
Basics and Clinical Applications of Drug Disposition in Special Populations

Edited by

Seth Kwabena Amponsah

Yashwant V. Pathak

Basics and Clinical Applications of Drug Disposition in Special Populations

Basics and Clinical Applications of Drug Disposition in Special Populations

Edited by

Seth Kwabena Amponsah University of Ghana Medical School Accra, Ghana

Yashwant V. Pathak USF Health Taneja College of Pharmacy Tampa, Florida, USA

Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.

Published by JohnWiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

The manufacturer's authorized representative according to the EU General Product Safety Regulation is Wiley-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany, e-mail: Product_Safety@wiley.com.

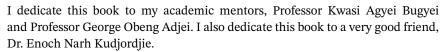
Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information aboutWiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data Applied for:


Hardback ISBN: 9781394251285

Cover Design: Wiley

Cover Image: Courtesy of Seth Kwabena Amponsah and Yashwant V. Pathak

Set in 9.5/12.5pt STIX Two Text by Straive, Pondicherry, India

Dedication

—Seth Kwabena Amponsah

This book is dedicated to the elders and people of ancient traditions and cultures who believe in working for humanity.

—Yashwant V. Pathak

Contents

About the Editors xxi

	List of Contributors xxiii
	Foreword xxix
	Preface xxxi
1	Pharmacokinetic Principles and Concepts: An Overview 1
	Seth K. Amponsah and Yahwant V. Pathak
1.1	Introduction 1
1.2	Pharmacokinetic Parameters 2
1.2.1	Absorption 2
1.2.2	Distribution 3
1.2.3	Metabolism 4
1.2.4	Excretion 5
1.3	Pharmacokinetic Models 5
1.4	Applications 6
1.5	Conclusion 7
	References 7
2	Model-Based Pharmacokinetic Approaches 11
_	Manish P. Patel, Kashyap M. Patel, Shakil Z. Vhora, Anuradha K. Gajjar,
	Jayvadan K. Patel, and Amitkumar K. Patel
2.1	Introduction 11
2.1.1	Importance of PK 12
2.1.2	-
2.2	Basics of Pharmacokinetics 14
2.2.1	Key Pharmacokinetic Parameters 14
2.2.1.1	•
2.2.1.2	•
2.2.1.3	•
2.2.1.4	Key Parameter 15

2.2.1.5	Metabolism 15
2.2.1.6	Key Parameter 15
2.2.1.7	Excretion 15
2.2.1.8	Key Parameter 15
2.2.2	Differences Between Traditional and Model-Based Pharmacokinetic
	Approaches 16
2.3	Pharmacokinetic (PK) Models 17
2.3.1	Introduction 17
2.3.2	Compartment Modeling 18
2.3.2.1	One-Compartment Model 21
2.3.2.2	Multi-Compartment Model 21
2.3.2.3	Two-Compartment Model 24
2.3.3	Population PK Model 25
2.3.4	Physiologically Based PK (PBPK) Model 26
2.4	Model Development and Validation 27
2.4.1	Data Requirements for Model Development 27
2.4.2	Data Requirements for Model Validation 29
2.4.3	Steps in Model Building (E.g., Model Selection and Parameter
	Estimation) 29
2.5	Applications of Model-Based Approaches 31
2.5.1	Dose Optimization 31
2.5.2	Predicting Drug Interactions 32
2.5.3	Drug Tailoring in Special Populations (E.g., Pediatrics, Geriatrics,
	and Renal Impairment) 33
2.5.4	Translational PK from Preclinical to Clinical Settings 34
2.6	Modeling in Special Populations 36
2.6.1	Challenges and Considerations 36
2.6.1.1	Challenges in PK Modeling 36
2.6.1.2	Considerations in PK Modeling 36
2.7	Software and Tools for PK Modeling 37
2.7.1	Gastroplus™ 38
2.7.2	Berkeley Madonna 38
2.7.3	MATLAB 38
2.7.4	PK-Sim® 39
2.7.5	Simcyp [®] 39
2.7.6	Auxiliary PBPK Modeling Software 39
2.7.6.1	Julia 39
2.7.6.2	NONMEM 39
2.7.6.3	Phoenix WinNonlin 40
2.7.6.4	GraphPad Prism 40
2.7.6.5	Minitab 40
2.7.6.6	PlotDigitizer 40

2.7.6.7	GNU MCSim 40
2.7.6.8	WebPlotDigitizer 40
2.8	Regulatory Perspectives of PK Modeling 40
2.9	Future Directions of PK Modeling 43
2.10	Conclusion 43
	Abbreviations 44
	References 45
3	Physiologically Based Pharmacokinetic Modeling 53
	Mahesh P. More and Rahul S. Tade
3.1	Introduction 53
3.2	Significance of PBPK Modeling 56
3.3	Principles for the Development of PBPK for Special Populations 57
3.4	Data Integration for Special Populations 57
3.4.1	Demographic Data 58
3.4.2	Physiological Consideration 58
3.4.3	Ontogeny 58
3.4.4	Age and Maturation Changes 59
3.4.5	Steady State Volume of Distribution (Vdss) 59
3.5	Applications of PBPK Modeling 60
3.5.1	Dose Optimization/Regimen/Selection 60
3.5.2	Dose Individualization/Precision Dosing 61
3.5.3	Biopharmaceutics 62
3.6	Regulatory Applications/Pre–Post Market Utilization 62
3.7	Case Studies 64
3.7.1	Simulation Application 64
3.7.2	Successful Applications 67
3.8	Lessons Learned 68
3.9	Conclusion 68
	References 70
4	Therapeutic Drug Monitoring in Special Populations 75
	James A. Akingbasote, Sandra K. Szlapinski, Elora Hilmas, Kyle Weston,
	Yelena Wu, and Alexandra Burton
4.1	Introduction 75
4.2	Pediatrics 76
4.2.1	Importance of TDM in Pediatrics 76
4.2.2	Pharmacokinetic Differences in Pediatric Patients 77
4.2.3	Drug Absorption in the Pediatric Population 77
4.2.4	Drug Distribution in the Pediatric Population 78
4.2.5	Drug Metabolism and Elimination in the Pediatric Population 79
4.3	TDM Practices in Pediatrics 79

4.3.1	Vancomycin 80
4.3.2	Aminoglycosides 81
4.3.3	Ganciclovir/Valganciclovir 82
4.3.4	Antiepileptic Drugs (AEDs) 83
4.3.5	Enoxaparin 84
4.4	Conclusion 85
4.5	Pregnancy 85
4.5.1	Physiological Adaptations in Pregnancy 85
4.5.2	Current State of Clinical Practice of TDM in Pregnancy 87
4.5.3	TDM in Pregnancy 89
4.5.3.1	Antiepileptics 89
4.5.3.2	Antidepressants 90
4.5.3.3	Antiretroviral Drugs 91
4.5.3.4	Immunomodulatory Drugs 93
4.5.4	Challenges in the Implementation of TDM in the Pregnant
	Population 94
4.6	The Elderly 95
4.6.1	Physiological Changes in the Elderly 95
4.6.2	Effect of Aging on Drug Pharmacokinetics 95
4.6.3	Application of TDM in the Elderly 97
4.6.3.1	Cardiac Glycosides 98
4.6.3.2	Serotonin–Norepinephrine Reuptake Inhibitor (SNRI) 98
4.6.3.3	Anticoagulants 99
4.6.3.4	Benzodiazepines 99
4.7	Conclusion 101
4.8	Hepatic and Renal Impairments 101
4.8.1	Hepatic Impairment 102
4.8.2	TDM in Patients with Hepatic Impairment 104
4.8.2.1	Meropenem 105
4.8.2.2	Metoprolol 105
4.8.2.3	Midazolam 106
4.8.3	Renal Impairment 107
4.8.4	Prerenal Disease 109
4.8.5	Intrinsic Renal Vascular Disease 109
4.8.6	Intrinsic Glomerular Disease (Nephritic or Nephrotic) 109
4.8.7	TDM in Renal Impairment 109
4.8.7.1	Vancomycin 111
4.8.7.2	Metformin 111
4.9	Conclusion 112
4.10	Overall Conclusion and Future Direction 112
	Acknowledgment 113
	References 114

5	Optimization of Drug Dosing Regimen 133 Vivek Patel, Kartik Hariharan, Dhruv Shah, Arindam Halder, Ajay J. Khopade, Amitkumar K. Patel, and Jayvadan K. Patel
5.1	Introduction 133
5.2	Dosing Regimen Optimization Approaches and Strategies 134
5.2.1	Models Used for Dosing Regimen Selection 134
5.2.1.1	Pharmacometric Models 134
5.2.1.2	PK Models 135
5.2.1.3	Empirical Dose–Response Models 136
5.2.1.4	Multiple Comparison Procedures Models (MCP-Mod) 136
5.2.1.5	Model Averaging 137
5.2.2	Role of Patient Characteristics in Dose Selection 137
5.2.2.1	Phenotype-Guided Dosing 137
5.2.2.2	Genotype-Guided Drug Dosing 138
5.2.3	Therapeutic Drug Monitoring (TDM) 138
5.3	Dosing Regimen in Special Populations 139
5.3.1	Dosing Regimen in Cancer Patients 139
5.3.1.1	Metronomic Chemotherapy 140
5.3.2	Dosing Regimen for Patients on Antimicrobial Therapy 142
5.3.2.1	Antimicrobial Stewardship Strategy 145
5.3.2.2	Mathematical Models for Optimizing Antimicrobial Therapy 146
5.3.2.3	Antimicrobial Dosing Strategies During CRRT 147
5.3.2.4	Methods for Enhancing Dosing of Antimicrobials via
3.3.2.1	Nebulization 149
5.3.3	Dosing Regimen in Pediatric Patients 149
5.3.3.1	Physiological Differences Between Pediatric and Adult Patients 149
5.3.3.2	Application of MIDD in Pediatric Dose Selection 149
5.3.3.3	Scaling from Adults to Pediatric Patients 150
5.3.3.4	Scaling from Animals to Pediatric Patients 150
5.3.3.5	Integrating Mechanistic Models in Neonates and Infants 150
5.3.3.6	Dose Optimization in Neonates and Infants 151
5.4	Conclusion 151
J. T	References 152
	References 132
6	Artificial Intelligence in Drug Development 161
	Surovi Saikia, Aparna Anandan, Unais Annenkottil, Vishnu P. Athilingam,
	Partha P. Kalita, and Viswanadha V. Padma
6.1	Introduction 161
6.2	Application of AI in Drug Design 162
6.2.1	Target Identification and Validation 162
6.2.2	Drug Candidate Design and Optimization 162
6.2.3	Virtual Screening and Molecular Docking 163
0.4.3	virtual percenting and indicedial Docking 100

6.2.4	Synthesis Planning 163
6.2.5	Predicting Drug Toxicity and Pharmacokinetics 163
6.2.6	Personalized Medicine 163
6.3	AI Use in Drug Formulation 163
6.4	Drug Release Characterization Using AI 164
6.5	AI-Based Dose/Dosing Regimen 165
6.6	Dissolution Rate Predictions with AI 166
6.7	Clinical End-Point Evaluation with AI 166
6.8	AI in Prediction of Fate of Drugs Administered Via Mucosal, Transdermal, and Parenteral Routes 167
6.9	AI-Integrated Mechanistic Modeling Platform for Drug Delivery and Monitoring 169
6.10	AI-Based Tools for Metabolism and Clearance Prediction 169
6.11	Limitations of Existing Tools 171
6.12	Conclusions 171
6.13	Conflict of Interest 171
	Acknowledgments 171
	References 172
7	Drug Disposition in Neonates and Infants 179 David Gyamfi, Emmanuel B. Amoafo, Awo A. Kwapong, Mansa Fredua-Agyeman, and Seth K. Amponsah
7.1	Introduction 179
7.2	Drug Absorption in Neonates and Infants 180
7.3	Drug Distribution in Neonates and Infants 182
7.4	Hepatic Metabolism of Drugs in Neonates and Infants 185
7.4.1	Phase I Metabolism 185
7.4.2	Phase II Metabolism 187
7.5	Drug Excretion in Neonates and Infants 188
7.6	Pharmacodynamics in Neonates and Infants 190
7.7	Age-Related Dosing Regimen in Neonates and Infants 190
7.8	Conclusion 192
	References 193
8	Drug Disposition in Adolescents 203
	Aparoop Das, Kalyani Pathak, Riya Saikia, Manash P. Pathak,
	Urvashee Gogoi, Jon J. Sahariah, Dibyajyoti Das, Md Ariful Islam, and Pallab Pramanik
8.1	Introduction 203
8.2	Physiological Considerations in Adolescents 206
8.2.1	Organ Development: Liver and Kidney Maturation 206

8.2.2	Variations in Body Composition 208
8.2.3	Hormonal Changes 208
8.2.3.1	Males 208
8.2.3.2	Females 209
8.2.4	Other Physiological Changes 210
8.3	Medication Adherence Challenges in Adolescents 211
8.4	Psychological Development on Drug Disposition 212
8.5	Risk-Taking behaviors and Their Implications on Medication Use 213
8.6	Drug Use Among Adolescents 215
8.6.1	Acetaminophen Use in Adolescents 215
8.6.2	Antidepressant Use in Adolescents 215
8.6.3	Drugs for ADHD 216
8.7	Pharmacokinetic Variability in Adolescents Drug Examples 217
8.7.1	Acetaminophen 217
8.7.2	Theophylline 217
8.7.3	Antidepressants 218
8.7.4	Drugs for ADHD 218
8.8	Legal and Ethical Considerations 219
8.8.1	Consent and Confidentiality in Adolescent Healthcare 219
8.8.2	Involving Adolescents in Treatment Decisions 220
8.8.3	Regulatory Aspects of Adolescents Drug Prescribing 221
8.9	Conclusion 221
	References 222
9	Drug Disposition in Pregnancy 229
	Jacob Treanor, Stefanos Belavilas, Dominique Cook, Justin Cole,
	Amruta Potdar, and Charles Preuss
9.1	Introduction 229
9.2	Physiological Changes in Pregnancy 230
9.2.1	Changes in Absorption 231
9.2.2	Changes in Distribution and Free Medication 231
9.2.3	Changes in Cytochrome Metabolism 233
9.2.4	Changes in Renal Excretion 233
9.2.5	General Considerations in Drug Dosing with Pregnancy 234
9.3	Placental Drug Disposition 234
9.3.1	Placental Barrier Anatomy and Physiology 235
9.3.2	Placental Transport Mechanisms 237
9.3.3	Methods of Study for Placental Drug Transfer 238
9.4	Drug Classification in Pregnancy 239
9.5	Pharmacokinetic (PK) Modeling 241
9.6	Physiologically Based Pharmacokinetic (PRPK) Modeling 242

9.7	Limitations in PK and PBPK Models 244
9.8	PBPK Model Variables 244
9.9	Determining Treatment During Pregnancy 245
9.10	Fetal Blood Flow and Drug Processing 245
9.10.1	Hepatic and Renal Processing 246
9.10.2	Embryonic Staging 248
9.11	Teratogens 249
9.11.1	Thalidomide 250
9.11.2	Alcohol 251
9.11.3	Smoking and E-cigarettes 251
9.11.4	Caffeine 252
9.11.5	Antibiotics 253
9.11.6	Retinoids 254
9.12	Conclusion 257
	Abbreviations 257
	References 258
10	Drug Disposition in Obesity 265
	Seema Kohli and Ankita A. Singh
10.1	Introduction 265
10.2	Index of Obesity 265
10.3	Pathogenesis of Obesity/Overweight 266
10.4	Drug Disposition in Obesity 267
10.4.1	Absorption 267
10.4.2	Distribution 268
10.4.3	Metabolism 268
10.4.4	Renal Excretion 270
10.5	Drug Dose Calculations in Obese Patients 270
10.5.1	Volume of Distribution (Vd) 270
10.5.2	Drug Clearance 271
10.5.3	Body Size Description 271
10.5.4	Drug Dose Calculation 272
10.6	Disposition of Drugs in Obesity 273
10.6.1	Volatile Agents 273
10.6.2	Thiopental 274
10.6.3	Propofol 274
10.6.4	Midazolam 274
10.6.5	Acetaminophen 274
10.6.6	Opioids 275
10.6.7	Unfractionated Heparin 275
10.6.8	Cephazolin 275

10.6.9	Enoxaparin 275
10.7	Conclusion 276
	References 276
11	Drug Disposition in Critical Care Patients 281
	Chinenye E. Muolokwu, Benjamin Tagoe, Michael M. Attah,
	and Seth K. Amponsah
11.1	Introduction 281
11.2	Pharmacokinetic Considerations in Critical Care Patients 282
11.2.1	Drug Absorption Considerations in Critical Care Patients 282
11.2.2	Drug Distribution Considerations in Critical Care Patients 283
11.2.3	Drug Metabolism Considerations in Critical Care Patients 284
11.2.4	Drug Excretion Considerations in Critical Care Patients 285
11.3	Dosing Algorithms for Commonly Administered Drugs in Critical
	Care Patients 286
11.3.1	Antibacterial and Antifungal Agents 286
11.3.1.1	Aminoglycosides 287
11.3.1.2	β-Lactam Antibiotics 288
11.3.1.3	Fluoroquinolones 288
11.3.1.4	Oxazolidinones 289
11.3.1.5	Antifungal Agents 289
11.3.2	Inotropes 291
11.3.3	Antiviral Drugs 292
11.3.4	Narcotic Analgesics 292
11.3.4.1	Morphine and Pethidine 292
11.3.4.2	Fentanyl and Derivatives 293
11.3.5	Sedatives and Hypnotics 293
11.3.5.1	Midazolam 294
11.3.5.2	Lorazepam 295
11.3.6	Neuromuscular Blockers 295
11.4	Conclusion 297
	References 297
12	Drug Disposition in Renal Insufficiency 305
	Sarah Nestler, Deborah Liaw, Gabriella Blanco, Rana Hanna, Ellen Si,
	and Charles Preuss
12.1	Renal Physiology 305
12.1.1	General Anatomical Structure 305
12.1.2	General Function of the Nephron 306
12.1.3	Water Regulation 306
12.1.4	Glomerular Filtration Rate (GFR) 307

xvi Contents	
--------------	--

12.1.5	Acid–Base Regulation 307
12.2	Glomerular Filtration Rate 307
12.3	Acute Kidney Injury 308
12.3.1	Diagnostic Criteria and Classification 308
12.3.2	Causes of AKI 310
12.3.3	Prerenal 310
12.3.4	Intrinsic 310
12.3.5	Postrenal 311
12.4	Chronic Kidney Disease 311
12.4.1	Diagnostic Criteria and Classification 311
12.4.2	Causes of Chronic Kidney Disease 312
12.5	Medication Dosing Modifications 313
12.5.1	Medication Dosing in Patients with CKD 313
12.5.2	Medications to Treat CKD-Induced HTN and Medications to Avoid
	in CKD 314
12.5.2.1	Antihypertensives 314
12.5.2.2	Hypoglycemics 316
12.5.2.3	Antimicrobials 317
12.5.2.4	Statins 321
12.5.2.5	NSAIDs 322
12.5.2.6	Analgesics 322
12.6	Epidemiology and Outcomes of Patients with CKD 323
	References 324
13	Drug Disposition in Hepatic Insufficiency 327
	Fried A. Abilba, Jacob A. Ayembilla, and Raphael N. Alolga
13.1	Introduction 327
13.2	The Spectrum of Liver Diseases 328
13.3	Liver Function and Drug Metabolism 330
13.3.1	Impact of Hepatic Insufficiency on Drug Metabolism 331
13.3.2	Pharmacokinetic Changes in Hepatic Insufficiency 332
13.3.3	Effect of Liver Diseases on Pharmacokinetics of Drugs 333
13.4	Dosing Algorithms in Clinical Practice 334
13.4.1	Drug Selection 335
13.4.2	Dosing Adjustments 336
13.4.3	Pharmacokinetic Considerations 336
13.5	Drug Disposition and Factors That Influence Drug Disposition 336
13.6	Major Classes of Drugs and Hepatic Insufficiency 337
13.6.1	Anticoagulants 337
13.6.2	Antibiotics 338
13.6.3	Analgesics 338

13.6.4	Anticonvulsants 338
13.6.5	Antidepressants 339
13.6.6	Antiretrovirals 339
13.7	Cases Demonstrating Application of Dosing Algorithms 339
13.7.1	Case 1: Warfarin for Anticoagulation 339
13.7.1.1	The Use of Warfarin in a Patient with Hereditary Bleeding
	Disorder 339
13.7.1.2	Dosing Algorithm of Warfarin 340
13.7.2	Case 2: Acetaminophen for Pain Management 340
13.7.2.1	Dosing Algorithm for Paracetamol and Other Cytochrome p450
	Enzyme-inducing Drugs in Hepatic Insufficiency Using Child-Pugh
	Score 341
13.7.3	Case 3: Valproic Acid for Seizure Control 341
13.7.4	Case 4: Metronidazole for Infection 342
13.7.5	Case 5: Efavirenz for HIV Treatment 342
13.8	Limitations of Current Dosing Strategies 342
13.9	Conclusion and Future Perspectives 343
13.9.1	Emerging Technologies and Precision Medicine 343
13.9.2	Potential Impact of Pharmacogenomics 344
13.9.3	Areas of Research Interest 344
	References 345
14	Drug Disposition in Geriatrics 349
	Ali Karimi, Samuel Cockey, Millena Levin, Teresa Travnicek,
	Nishanth Chalasani, and Charles Preuss
14.1	Introduction 349
14.2	Absorption 351
14.3	Distribution 352
14.4	Metabolism 354
14.5	Excretion 356
14.6	Hepatic 360
14.7	Renal 361
14.8	Cardiac 363
14.9	Sex Differences 363
14.10	Psychoactive Drugs 365
14.11	Anesthesiology Drugs 366
14.12	Drug Interactions 367
14.13	Drug Side Effects 368
14.14	Conclusion 371
	Abbreviations 372
	References 373

		٠	٠	
v	/1	п	п	

_						
٠,	1	n	t,	0	n	tc

1		
iii	Contents	
	15	Considerations and Regulatory Affairs for Clinical Research in Special
		Populations 377
		Stephanie Leigh, Maxine Turner, and Goonaseelan C. Pillai
	15.1	Introduction 377
	15.2	Regulatory Frameworks for Clinical Research in Special
		Populations 378
	15.2.1	The Historical Evolution of Regulatory Frameworks for Special
		Population Research 378
	15.2.2	Current Global Regulatory Frameworks for Special Population
	1500	Research 380
	15.2.3	Current Regional Regulations Concerning Clinical Research Involving
	15.2.3.1	Special Populations 382 The United States: Food and Drug Regulatory Authority
	13.2.3.1	(US FDA) 382
	15.2.3.2	Europe: European Medicines Agency (EMA) 383
	15.2.3.3	The United Kingdom: The Medicines and Healthcare Products
	13.2.3.3	Regulatory Agency (MHRA) 383
	15.2.3.4	Australia: The Therapeutic Goods Administration (TGA) 384
	15.2.3.5	Brazil: National Health Surveillance Agency (ANVISA) 385
	15.2.3.6	India: Central Drugs Standard Control Organization (CDSCO) 387
	15.2.3.7	China: National Medical Products Administration (NMPA) 388
	15.2.3.8	South Africa: The South African Health Products Regulatory
		Authority (SAHPRA) 389
	15.2.4	Holistic Analysis of Regional Regulations Concerning Clinical
		Research Involving Special Populations 391
	15.3	Key Considerations for Clinical Trials in Special Population
		Groups 392
	15.3.1	Pediatric Population Groups 392
	15.3.1.1	Regulatory Guidelines Governing Pediatric Clinical Research 392
	15.3.2	Regional Legislations Governing Clinical Research in Pediatric
	15221	Populations 393 The United States Food and Drug Regulators Authority
	15.3.2.1	The United States: Food and Drug Regulatory Authority (US FDA) 393
	15.3.2.2	Europe: European Medicines Agency (EMA) 395
	15.3.2.2	The United Kingdom: The Medicines and Healthcare Products
	13.3.2.3	Regulatory Agency (MHRA) 396
	15.3.2.4	India: Central Drugs Standard Control Organization (CDSCO) 396
	15.3.2.5	Other Global Jurisdictions 397
	15.3.3	Holistic Analysis of Regional Regulations Concerning Clinical
		Research Involving Pediatric Populations 398

15.3.4	Ethical Considerations for Clinical Research in Pediatric Populations 398
15.3.4.1	Assent and Informed Consent 399
15.3.4.2	Participant Recruitment 402
15.4	Pregnant Population Groups 403
15.4.1	Historical Exclusion of Pregnant Persons in Clinical Research 403
15.4.2	Regulatory Guidelines Governing Clinical Research in Pregnant Persons 404
15.4.3	Regional Legislations Governing Clinical Research in Pregnant Persons 406
15.4.3.1	The United States: Food and Drug Regulatory Authority (US FDA) 406
15.4.3.2	Europe: European Medicines Agency (EMA) 406
15.4.3.3	Australia: The Therapeutic Goods Administration (TGA) 407
15.4.3.4	Brazil: National Health Surveillance Agency (ANVISA) 407
15.4.3.5	India: Central Drugs Standard Control Organization (CDSCO) 408
15.4.3.6	China: National Medical Products Administration (NMPA) 409
15.4.4	Challenges and Barriers to Clinical Research in Pregnant Persons 409
15.5	Geriatric Populations 410
15.5.1	Key Regulatory Guidelines Governing Geriatric Clinical
	Research 411
15.5.2	Regional Legislations Governing Clinical Research in Geriatric
	Populations 412
15.5.2.1	The United States: Food and Drug Regulatory Authority (US FDA) 412
15.5.2.2	Europe: European Medicines Agency (EMA) 414
15.5.2.3	The United Kingdom: The Medicines and Healthcare Products Regulatory Agency (MHRA) 415
15.5.2.4	India: Central Drugs Standard Control Organization (CDSCO) 416
15.5.2.5	Other Global Jurisdictions 417
15.5.3	Challenges and Barriers to Clinical Research in Geriatric Populations 417
15.6	Critical Care 417
15.6.1	Key Regulatory Guidelines Governing Critical Care Clinical
13.0.1	Research 418
15.6.2	Regional Legislations Governing Clinical Research in Critical Care
	Populations 418
15.6.2.1	The United States: Food and Drug Regulatory Authority (US FDA) 418
15.6.2.2	Europe: European Medicines Agency (EMA) 420

	C-				٠.
ΚX	Co	Ш	e	П	LS

15.6.2.3	The United Kingdom: The Medicines and Healthcare Products
	Regulatory Agency (MHRA) 420
15.6.2.4	India: Central Drugs Standard Control Organization (CDSCO) 421
15.6.2.5	Other Global Jurisdictions 421
15.6.3	Challenges and Barriers to Clinical Research in Critical Care
	Populations 422
15.7	Summary Points 422
15.7.1	Regulatory Guidelines 422
15.7.2	Ethical Considerations 423
15.7.3	Participant Recruitment 423
15.8	Conclusion 423
	References 424

Index 435

About the Editors

Seth Kwabena Amponsah is an associate professor and former head of Department of Medical Pharmacology, University of Ghana Medical School. He has an MPhil and PhD in pharmacology. He has had postdoctoral fellowships under BANGA-Africa Project and BSU III (DANIDA—Denmark). He has over 13 years' experience in teaching and research. He teaches students in the medical school, school of pharmacy, school of nursing and midwifery, and school of biomedical and allied health sciences. His research focus includes clinical pharmacology (infectious disease and antimicrobial stewardship): prudent use of antimicrobials, antimicrobial level monitoring, and efficacy of antimicrobials in patients. He also has experience in population pharmacokinetic modeling, noncompartment pharmacokinetic estimation, and pharmacokinetic evaluation of new drug formulations. He has supervised several undergraduate and postgraduate students. He has published over 60 research articles, 3 books, 20 book chapters and several conference abstracts. He is an academic editor for PLOS One and an associate editor for Pan African Medical Journal.

Yashwant V. Pathak has over 16 years of versatile administrative experience in an Institution of Higher education as dean (and over 30 years as faculty and as a researcher in higher education after his PhD). Presently holds the position for associate dean for faculty affairs and tenured professor of pharmaceutical sciences. He is an internationally recognized scholar, researcher, and educator in the areas of health care education, nanotechnology, drug delivery systems, and nutraceuticals. He has received many international and national awards including four Fulbright Fellowships, Endeavour Executive Fellowship by Australian Government, four outstanding faculty awards, and he was selected as fellow of American Association for Advancement of Science (AAAS) in 2021. He has published over 350 research publications, reviews, and chapters in various books. He has edited over 60 books in various fields including nanotechnology,

xxii About the Editors

nutraceuticals, conflict management, and cultural studies. He is also actively involved many nonprofit organizations, to mention a few, Hindu Swayamsevak Sangh, USA, Sewa International USA, International accreditation council for Dharma Schools and Colleges, International commission for Human rights and religious freedom, and Uberoi Foundation for religious studies, among others.

List of Contributors

Fried A. Abilba

Department of Paediatric and Child Health Pharmacy Tamale Teaching Hospital Tamale Ghana

James A. Akingbasote

Regulatory Toxicologist London, Ontario Canada

Raphael N. Alolga

State Key Laboratory of Natural Medicines, Department of Pharmacognosy China Pharmaceutical University Nanjing China

and

Clinical Metabolomics Center Department of Pharmacognosy China Pharmaceutical University Nanjing China

Emmanuel B. Amoafo

Department of Pharmaceutical Sciences North Dakota State University Fargo, ND USA

Seth K. Amponsah

Department of Medical Pharmacology University of Ghana Medical School Accra Ghana

Aparna Anandan

Translational Research Laboratory Department of Biotechnology Bharathiar University Coimbatore, Tamil Nadu India

Unais Annenkottil

Translational Research Laboratory Department of Biotechnology Bharathiar University Coimbatore Tamil Nadu, India

Vishnu P. Athilingam

Translational Research Laboratory Department of Biotechnology Bharathiar University Coimbatore, Tamil Nadu India

Michael M. Attah

Division of Clinical Pharmacology Indiana University School of Medicine Indianapolis, IN USA

and

Department of Pharmacy Practice College of Pharmacy **Purdue University** West Lafayette, IN USA

Jacob A. Ayembilla

Department of Science Laboratory Technology Accra Technical University Accra Ghana

Stefanos Belavilas

University of South Florida Morsani College of Medicine Tampa, FL **USA**

Gabriella Blanco

University of South Florida Morsani College of Medicine Tampa, FL USA

Alexandra Burton

Nationwide Children's Hospital Columbus, OH USA

Nishanth Chalasani

University of South Florida Morsani College of Medicine Tampa, FL USA

Samuel Cockey

University of South Florida Morsani College of Medicine Tampa, FL USA

Justin Cole

University of South Florida Morsani College of Medicine Tampa, FL USA

Dominiaue Cook

University of South Florida Morsani College of Medicine Tampa, FL USA

Aparoop Das

Department of Pharmaceutical Sciences Dibrugarh University Dibrugarh, Assam India

Dibyajyoti Das

Department of Pharmaceutical Sciences Dibrugarh University Dibrugarh, Assam India

and

Pratiksha Institute of Pharmaceutical Science Guwahati, Assam India

Mansa Fredua-Agyeman

Department of Pharmaceutics and Microbiology, School of Pharmacy University of Ghana Accra Ghana

Anuradha K. Gajjar

Department of Pharmaceutical Chemistry L. M. College of Pharmacy Ahmedabad, Gujarat India

Urvashee Gogoi

Department of Pharmaceutical Sciences Dibrugarh University Dibrugarh, Assam India

David Gyamfi

Department of Pharmaceutical Sciences North Dakota State University Fargo, ND USA

Arindam Halder

Sun Pharmaceutical Industries Ltd. Vadodara, Gujarat India

Rana Hanna

University of South Florida Morsani College of Medicine Tampa, FL USA

Kartik Hariharan

Sun Pharmaceutical Industries Ltd. Vadodara, Gujarat India

Elora Hilmas

Nationwide Children's Hospital Columbus, OH **USA**

Md Ariful Islam

Department of Pharmaceutical Sciences Dibrugarh University Dibrugarh, Assam India

Partha P. Kalita

Faculty of Science Assam down town University Guwahati, Assam India

Ali Karimi

University of South Florida Morsani College of Medicine Tampa, FL USA

Ajay J. Khopade

Sun Pharmaceutical Industries Ltd. Vadodara, Gujarat India

Seema Kohli

Pharmacy Department K N Polytechnic College Jabalpur, MP India

Awo A. Kwapong

Department of Pharmaceutics and Microbiology, School of Pharmacy University of Ghana Accra Ghana

Stephanie Leigh

Department of Pharmacy and Pharmacology, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa

Millena Levin

University of South Florida Morsani College of Medicine Tampa, FL USA

Deborah Liaw

University of South Florida Morsani College of Medicine Tampa, FL USA

Mahesh P. More

Novel Formulation Laboratory Sekkei Bio Pvt Ltd. Bangalore, KA India

Chinenye E. Muolokwu

Department of Pharmaceutical Sciences, School of Pharmacy College of Health and Human Sciences North Dakota State University Fargo, ND USA

Sarah Nestler

University of South Florida Morsani College of Medicine Tampa, FL **USA**

Viswanadha V. Padma

Translational Research Laboratory, Department of Biotechnology Bharathiar University Coimbatore, Tamil Nadu India

Amitkumar K. Patel

Saffron Health LLC East Brunswick, NJ USA

Jayvadan K. Patel

Vie Saine Pharma LLC Sheridan, WY USA

Kashyap M. Patel

Department of Pharmaceutics L. M. College of Pharmacy Ahmedabad, Gujarat India

Manish P. Patel

Department of Pharmaceutics L. M. College of Pharmacy Ahmedabad, Gujarat India

Vivek Patel

Apex professional University Pasighat, Arunachal Pradesh India

and

Sun Pharmaceutical Industries Ltd. Vadodara, Gujarat India

Kalyani Pathak

Department of Pharmaceutical Sciences Dibrugarh University Dibrugarh, Assam India

Manash P. Pathak

Faculty of Pharmaceutical Sciences Assam Down Town University Guwahati, Assam India

Yahwant V. Pathak

USF Health Taneja College of Pharmacy University of South Florida Tampa, FL USA

Goonaseelan C. Pillai

Division of Clinical Pharmacology University of Cape Town Rondebosch South Africa

and

CP+ Associates GmbH Basel Switzerland

Amruta Potdar

University of South Florida Morsani College of Medicine Tampa, FL USA

Pallab Pramanik

Department of Pharmaceutical Sciences Dibrugarh University Dibrugarh, Assam India

Charles Preuss

Department of Molecular Pharmacology & Physiology University of South Florida Morsani College of Medicine Tampa, FL USA

Jon J. Sahariah

Department of Pharmaceutical Sciences Dibrugarh University Dibrugarh, Assam India

Riya Saikia

Department of Pharmaceutical Sciences Dibrugarh University Dibrugarh, Assam India

Surovi Saikia

Translational Research Laboratory Department of Biotechnology **Bharathiar University** Coimbatore, Tamil Nadu India

Dhruv Shah

Sun Pharmaceutical Industries Ltd. Vadodara, Gujarat India

Ellen Si

University of South Florida Morsani College of Medicine Tampa, FL **USA**

Ankita A. Singh

Pharmacy Department K N Polytechnic College Jabalpur, MP India

Sandra K. Szlapinski

Regulatory Toxicologist London, Ontario Canada

Rahul S. Tade

H R Patel Institute of Pharmaceutical Education and Research Dhule, MS India

Benjamin Tagoe

Department of Pharmaceutical Sciences, School of Pharmacy College of Health and Human Sciences North Dakota State University Fargo, ND USA

Teresa Travnicek

University of South Florida Morsani College of Medicine Tampa, FL USA

Jacob Treanor

University of South Florida Morsani College of Medicine Tampa, FL USA

Maxine Turner

Department of Pharmacy and Pharmacology, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa

Shakil Z. Vhora

Department of Pharmaceutics L. M. College of Pharmacy Ahmedabad, Gujarat India

Kyle Weston

Regulatory Toxicologist Toronto, Ontario Canada

Yelena Wu

Nationwide Children's Hospital Columbus, OH USA