Hyperbranched Polymers 407 Case Histories 408 "Dendritic Effects" Observed for Immobilized Pyrphos-Based
Part V V.1 V.2 V.3 V.4 19 19.1 19.2 19.3 19.3.1	Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin Introduction 393 Covalent Immobilization of Catalysts 394 Support Materials 395 Examples of Immobilized Catalyst Systems 397 Dendrimers as Platforms for Stereoselective Catalysis 407 Lutz H. Gade Introduction 407 Fixation of Chiral Catalysts on Dendrimers and Hyperbranched Polymers 407 Case Histories 408 "Dendritic Effects" Observed for Immobilized Pyrphos-Based Hydrogenation Catalysts 409
Part V V.1 V.2 V.3 V.4 19 19.1 19.2 19.3 19.3.1 19.3.2	Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin Introduction 393 Covalent Immobilization of Catalysts 394 Support Materials 395 Examples of Immobilized Catalyst Systems 397 Dendrimers as Platforms for Stereoselective Catalysis 407 Lutz H. Gade Introduction 407 Fixation of Chiral Catalysts on Dendrimers and Hyperbranched Polymers 407 Case Histories 408 "Dendritic Effects" Observed for Immobilized Pyrphos-Based Hydrogenation Catalysts 409 BINAP–Copper(I) Hydrosilylation with Functionalized PPI and
Part V V.1 V.2 V.3 V.4 19 19.1 19.2 19.3 19.3.1 19.3.2	 Studies of Immobilized Catalysts - Introduction 393 Oliver Trapp and Johannes Troendlin Introduction 393 Covalent Immobilization of Catalysts 394 Support Materials 395 Examples of Immobilized Catalyst Systems 397 Dendrimers as Platforms for Stereoselective Catalysis 407 Lutz H. Gade Introduction 407 Fixation of Chiral Catalysts on Dendrimers and Hyperbranched Polymers 407 Case Histories 408 "Dendritic Effects" Observed for Immobilized Pyrphos-Based Hydrogenation Catalysts 409 BINAP - Copper(I) Hydrosilylation with Functionalized PPI and PAMAM Dendrimers as well as Hyperbranched Polymers 414
Part V V.1 V.2 V.3 V.4 19 19.1 19.2 19.3 19.3.1 19.3.2 19.3.3	 Studies of Immobilized Catalysts - Introduction 393 Oliver Trapp and Johannes Troendlin Introduction 393 Covalent Immobilization of Catalysts 394 Support Materials 395 Examples of Immobilized Catalyst Systems 397 Dendrimers as Platforms for Stereoselective Catalysis 407 Lutz H. Gade Introduction 407 Fixation of Chiral Catalysts on Dendrimers and Hyperbranched Polymers 407 Case Histories 408 "Dendritic Effects" Observed for Immobilized Pyrphos-Based Hydrogenation Catalysts 409 BINAP - Copper(I) Hydrosilylation with Functionalized PPI and PAMAM Dendrimers as well as Hyperbranched Polymers 414 "Catalysis in a Tea Bag" with Dendrimer-Immobilized Bis- and
Part V V.1 V.2 V.3 V.4 19 19.1 19.2 19.3 19.3.1 19.3.2 19.3.3	 Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin Introduction 393 Covalent Immobilization of Catalysts 394 Support Materials 395 Examples of Immobilized Catalyst Systems 397 Dendrimers as Platforms for Stereoselective Catalysis 407 Lutz H. Gade Introduction 407 Fixation of Chiral Catalysts on Dendrimers and Hyperbranched Polymers 407 Case Histories 408 "Dendritic Effects" Observed for Immobilized Pyrphos-Based Hydrogenation Catalysts 409 BINAP – Copper(I) Hydrosilylation with Functionalized PPI and PAMAM Dendrimers as well as Hyperbranched Polymers 414 "Catalysis in a Tea Bag" with Dendrimer-Immobilized Bis- and Trisoxazoline Copper Catalysts 416
Part V V.1 V.2 V.3 V.4 19 19.1 19.2 19.3 19.3.1 19.3.2 19.3.3 19.3.3	 Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin Introduction 393 Covalent Immobilization of Catalysts 394 Support Materials 395 Examples of Immobilized Catalyst Systems 397 Dendrimers as Platforms for Stereoselective Catalysis 407 Lutz H. Gade Introduction 407 Fixation of Chiral Catalysts on Dendrimers and Hyperbranched Polymers 407 Case Histories 408 "Dendritic Effects" Observed for Immobilized Pyrphos-Based Hydrogenation Catalysts 409 BINAP – Copper(I) Hydrosilylation with Functionalized PPI and PAMAM Dendrimers as well as Hyperbranched Polymers 414 "Catalysis in a Tea Bag" with Dendrimer-Immobilized Bis- and Trisoxazoline Copper Catalysts 416 Conclusion and Outlook 419

хи

20	Solid Phases as Protective Environments for Biomimetic
	Catalysts 423
	Katja Heinze
20.1	Introduction 423
20.2	Site Isolation Experienced by Matrix-Bound Transition-Metal
	Complexes 424
20.3	Immobilized Structural and Spectroscopic Active Site
	Models 428
20.4	Elementary Reaction Steps Performed by Solid-Phase Supported
	Complexes 437
20.5	Immobilized Functional Active Site Models 437
20.6	Final Remarks 446
	Abbreviations 447
	References 448
21	High-Throughput Screening of Catalysts and Reactions 453
	Oliver Trapp
21.1	Introduction 453
21.2	Technical Requirements for On-Column Reaction
	Chromatography 457
21.2.1	Experimental Setups of On-Column Reaction Chromatography 457
21.2.2	Preparation of Capillary Reactors 459
21.2.3	High-Throughput Approach 459
21.3	Determination of Kinetic Data 460
21.3.1	Classical Reaction Kinetics for On-Column Reaction
	Chromatographic Experiments with Reaction and Consecutive
	Separation 460
21.3.2	Evaluation of Conversion Profiles Obtained by On-Column Reaction
	Chromatography 460
21.4	Determination of Activation Parameters 464
21.5	On-Column Reaction Chromatography for the Investigation of
	Catalytic Reactions 465
21.5.1	Hydrogenations over Noble Metal Nanoparticles 465
21.5.2	Ring-Closing Metathesis 468
21.5.3	Gosteli–Claisen Rearrangement 469
21.5.4	Combinatorial High-Throughput Screening: Catalyst by the
	Meter 473
21.6	Outlook 476
	References 476

Index 479

List of Contributors

Marcel Brill

Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut (OCI) Im Neuenheimer Feld 270 69120 Heidelberg Germany

Dominik Brox

Ruprecht-Karls-Universität Heidelberg Physikalisch-Chemisches Institut (PCI) Im Neuenheimer Feld 229 69120 Heidelberg Germany

Peter Comba

Ruprecht-Karls-Universität Heidelberg Anorganisch-Chemisches Institut (ACI) Im Neuenheimer Feld 270 69120 Heidelberg Germany

Thomas Debnar

Rheinische Friedrich-Wilhelms-University of Bonn Department of Organic Chemistry and Biochemistry Gerhard-Domagk-Street 1 53121 Bonn Germany

Markus Enders

Ruprecht-Karls Universität Heidelberg Anorganisch-Chemisches Institut (ACI) Im Neuenheimer Feld 270 69120 Heidelberg Germany

Stefan Fischer

Ruprecht-Karls University of Heidelberg Interdisciplinary Center for Scientific Computing (IWR) Computational Biochemistry Im Neuenheimerfeld-368 69120 Heidelberg Germany xv

XVI List of Contributors

Lutz H. Gade

Ruprecht-Karls-Universität Heidelberg Anorganisch-Chemisches Institut (ACI) Im Neuenheimer Feld 270 69120 Heidelberg Germany

A. Stephen K. Hashmi

Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut (OCI) Im Neuenheimer Feld 270 69120 Heidelberg Germany

Achim Häußermann

Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut (OCI) Im Neuenheimer Feld 270 D-69120 Heidelberg Germany

Katja Heinze

Johannes Gutenberg-University Institute of Inorganic and Analytical Chemistry Duesbergweg 10-14 D-55128 Mainz Germany

Günter Helmchen

Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut (OCI) Im Neuenheimer Feld 270 69120 Heidelberg Germany

Dirk-Peter Herten

Ruprecht-Karls-Universität Heidelberg Physikalisch-Chemisches Institut (PCI) Im Neuenheimer Feld 229 69120 Heidelberg Germany

Hans-Jörg Himmel

Ruprecht-Karls-Universität Heidelberg Anorganisch-Chemisches Institut (ACI) Im Neuenheimer Feld 270 D-69120 Heidelberg Germany

Peter Hofmann

Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut (OCI) Im Neuenheimer Feld 270 69120 Heidelberg Germany

Olaf Hübner

Ruprecht-Karls-Universität Heidelberg Anorganisch-Chemisches Institut (ACI) Im Neuenheimer Feld 270 D-69120 Heidelberg Germany

Andres Jäschke

Ruprecht-Karls-Universität Heidelberg Institut für Pharmazie und Molekulare Biotechnologie (IPMB) Im Neuenheimer Feld 364 69120 Heidelberg Germany

Gregor Jung

Universität des Saarlandes Biophysikalische Chemie Campus B2 2 Postfach 15 11 50 66041 Saarbrücken Germany

Eva Jürgens

Eberhard Karls Universität Tübingen Institut für Anorganische Chemie Auf der Morgenstelle 18 72076 Tübingen Germany

Farooq Ahmad Kiani

Ruprecht-Karls University of Heidelberg Interdisciplinary Center for Scientific Computing (IWR) Computational Biochemistry Im Neuenheimerfeld-368 69120 Heidelberg Germany

Günter Klatt

Ruprecht-Karls-Universität Heidelberg Theoretische Chemie Physikalisch-Chemisches Institut (PCI) Im Neuenheimer Feld 229 69120 Heidelberg Germany

Horst Köppel

Ruprecht-Karls-Universität Heidelberg Theoretische Chemie Physikalisch-Chemisches Institut (PCI) Im Neuenheimer Feld 229 69120 Heidelberg Germany

Roland Krämer

Ruprecht-Karls-Universität Heidelberg Physikalisch-Chemisches Institut (PCI) Im Neuenheimer Feld 229 69120 Heidelberg Germany

Doris Kunz

Eberhard Karls Universität Tübingen Institut für Anorganische Chemie Auf der Morgenstelle 18 72076 Tübingen Germany

Dirk Menche

Rheinische Friedrich-Wilhelms-University of Bonn Department of Organic Chemistry and Biochemistry Gerhard-Domagk-Street 1 53121 Bonn Germany

Thomas J. J. Müller

Heinrich-Heine-Universität Düsseldorf Institut für Organische Chemie und Makromolekulare Chemie Universitätsstr. 1 40225 Düsseldorf Germany

XVIII List of Contributors

Arina Rybina

Ruprecht-Karls-Universität Heidelberg Physikalisch-Chemisches Institut (PCI) Im Neuenheimer Feld 229 69120 Heidelberg Germany

Ilme Schlichting

Max-Planck-Institut für Medizinische Forschung Jahnstraße 29 69120 Heidelberg Germany

Solveig A. Scholl

Ruprecht-Karls-Universität Heidelberg Anorganisch-Chemisches Institut (ACI) Im Neuenheimer Feld 270 69120 Heidelberg Germany

Bernd F. Straub

Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut (OCI) Im Neuenheimer Feld 270 D-69120 Heidelberg Germany

Michael E. Tauchert

Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut (OCI) Im Neuenheimer Feld 270 D-69120 Heidelberg Germany

Oliver Trapp

Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut (OCI) Im Neuenheimer Feld 270 69120 Heidelberg Germany

Johannes Troendlin

Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut (OCI) Im Neuenheimer Feld 270 69120 Heidelberg Germany

Marcel Wirtz

Universität des Saarlandes Biophysikalische Chemie Campus B2 2 Postfach 15 11 50 66041 Saarbrücken Germany

Foreword

1 The Magic Force That Became a Science

In Heidelberg Castle, among many wonders, one finds the German Pharmacy Museum (*Deutsches Apotheken-Museum*). As one wanders through it, one comes to the object illustrated below (Figure 1). This is Döbereiner's lighter or igniter, *Döbereinersches Feuerzeug*. For about 40 years in the nineteenth century, it was an object of industrial and middle class utility. Chemical light years behind the wonders of catalysis described in this book, it was, nevertheless, in its time the first example of a practical designed application of catalysis. I would like to tell you its story; as I do I will call it the Feuerzeug, because the German word is more poetic than its English equivalent.

The story I will tell you is of a catalyst for one of the simplest chemical reactions, the combustion of hydrogen: $2H_2 + O_2 \rightarrow 2H_2O$. It is also a story of chemistry in culture, of a Russian–German geopolitical tie that, in the 1820s, helped a Jena professor to invent a new way of lighting fires using, of all metals, platinum. So, this is a story of fire too. And one of modern surface chemistry.

2 It Should Go Off, Shouldn't It?

Is there a problem with the above reaction, hydrogen burning? The hydrogenfilled balloon set off by a taper is the chemistry lecturer's favorite demonstration. You can vary the effect by adjusting the mixture of hydrogen and oxygen in the balloon – pure hydrogen gas (H_2) will give you a respectable pop and a neat flame, just a little H_2 will simply not go off. The most bang for the buck comes from a mixture of hydrogen and oxygen gas (O_2). I remember waking up sleeping dogs in my class, not to mention students, with this demonstration.

The reaction is highly exothermic: the change in free energy for all gaseous components under standard conditions is a very respectable 242 kJ per mole of H_2 . And all it takes is a lighted taper or match to set it off.

XIX

XX Foreword

Figure 1 Döbereiner's Feuerzeug, from the German Pharmacy Museum in Heidelberg. This one is from around 1840. (Reproduced with permission of the Deutschen Apotheken-Museum Heidelberg.)

"... a match to set it off." That's just the point: the radicals in the flame and the heat of the match initiate the reaction, after which it indeed proceeds, posthaste. The mixture of hydrogen and oxygen, in the absence of that match or of a catalyst, would just sit there—the activation energy for the uncatalyzed reaction is very high.

Hydrogen was first well identified by Cavendish in 1766. Its burning to water and the parallel and more difficult decomposition of water to H_2 and O_2 were cornerstones of Lavoisier's chemical revolution. The reaction was just as reluctant to go in the 1780s as it is today. There were no safety matches until 1855. So Lavoisier set it off with an electric spark. And within 50 years, a German chemist, Johann Wolfgang Döbereiner, used the same H_2 and O_2 reaction, now catalyzed, as a ready source of fire, replacing other sources of fire in home and laboratory.

3 Incendiary Acts

How were fires lit before? To begin with, from other fires, of course. Two further techniques evolved around the world – the first generated heat by rubbing wood rapidly against wood, the second created sparks by striking hard stones against

stone or metal. In both cases, the heat or spark had to be "caught" by a flammable material nearby. Tinder could be mostly anything organic, but certain dried mush-rooms were particularly valued. The ingenuity in the construction of bows for rubbing wood sticks or the compact steel-silex-tinder kits of seventeenth-century soldiers is remarkable.

In the seventeenth and eighteenth centuries, as optics evolved, the burning glass or mirror became an important fire source, albeit a fair weather one. Ehrenfried Walther von Tschirnhaus (1651 – 1708), a natural philosopher and polymath with a practical bent, built the best of these, capable of reaching the highest temperatures then possible on earth. Sparks also came from the newly discovered electricity. Still another source was invented in 1770 and has a fascinating connection to chemistry and physics. This is the pneumatic lighter, in which the heat generated in a rapidly compressed gas is sufficient to inflame tinder.

4 Döbereiner's Feuerzeug

Johann Wolfgang Döbereiner was born in Hof an der Saale in 1780. His beginnings were simple. He was largely self-educated, the son of a coachman. But Döbereiner's talents were recognized, and in 1810 he was appointed to a professorship in Jena. This town was in the Grand Duchy of Saxe-Weimar-Eisenach, a princely state under the administration at just that time of another Johann Wolfgang, namely Goethe. Goethe and Döbereiner had an extensive correspondence, *inter alia* dealing with the tarnishing of silver spoons in red cabbage and the composition of Madame de Pompadour's toothpaste. Goethe went to Jena to study analytical chemistry with Döbereiner [1]¹⁾. A contemporary analog would be if the present French Prime Minister Manuel Valls took off a few weeks to learn about supramolecular chemistry with Jean-Marie Lehn at the University of Strasbourg. It would be good for Valls, but ...

Döbereiner did much interesting chemistry. For instance, he was responsible for noting an important regularity in the chemistry of the elements, that of triads, one of the forerunners of Mendeleev's periodic table. And Döbereiner observed in 1823 that when platinum metal (in a finely dispersed form called platinum (Pt) sponge) was exposed to hydrogen, much heat was generated. The platinum in fact glowed red hot to white hot, and if more hydrogen were supplied, the hydrogen burst into a hot but nearly colorless flame.

Döbereiner writes to his Prime Minister Goethe, as follows:

Ich erlaube mir, Eurer Exzellenz von einer Entdeckung Nachricht zu geben, welche [...] im hohen Maße wichtig erscheint. Ich finde [...], dass das rein metallische staubfeine Platin die höchst merkwürdige Eigenschaft hat, das Wasserstoffgas durch bloße Berührung [...] zu bestimmen, dass es sich mit

1) I thank Dr. Linke for introducing me to the Döbereiner story.

Sauerstoffgas zu Wasser verbindet, wobei eine bis zum Entglühen des Platins gesteigerte Summe von Wärme erregt wird. [2, 3]

[I allow myself, your Excellency, to give you news of a discovery which appears to most important. I found that finely divided metallic platinum has the most remarkable property, to induce hydrogen to combine with oxygen to give water, on simple contact. In the process heat is released, sufficient to make the platinum glow.]

And Berzelius, in his Annual Reports on the Progress of Chemistry, writes the year after:

From any point of view the most important, and, if I may use the expression, the most brilliant discovery of last year is, without doubt, that fine platinum powder has the ability to unite oxygen and hydrogen even at low temperatures.

Within days, Döbereiner turned this beautiful observation into a practical igniter. Figure 2 shows the design. One has a bottle that can be tightly sealed. Inside a glass cylinder in that bottle hangs a piece of zinc (d). the bottle is filled with sulfuric acid (typically 25% sulfuric acid (H₂SO₄)). There is a controlled outlet from the glass bottle, the stopcock (e). The zinc (Zn) reacts with sulfuric acid, generating hydrogen gas *in situ*:

 $Zn + H_2SO_4 \rightarrow Zn^{2+} + SO_4^{2-} + H_2$

When the stopcock is opened, the H_2 is directed through a thin tube (*f*) onto a bit of platinum sponge (*g*). A flame lights, essentially instantaneously. When the stopcock is closed, the flame goes out. More H_2 is generated, but comes to a stop as gas pressure build.

5

Geopolitics and Science

Döbereiner continued his research with the catalytic properties of platinum. Actually Humphry Davy had discovered the phenomenon 6 years ago, heating a fine platinum wire above a coal gas flame. Davy compared copper, silver, gold, palladium, and iron in this effect, and found that only Pt and Pd initiated exothermic burning; he was thus the first to focus on selectivity, a matter of some importance in this book. Döbereiner actually made a supported catalyst (a mainstay of industrial catalysis and automotive catalytic converters today) by shaping small balls of potter's clay impregnated with platinum.

The word catalysis came from further north, from the authoritative pen of Jöns Jacob Berzelius in 1835. In his highly influential Annual Reports (translated into German and many other languages; but it is good to see a language besides English and German in chemistry ...), he wrote the following:

Figure 2 Schematic of an early Döbereiner lighter. (Adapted from Nordisk familjebok/ Uggleupplagan. Vol. 7. Egyptologi - Feinschmecker, p. 163–164, 1907. From Wikipedia.)

Jag skall derföre ... kalla den kroppars katalytiska kraft, sönderdelning genom denna kraft katalys, likasom vi med ordet analys beteckna åtskiljandet af kroppars beståndsdelar medelst den vanliga kemiska frändskapen. [emphasis in original] [4]

[I shall, therefore ... call it that body's catalytic force, the decomposition of other bodies by this force catalysis, just as we signify by the word analysis the separation of the constituents of bodies by the usual chemical affinities.]

Berzelius viewed catalysis as a special force, to some not that different from the heritage of the Philosopher's Stone [3]; it took 60 years and the great science and intuition of Wilhelm Ostwald to point us in another direction.

For his work, Döbereiner needed great supplies of the precious metal, and a geopolitical note is in order here: platinum originally came from Spanish colonial mines in the New World, and that is presumably Döbereiner's original source. Around 1824, major deposits were discovered in the Urals. How could Döbereiner, who was struggling desperately in his laboratory finances, get the precious white metal? Well, the Empress of Russia, Catherine the Great (1729–1796), was a German princess from the Duchy of Anhalt-Zerbst. There were close Russian–German ties throughout this period, and they continued until the World War I. In Döbereiner's principality, the wife of Carl Friedrich, the then heir

XXIV Foreword

to the Grand Duke, was Maria Pavlovna, the daughter of Czar Paul I of Russia. Platinum from the Urals came easily to Jena; he may have had a kilogram of it.

6 Chemistry in Culture

Döbereiner's lamp became a common way to light fires in industrial settings in the first half of the nineteenth century. Within 5 years of its discovery, 20,000 lamps were in use in Germany and England. It entered the middle-class home as well. (Nothing like this could happen today; imagine the horror of today's risk-avoiding society at the thought of filling a lamp with sulfuric acid!) And if a utilitarian technology is to be accepted into society, it must be culturally processed. What I mean is that it is clothed according to the prevalent esthetics of the time. In 1829, a Berlin manufacturer could offer " ... as a pleasant and useful Christmas present a lighting machine, outfitted with platinum, elegant, clean, and sturdily constructed, with Chinese and other decoration, insensitive to wetness and cold ... "

In time the safety match, the cerium frictional spark source (see Primo Levi's Ce chapter in his *Periodic Table*), the cigarette lighter and the gas stove electronic lighter put Döbereiner's Feuerzeug into the museum.

Look at the Pharmacy Museum Feuerzeug again. The image on the housing is more than a genre painting. Two young women appear to be playing a game: one watching and the other active. There is a basin with water (see the jug in front to replenish the water). And in the basin are two floating "boats," perhaps made of wood or paper. In each is a candle. The boats look circular, but their action will be more pronounced if they were not, or if a piece of the rim of one is cut out a bit. Try it yourself, please. The young women are doing a scientific experiment. And one which is fun too.

7 How Does Hydrogen Burn?

One hundred and seventy-two years after Döbereiner's discovery, in 1995, Laurens K. Verheij and Markus B. Hugenschmidt write:

In recent years many studies on the reaction between hydrogen and oxygen on metal surfaces have been reported. Although this reaction is expected to be one of the simplest oxidation reactions, rather complex phenomena are observed which make a determination of the reaction mechanism difficult. Even for the water formation reaction on Pt(111), the system which has been most widely studied, an understanding of the reaction process seems only just emerging [5].

Figure 3 Schematic of O_2 molecules and O atoms (gray) adsorbed on a platinum surface (left). The image generated by the scanning tunneling microscope reveals two shapes of oxygen molecules on the platinum surface (right). Molecules can

appear to form "clover-leaf" (B) or "pear-like" (F) shapes. In some places, one sees the molecules dissociated to adsorbed oxygen atoms (dark circles, marked "o"). (Photograph courtesy of Wilson Ho.)

In the next 20 years, understanding did emerge, as incomplete as it is. It came through the beautiful work of Gerhard Ertl [6] and of others [7]. The sequence of events is not simple, not easily revealed, despite the availability of tools unimaginable to either Döbereiner or Ostwald, such as scanning tunneling microscopy. I show a teaser, an image relevant to the very first steps of the reaction, when oxygen molecules impinge, as they must, on a platinum surface (Figure 3).

At low temperatures, way below room temperature, O_2 bonds to the surface first as a molecule and in several different ways. The clover-leaf pattern is for an O_2 lying across two Pt atoms. Do you know why one "sees" clover-leafs and not dumbbells? The pear-like features are likely O_2 molecules bound at an angle to the surface, one atom further up than the other. As one heats up the surface, the diatomic (O_2) ruptures into individual oxygen atoms, which sit bonded to triangles of platinums. At ambient temperatures, it is not likely that an O_2 coming onto the surface survives very long before it breaks apart. The hydrogen molecules break apart even more readily on the same surface.

And what happens after that? How do the chemisorbed H and O atoms find each other, form water? Good questions, the subject of current research. Something as simple a burning hydrogen is ... not simple.

8

Knowing without Seeing

The stories of the book before you are different from Döbereiner's, for they are, for the most part, tales of catalysis in solution, so-called homogeneous catalysis. This type of seeming magic is also old, even if we do not consider the many instances of catalysis that nature has wrought, and limit ourself to human–crafted interventions. So, in 1860, the aging Liebig found an aldehyde-catalyzed transformation of some utility from cyanogen to oxamide, shown below [8]:

On surfaces or in solution (and the distinction is being undermined everyday now by the catalysis on nanoparticles), modern catalysis operates within the framework of Wilhelm Ostwald's transformation of catalysis from magic to rate change (as often slowing down as enhancing, but that is another story). Here is how Ostwald put it:

Ein Katalysator ist jeder Stoff, der, ohne im Endprodukt einer chemischen Reaktion zu erscheinen, ihre Geschwindigkeit verändert [9] A catalyst is a substance that changes the rate of a chemical reaction without appearing as a product of it.

It took the next hundred years after Ostwald to shift the emphasis from the observation of a changed rate to the search for the partial establishment of the underlying mechanism of chemical reactions, both organic and inorganic. These mechanisms, incredibly rich in their variety, are a *Leitmotif* of the book before you. The tools for "seeing" in solution are not yet developed. And I like it so, for it leaves room for what has always been in my mind the strength of chemistry, its great intellectual achievement – the marshaling of chemical and physical fragmentary evidence into a knowing *without* seeing. People do know, putting together pieces from kinetics, and from signals from within. The latter detected by the lovely tools we have invented of spectroscopic attention to those signals, and in turn elicited by small electromagnetic perturbations. And now theory too. It is absolutely amazing how much we may know, without seeing *per se*. That we do that – understand without direct sight – I think should make sometimes arrogant scientists have. They also listen, create, and understand.

Roald Hoffmann

References

- Linke, D. (1981) ZeitschriftfiirChemie, 21, 309–319.
- Schiff, J. (1914) Briefwechsel zwischen Goethe und Johann Wolfgang Döbereiner (1810–1830), Hermann Böhlhaus, Weimar, p. 78.
- I was led to this quotation, and to much other information in this essay by the wonderful article of Ertl, E. and

Gloyna, T. (2003) Z. Phys. Chem., 217, 1207-1219.

 (a) Berzelius, J.J. (1835) Årsberättelsen om framsteg i fysik och kemi, Royal Swedish Academy of Sciences, Stockholm; (b) For an earlier use of the word by Libavius in 1597(!), see Lindström, B. and Pettersson, L.J. (2003) CATTECH, 7, 130–138.

- Verheij, L.K. and Hugenschmidt, M.B. (1995) Surf. Sci., 324, 185–201.
- Zambelli, T., Barth, J.V., Wintterlin, J., and Ertl, G. (1997) *Nature*, **390**, 495–497.
- Stipe, B.C., Rezaei, M.A., and Ho, W. (1997) J. Chem. Phys., 107, 6443-6447.
- (a) Von Liebig, J. (1860) Justus Liebigs Ann. Chem., 113, 246–247; (b) See also Dalko, P. (ed.) (2007) Enantioselective Organocatalysis: Reactions and Experimental Procedures, Wiley-VCH, Weinheim, Chapter 1, pp. 1–17.
- 9. Ostwald, W. (1902) Phys. Z., 3, 313-322.