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Preface to the eighth edition by  
Adam J Mead

It is a huge honour to take on the role of Editor-in-Chief of 
Postgraduate Haematology for its eighth edition. The book has 
been an important text in haematology for over five decades, 
with the fourth edition providing essential reading during my 
postgraduate exams in haematology 20 years ago. It was a par-
ticular pleasure therefore to edit the book alongside Professor 
Victor Hoffbrand, who edited the first seven editions since the 
book’s inception in 1972. For the eighth edition, we have 
renamed the book Hoffbrand’s Postgraduate Haematology in 
honour of Victor’s incredible contribution to the text over so 
many years. We have also established a new editorial team with 
a broad range of expertise across different areas in haematol-
ogy. We have extensively updated the book for the new edition 
which now includes 57 chapters written by international 
experts in their respective fields, with chapters divided across 
6 themes. Haematology remains at the forefront of the applica-
tion of advances in molecular biology to the management of 
human disease, and reflecting this, we have introduced a 
number of entirely new chapters covering important advances 

in clinical applications of gene editing and therapy, application 
of next-generation sequencing in haematology and cancer 
immunotherapy. Additional new chapters are focussed 
on  clonal haematopoesis, macrophages, dendritic cells and 
histiocytic disorders, obstetric haematology and consultative 
haemostasis and thrombosis. 

In this digital age, I firmly believe that Hoffbrand’s Postgraduate 
Haematology will remain a crucial text for those undergoing 
postgraduate training in haematology, as well as practising clini-
cians and scientists working in the field. Faced with the chal-
lenge of keeping up to date with an increasingly complex 
landscape across the wonderfully diverse areas encompassed by 
clinical and laboratory haematology, we hope that Hoffbrand’s 
Postgraduate Haematology will provide a useful resource of 
authoritative information.

It is an enormous collaborative effort putting together a 
57-chapter textbook, and I am immensely grateful to my  
co-editors, chapter authors and the team at Wiley for their help 
and patience along the way.
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Postgraduate Haematology began life 52 years ago as 
Haematology: Tutorials in Postgraduate Medicine. The authors 
were all members of the Department of Haematology at the 
Royal Postgraduate Medical School (RPMS), Hammersmith 
Hospital. John Dacie, Head of the Department, was first invited 
to edit the book but with other major book writing commit-
ments, Practical Haematology and The Haemolytic Anaemias, he 
suggested Mitchell Lewis and me as editors.

The chapters of this first edition were all written by distin-
guished colleagues in Dacie’s Haematology Department includ-
ing Ted Gordon-Smith (haemolytic and aplastic anaemias), 
David Galton (leukaemias, myeloma and lymphomas), John 
Goldman (leucocytes), Leon Szur (myeloproliferative diseases), 
Bob Pitney (coagulation), and Sheila Worlledge (blood transfu-
sion). They were based on the lectures we gave in the annual 
Diploma in Clinical Pathology Course at the RPMS.

The book was not intended as a reference to me but as an 
easily read text for learning about the blood diseases  – their 
pathogenesis, clinical and laboratory features, relevant diagnos-
tic tests, treatment and prognosis. A suggested reading list was 
given at the end of each chapter but references in the text were 
avoided. The title Postgraduate Haematology was adopted for 
the second and subsequent editions published by William 
Heinemann, Butterworth Heinemann, Arnold, Oxford 
University Press, Blackwell and now Wiley-Blackwell.

With the vast increase in knowledge of blood and its diseases, 
the book has inevitably increased in size but all editions have 
followed the same formula. Postgraduate Haematology is 
intended to provide a comprehensive, well-illustrated text, suit-
able for higher examinations and to the level of consultant 
haematologist.

Inevitably, a wider range of editors and authors have been 
needed since the first edition. Edward Tuddenham joined the 
original two editors to cover the coagulation section for editions 
four to six; both Daniel Catovsky (editions five and six) and 
Anthony Green (edition six) were editors for the neoplastic dis-
eases. The editors of the seventh edition included Douglas 
Higgs, David Keeling and Atul Mehta. The authors, experts in 
their respective fields, are from around the world, especially 
from the UK, Europe and North America.

It has been my privilege to edit the first seven editions of 
Postgraduate Haematology. I am delighted to have been replaced 
as ‘editor-in-chief ’ for the eighth edition by a younger colleague, 
the talented Oxford haematologist Adam Mead and to welcome 
his distinguished team of co-editors. They can be just proud 
of  this superb new edition. Finally, I thank the publisher 
Wiley-Blackwell for adding my name to the book’s title.

Victor Hoffbrand, London, 2024

Preface to the eighth edition by  
A Victor Hoffbrand
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Preface to the first edition

In this book the authors combine an account of the physiological 
and biochemical basis of haematological processes with descrip-
tions of the clinical and laboratory features and management of 
blood disorders. Within this framework, each author has dealt 
with the individual subjects as they thought appropriate. 
Because this book is intended to provide a foundation for the 
study of haematology and is not intended to be a reference book, 
it reflects, to some extent, the views of the individual authors 
rather than providing comprehensive detail and a full bibliogra-
phy. For these the reader is referred to the selected reading given 
at the end of each chapter. It is hoped that the book will prove a 
particular value to students taking either the primary or the 
final part of the examination for membership of the Royal 
College of Pathologists and the Diplomas of Clinical Pathology. 
It should also prove useful to physicians wishing to gain special 
knowledge of haematology and to technicians taking the 
Advanced Diploma in Haematology of the Institute of Medical 
Laboratory Technology, or the Higher National Certificate in 
Medical Laboratory subjects.

We acknowledge kind permission from the editors and 
publishers of the British Journal of Haematology, the Journal of 

the Royal College of Physicians of London and the Quarterly 
Journal of Medicine to reproduce Figures 4.1, 4.5, 4.10, 4.11, 
4.12, 9.4 and 9.10, the publishers of Progress in Haematology 
for Figure 7.2 and many other publishers who, together with 
the authors, have been acknowledged in the text. We are 
particularly grateful to Professor J. V. Dacie for providing 
material which formed the basis of many of the original illus-
trations in Chapters 4–8. We are greatly indebted to Mrs T. 
Charalambos, Mrs J. Cope and Mrs D. Haysome for secretarial 
assistance and to Mrs P. Schilling and the Department of 
Medical Illustration for photomicrography, art work and 
general photography.

Finally, we are grateful for the invaluable help and for bear-
ance we have received from Mr R. Emery and William 
Heinemann Medical Books.

London, 1972
A. Victor Hoffbrand

Michael Laffan
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Introduction

The regenerative potential of tissues in the human body has 
fascinated researchers for many years, perhaps sparked by 
the ancient Greek myth describing Prometheus’s fate, pun-
ished by Zeus to have a vulture feed off his liver during the 
day, only for the liver to be regenerated and the process 
repeated daily. Although the ancient Greek myth at that time 
was unlikely to be based on knowledge on the regenerative 
potential of the liver, we now know that most tissues in the 
human body contain regenerative potential to replace cells 
lost due to their normal limited lifespan, stress, disease or 
injuries, and that this process depends on tissue-specific 
stem cells. Of these, the stem cells responsible for the pro-
duction and maintenance of mature blood cells, the hae-
mopoietic stem cell, remains the most well characterised 
stem cell system to date. The routine clinical use of bone 
marrow transplantation to rescue diseased haemopoiesis 
highlights the impressive power of stem cell therapy, facili-
tated by the culmination of decades of biological and clinical 
research. Although representing the only curable treatment 
option for several disease conditions, it still is not possible to 
offer this treatment to all patients in need. As such, more 
research towards both the biology and clinical application of 
human haemopoietic stem cells are required to further 
improve our understanding and clinical application of 
haemopoietic stem cell therapies.

Human haemopoietic stem cells and the 
haemopoietic differentiation hierarchy

Blood is one of the most regenerative tissues in the body, where 
every minute millions of mature blood cells need to be replaced 
in a normal healthy individual due to their finite lifespan. In con-
trast to solid tissues, blood cells are dispersed throughout the 
body. Although the majority of mature blood cells are found in 
peripheral blood and haemopoietic organs such as the bone mar-
row, spleen, thymus and lymph nodes, mature blood cell infiltra-
tion in other organs and tissues are also important for prevention 
of infections and response to injury. With the exception of long-
lived memory B and T cells, and some tissue-resident mac-
rophages, mature blood cells have a short lifespan, ranging from 
just a few days for mature granulocytes, monocytes and platelets 
to 120 days for red blood cells (Figure 1.1). Ensuring the continu-
ous replacement of lost cells is critical to maintain normal home-
ostasis, as insufficient blood cell production results in cytopenia 
and increased risk for infection, and if not corrected threatens 
the ability to sustain life. The process of blood cell production, 
haemopoiesis, results in the daily generation of 1011–1012 mature 
blood cells in an adult healthy individual, numbers which can 
increase in response to acute stress such as large blood loss, 
infection or disease conditions.

Haemopoiesis is a tightly regulated cellular process that 
depend on the lifelong pool of haemopoietic stem cells (HSCs) 
defined by their ability to self-renew and potential to generate 
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all blood cell lineages (multipotent). In adults, this process 
takes place in the bone marrow, the major site of residency for 
HSCs after birth. HSCs represent an infrequent population of 
cells in the bone marrow, and studies to understand how such 
a rare population of cells can generate trillions of cells on a 
daily basis has been at the centre of research since their 
existence was proposed. Studies in model organisms and on 
material from human subjects have demonstrated that the 
impressive production of blood cells is achieved through a 
unidirectional cellular hierarchy where HSCs are located at 
the apex and give rise to the mature blood cells through the 
generation of series of intermediate progenitor cell stages. In 
contrast to HSCs, the majority of these intermediate progeni-
tor cells are short-lived as they lack self-renewal potential and 
therefore depend on continuous replenishment from the 
HSCs. The generated progenitor cells are highly proliferative 
and as they differentiate through the haemopoietic hierarchy, 
they gradually lose potential to generate one or more lineages. 
Although the cellular differentiation pathway from human 
HSCs is still under investigation, studies have suggested that 

HSCs first give rise to progenitor cells that carry the same 
potential as HSCs (multipotent) but have lost or reduced abil-
ity for self-renewal and therefore will not be sustained for an 
extended period of time. The multipotent progenitor then 
gives rise to oligo-potent progenitors that has lost potential 
for one or more blood cell lineages, which ultimately gives 
rise to unipotent progenitors restricted towards one blood cell 
lineage. In both mouse and human bone marrow, many of 
these intermediate progenitor cell stages have been identified 
suggesting that the first lineage-restriction that occurs after a 
multipotent progenitor cell results in division between pro-
genitors with potential to generate lymphoid cells (B, T and 
NK cells), neutrophils and monocytes/macrophages and pro-
genitors with potential to generate erythroid, megakaryocyte/
platelets, eosinophils and basophils. Identification and 
characterisation of these stages is important not just for 
understanding the underlying cell biology, but also since 
these intermediate stages often are perturbed in diseases and 
haematologic malignancies, they remain relevant for under-
standing how haemopoietic dysregulation leads to clinical 

Stem cell

Self-renewal

Haemopoietic
stem cell (HSC)

Multipotent Multipotent Oligopotent Unipotent Terminally differentiated

Progenitor cells Mature cells

Red blood cells

Platelets

Basophil
granulocyte
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120 days/2 × 1011 cells
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Figure 1.1  The human haemopoietic hierarchy. The human haemopoietic hierarchy has a unidirectional differentiation path (arrows 
going from left to right only) with the haemopoietic stem cell at the apex and the mature blood cells at the end. Due to the short lifespan 
and daily turnover of mature blood cells, continuous replenishment of lost cells is facilitated by haemopoietic stem cells through the 
generation of series of haemopoietic progenitor cells which gradually lose lineage potential. This process of active haemopoiesis is 
dependent on a limited pool of quiescent and long-lived haemopoietic stem cells in the bone marrow with life-long self-renewal potential 
and potential to generate all mature blood cells.
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disease. Although the haemopoietic hierarchy often is dis-
played as discrete stages of cellular intermediates (Figure 1.1), 
it is probable that a more gradual continuum of lineage 
restriction exists, rather than the binary distinct stages typi-
cally displayed in figures in the literature.

Human haemopoietic stem cell 
characteristics

HSCs, similar to stem cells responsible for the regeneration of 
other tissues, are defined functionally by their ability to self-
renew, meaning that they can persist for the duration of life 
through generation of daughter HSCs, and their capacity for 
multipotent differentiation, meaning they have the potential to 
generate all mature haemopoietic cell types. In light of the 
dependence of blood production on HSCs it is critical that the 
number of HSCs and their activity is tightly controlled, both 
under steady-state conditions and under stress conditions. In 
response to signals from HSCs themselves (intrinsic) and the 
surrounding environment (extrinsic), HSCs can undergo 
different fates that regulate the number of HSCs in the body 

(Figure 1.2). In response to proliferative signals HSCs undergo 
cell division, where an asymmetric division generates two 
daughter cells, one which is an exact HSC copy of the parental 
HSC, endowed with both self-renewal and multipotency, and a 
differentiated progeny which has lost self-renewal. Such a cell 
division would result in neither gain or loss of HSCs and there-
fore preserve the number of HSCs in the bone marrow. 
Alternatively, HSCs can undergo two different types of symmet-
ric cell divisions. If a HSC undergo a symmetrical self-renewal 
division, two new daughter HSCs will be generated from the 
parental HSC, both with self-renewal and multi-potency, result-
ing in an expansion of HSC numbers. However, if a parental 
HSC undergo a symmetric differentiation division, two differ-
entiated daughter cells without self-renewal will be generated, 
resulting in HSC loss. In addition to cell division, HSCs can also 
undergo apoptosis which similar to symmetric differentiation 
division results in HSC loss.

Although cell division is required for the progeny generation, 
cell divisions are infrequently performed by HSCs during 
steady-state conditions. Instead, most HSCs remain dormant in 
a quiescent state, referred to as G0 in the cell cycle. Quiescence is 
a hallmark feature of HSCs in steady-state conditions, defined 

HSC maintenance

HSC maintenance

Haemopoietic
stem cell (HSC)

HSC expansion

Symmetric
Self-renewal

division Symmetric
differentiation

division

HSC loss

HSC loss

Death

Quiescence

Asymmetric
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Figure 1.2  Haemopoietic stem cell fate options. Controlling the number of haemopoietic stem cells is critical for preserving normal blood cell 
production. During steady-state, the majority of haemopoietic stem cells are highly quiescent, protecting the haemopoietic stem cells from the 
potential harmful effects actively dividing cells are exposed to and preserving the haemopoietic stem cell pool. Upon stimulation, haemopoietic 
stem cells can be activated and undergo cell division. Symmetric division can either result in haemopoietic stem cell expansion or loss, dependent 
on the generated progeny being haemopoietic stem cells or differentiated progenitor cells. Asymmetric division, where cell division generated 
one daughter haemopoietic stem cell and one differentiated progenitor cell, preserve the haemopoietic stem cell pool. Upon exposure to harmful 
effects, lack of appropriate stimulation or haemopoietic stem cell exhaustion, haemopoietic stem cells can undergo programmed cell death. The 
fate of haemopoietic stem cells is regulated by the complex interplay between extrinsic (environmental) and intrinsic (inside haemopoietic stem 
cells) factors.
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by infrequent cell cycle divisions and low metabolic activity. 
This is a critical cellular mechanisms that maintain HSC 
functional integrity by protecting against HSC exhaustion, 
harmful substances and DNA damage that can result in leuke-
mic transformation. Quiescence is therefore a critical mecha-
nism for preserving the HSC pool. In light of the high degree of 
cellular dormancy associated with HSCs, it is proposed that 
primitive multipotent progenitor cells to a large degree actively 
contribute to steady-state haemopoietic. Although these pro-
genitors depend on generation from HSCs, they can sustain 
blood production for long but finite periods of time, reducing 
the need for a continuously active HSC pool. However, under 
stress-conditions, also the HSCs are activated and proliferate 
until normal blood production is restored.

Assays for human haemopoiesis

The existence of HSCs was already proposed in the early 1900s 
where a common progenitor was proposed to explain the 
heterogeneity among different blood cells. However, the experi-
mental proof for HSCs was not established until after the 
post-World War II era when the impact of large-dose irradiation 
was explored and the lethal effect of irradiation was found to be 
rescued by bone marrow transplantation. In part, this led to the 
clinical use of haemopoietic stem cell transplantation which is 
widely used in the clinic today, but also sparked the develop-
ment of experimental assays that led to the identification of 
HSCs. These were spearheaded by two Canadian researchers, 
James Till and Ernest McCulloch, who first developed an assay 
that demonstrated the existence of cells with ability to self-
renew and produce cells of different blood lineages. These initial 
studies were performed in mice which after receiving a lethal 
dose of irradiation were transplanted with bone marrow har-
vested from a non-irradiated mouse. Upon termination of the 
mice following transplantation, they noticed distinct nodules in 
the spleen resembling colonies where an individual colony was 
demonstrated to originate from a single cell (clonal), contain 
progeny of multiple blood cell lineages (multipotent) and could 
be serially transplanted into new irradiated recipients (self-
renew). Cells that contained this potential were referred to as 
colony forming unit (CFU) spleen and formed the birth of stem 
cell biology and development of additional assays that allowed 
for the identification and characterisation of HSCs in mouse 
and man.

Short-term in vitro assays

In vitro assays (Figure  1.3a) have been instrumental for both 
identification of distinct haemopoietic stem and progenitor cell 
populations and the cytokines, as well as other growth factors, 
that regulate their ability to generate different mature blood cell 
lineages. Culture of haemopoietic cells in a semi-solid medium 

composed of methylcellulose supplemented with haemopoietic 
growth factors supports the proliferation and subsequent dif-
ferentiation of haemopoietic stem or progenitor cells following 
short-term culture. Similar to the colonies observed in the 
spleen (CFU-spleen) of irradiated mice following transplanta-
tion of non-irradiated bone marrow, as the proliferation from 
stem and progenitor cells are physically restricted within the 
semisolid medium this results in the generation of multiple dis-
tinct colonies, where each colony originates from one single 
stem or progenitor cell. The characteristic colonies can be both 
classified into different blood cell lineages based on morphol-
ogy and size, and enumerated in order to quantify the number 
colony forming cells (CFCs), representing primitive haemopoi-
etic stem and progenitor cells, within the investigated population 
of cells. Although first developed in the 1960s, this assay is still 
widely used and even frequently applied in clinical laboratories 
to enumerate the functional integrity of haemopoietic stem and 
progenitor cells in cell preparations used for clinical transplan-
tations. This assay was also central for the identification and 
characterisation of the impact of different haemopoietic growth 
factors on proliferation and differentiation from progenitor 
cells. In fact, many haemopoietic growth factors carry names 
that reflect this, including the cytokines granulocyte colony-
stimulating factor (G-CSF), granulocyte-monocyte colony-
stimulating factor (GM-CSF) and monocyte colony-stimulating 
factor (M-CSF).

Culture of haemopoietic stem and progenitor cells in short-
term liquid cultures can also be applied to evaluate their poten-
tial towards one or more lineages. These liquid culture assays 
come in two flavours, with or without supporting stromal cells. 
Although several stromal-free conditions can support the 
generation of myeloid and erythroid cells, the generation of lym-
phoid cells appears more dependent on stromal-cell support. 
For human stem and progenitor cells, differentiation towards B 
cells can be supported by OP9 stromal cells that were derived 
from the calvaria of newborn mice lacking M-CSF expression, 
whereas in order for the OP9 stromal cells to support differen-
tiation towards the T cell lineage, transduction of the OP9 stro-
mal cells with the Notch ligands Delta-like 1 or Delta-like 4 is 
required. Although culture in semi-solid medium allows quanti-
fication of single progenitors within a population, qualitative 
evaluation of lineage-potentials are primarily obtained from liq-
uid cultures seeded with bulk populations. However, quantita-
tive assessment can also be achieved by either plating cells by 
limiting dilution or through single-cell plating.

Long-term in vitro assays

Although useful for evaluating lineage-potentials, short-term 
cultures in liquid or semi-solid media are limited in their ability 
to evaluate self-renewal potential, and as such does not allow 
assessment of HSCs or long-lived progenitor cells. Instead, self-
renewal potential can be assessed either by serial-replating of 
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colonies generated in semi-solid medium, or by extended culture 
in liquid medium. Serial replating of colonies in semi-solid 
medium has in particular been applied to investigate self-renewal 
potential of leukemic stem cells which in contrast to HSCs, have 
reduced ability to differentiate and in some leukaemia can 
preserve their stem-like activity in the culture following several 
passages. Following serial replating, progenitor cells that lack 

self-renewal will not generate colonies that can be replated, 
whereas colonies derived from HSCs or leukemic stem cells can 
go through additional passages.

In long-term culture assays, such as the long-term culture 
initiating-cell assay, the ability of cells to sustain CFC activity is 
assessed after an initial stromal cell co-culture period of 6 weeks 
or longer. Following such long culture, the only cells that can 
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Figure 1.3  Human haemopoietic stem and progenitor cell assays. (a) Overview of haemopoietic stem and progenitor cell assays where 
differentiation potential towards one or more blood cell lineages are explored (unipotent, oligopotent or multipotent) in vitro and in vivo. The 
ability to assess self-renewal potential is indicated where the scale indicates the relative longevity of the assay. Although in vitro assays and 
xenotransplantation are important for addressing the potential of haemopoietic cells, fate-mapping cells in human individuals is the only 
assay that provides information on behaviour of the cells under physiologic conditions. (b) Flow cytometry allows high-throughput analysis 
of protein expression on single cells within complex tissues by staining with fluorescently-tagged antibodies that bind to specific antigens 
expressed on the cell surface. Following exposure to specific laser light that excites the fluorescent marker, emitted light will be detected, 
where the level of emitted light is proportional to the number of molecules (antigens) expressed on the cell surface and bound the different 
fluorescently-tagged antibodies. As a result, different cells can be purified based on their cell surface expression patterns and then compared 
for their ability to read out in haemopoietic stem cell assays.



Hoffbrand’s Postgraduate Haematology

8

sustain ability to generate either myeloid or erythroid colonies 
upon transfer to semi-solid CFC culture are the cells that are 
endowed with extensive self-renewal potential. Cells that lack 
self-renewal potential, such as short-lived progenitor cells, are 
not able to sustain this long period of stromal cell co-culture, and 
therefore not able to produce colonies when transferred to the 
semi-solid medium. Three-dimensional scaffold cultures have 
also been applied to support long-term differentiation cultures.

Xenotransplantation assay

In vitro assays have been essential for the identification and 
characterisation of candidate human haemopoietic stem and 
progenitor cells, as well as providing a system where manipula-
tions of extrinsic (cytokines, stromal cells and extracellular 
matrix proteins) and intrinsic (transcription factors, cytokine 
receptors and DNA integrity) factors can be investigated under 
controlled experimental settings to evaluate their impact on 
haemopoietic functional potential. However, mimicking the 
complex three-dimensional environment where HSCs reside in 
the human bone marrow is challenging to recapitulate with 
in  vitro conditions. In particular, maintaining the quiescent 
nature of HSCs in adult BM has so far been unsuccessful in vitro. 
Furthermore, no single in vitro assays, neither after short- and 
long-term culture, have been demonstrated to fully address the 
potential to generate all blood cell lineages (multipotency). As a 
result, the development of an in vivo assay that allows assess-
ment also of human haemopoietic stem and progenitor cells has 
been important.

Delineation of the haemopoietic hierarchy has been explored 
in mouse models, where single HSC transplantations have con-
clusively established the existence of truly multipotent HSCs 
with long-term self-renewal potential by the ability of a single 
HSC to reconstitute all mature lineages of the haemopoietic 
system, and can sustain this ability following serial transplanta-
tion. An important factor for allowing such experiments in 
mice is the ability to transplant donor cells that do not elicit an 
immunological rejection response by the recipient cells follow-
ing transplantation. This has been possible through the use of 
mice on the same genetic background whilst still allowing the 
ability to distinguish between donor- and recipient-derived 
cells. Establishing such an in  vivo assay for human cells, 
however, required further development, as it is not possible to 
perform similar controlled experiments in human recipients, 
and transplantation into wild-type mice will result in the 
immediate rejection of human cells due to species incompati-
bility (xeno-rejection). Realising the importance of an in vivo 
assay that enables investigation of human haemopoiesis, much 
efforts have been focused towards the development of immune-
compromised mouse models that would not reject transplanted 
human cells.

Initial studies exploring the possibility of engrafting human 
haemopoietic cells in mice were performed using severe 

combined immune-deficient (Scid) mice that lack B and T cells. 
These studies demonstrated that human cells indeed could 
engraft in immunocompromised mice but it was not possible to 
demonstrate whether engraftment originated from multipotent 
human HSCs, as only lymphoid cells were observed in these 
early studies. Only by combining transplantation of human cells 
with infusion of human haemopoietic growth factors, including 
interleukin 3 (IL-3), GM-CSF and stem cell factor (SCF) was the 
long-term generation of lymphoid and myeloid cells observed, 
supporting that also multipotent and long-lived human stem or 
progenitor cells can engraft mice. However, as Scid mice were 
not fully immunocompromised, with spontaneous emergence 
of both mouse B and T cells, the immunocompromised mouse 
models have gone through series of genetic modifications to 
further enhance their ability to support long-term in vivo stud-
ies of human cells.

By crossing Scid mice to nonobese diabetic (NOD) mice to 
generate NOD/Scid mice, the rejection mediated by the mouse 
innate immune system was inhibited as the protein Sirpa 
expressed on NOD/Scid myeloid cells could bind to CD47 
expressed on human cells, thereby preventing phagocytosis of 
human cells. Additionally, the NOD/Scid mice have been fur-
ther modified to ablate expression of the common γ chain 
receptor, critical for transmitting signals from haemopoietic 
growth factors required for lymphoid differentiation. In addi-
tion to being more immunocompromised than the NOD/Scid 
mice, as NOD/Scid/common γ chain knockout (NSG) mice 
lack B, T and NK cells, the NSG mouse model also allows for 
more long-term studies as the risk for spontaneous lymphoma 
development is dramatically reduced in comparison to what 
seen in ageing NOD/Scid mice. Both NOD/Scid and NSG mice 
support long-term multipotent differentiation from trans-
planted human HSCs, including development of mature mye-
loid, lymphoid and erythroid cells. However, as several mouse 
haemopoietic growth factors are not cross-reactive to human 
cells, several critical components for supporting maintenance, 
propagation and differentiation of human haemopoietic cells 
are lacking. As a result, even newer generations of mice have 
been developed where factors supporting human haemopoietic 
growth and differentiation are expressed in the mouse bone 
marrow environment, including haemopoietic growth factors, 
as well as human leukocyte antigens (HLA) critical for allowing 
generation of mature T lymphocytes.

Fate-mapping

The use of immunocompromised mice has enabled in  vivo 
studies of human HSC and progenitor cells, even down to the 
single cell level, and as such represent an essential tool for the 
characterisation of human haemopoiesis. However, this still is 
an assay where human cells are transferred into a stressed 
environment which lack several factors critical for supporting 
human haemopoiesis due to species incompatibility. As a 
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result, xenotransplantation does not necessarily reflect the 
behaviour of human cells under normal physiological condi-
tions in the human bone marrow. Studies on mouse hae-
mopoiesis using elegant genetically-modified mouse models 
have highlighted differences in the contribution of mouse hae-
mopoietic stem and progenitor cells to active blood produc-
tion under normal unperturbed conditions (steady-state) as 
compared to following stress, such as after transplantation. 
These studies, where the fate of different haemopoietic stem 
and progenitor cells are tracked over time (fate-mapping), 
have until recently been challenging to apply to studies 
of  human haemopoiesis as the they depend on genetic 
modification of the mouse genome to generate suitable mouse 
strains for this purpose. However, with the advances in next-
generation DNA sequencing, fate-mapping approaches 
can now be applied to study human haemopoiesis. Although 
X  chromosome inactivation provided some insights, the 
advancement of DNA sequencing has allowed the ability to 
track the fate of single HSCs and long-lived progenitor cells 
within an individual, as will be explained in a separate section 
later.

Identification of human haemopoietic 
stem cells

As HSCs are rare in adult bone marrow, where as few as only 
one in a million bone marrow cells in human bone marrow 
represent a transplantable HSC, further enrichment is required 
in order to separate these cells from other cells in the bone 
marrow. In addition to the assays for evaluation of the func-
tional behaviour of human haemopoietic cells, the develop-
ment and application of fluorescently tagged antigen-specific 
antibodies combined with fluorescent activated cell sorting 
(FACS), has allowed the prospective identification and purifi-
cation of haemopoietic stem and progenitor cells with differ-
ent functional characteristics (Figure 1.3b). As haemopoietic 
cells in bone marrow and peripheral blood already are in 
single-cell suspension and easily accessible for collection from 
healthy and diseased individuals, these are particularly 
amenable to FACS. By staining haemopoietic cells with fluo-
rescently tagged monoclonal antibodies recognising and spe-
cifically binding cell surface antigens, the protein expression 
on thousands of single cells can be analysed per second and 
viable cells with different expression patterns can be extracted 
for investigation in different haemopoietic assays. In initial 
studies, only a few cell surface markers could be investigated 
simultaneously, but with development of new fluorescent col-
ours that can be tagged to antibodies and separated from one 
another based on the wavelength of emitted light following 
excitation of focused laser lights, current technology allows 
for the simultaneous analysis of more than 20 cell surface 
markers on single cells.

By combining FACS with the haemopoietic assays described 
above, it has been possible to enrich cells with HSC properties 
based on their cell surface expression pattern. In addition to 
enriching human HSCs by exclusion of known markers 
expressed on mature blood cells (so-called lineage markers), 
expression of the cell surface glycoprotein CD34, expressed by 
approximately 5% of the cells in adult human bone marrow, 
allows for purification of human HSCs. Although studies have 
reported that some human HSC activity can be found also out-
side of the CD34+ cells, it is proposed that at least 99% of 
human HSCs are confined within the CD34+ compartment. 
However, as the majority of the CD34+ cells represent non-
HSCs, including multipotent and oligopotent progenitor cells, 
additional markers have been identified to further separate 
HSCs from CD34+ non-HSCs. The culmination of this work 
has led to the current phenotype allowing for the highest 
enrichment of human HSCs from both cord blood and adult 
bone marrow to encompass cells that lack expression of lineage 
markers (Lineage−), are positive for CD34 and CD90, and neg-
ative for CD38 and CD45RA. By further sub-fractionating 
Lineage−CD34+CD38−CD90+CD45RA− cord blood cells-based 
expression of CD49f and ability to exclude the triarylmethane 
dye Rhodamine, a further enrichment can be achieved, where 
14–28% of Lineage−CD34+CD38−CD90+CD45RA−CD49f+Rho
damine− cord blood cells were able to long-term reconstitute 
myeloid and lymphoid lineages following single cell transplan-
tation into NSG mice. To date, this represent the most stringent 
and highest enrichment of human HSCs that have been dem-
onstrated experimentally through single cell transplantation, 
where the inclusion of additional candidate markers, such as 
EPCR, could allow even further enrichment of bona fide 
human HSCs.

The application of cell surface molecules to enrich for 
human HSCs will be important for further functional charac-
terisation of human HSCs. Although previously viewed as a 
relatively homogenous population, the mouse HSC compart-
ment has recently been shown to include multiple HSC sub-
sets, all endowed with long-term self-renewal potential but 
with different preferences in their contribution towards 
mature blood cell lineages. Single mouse HSC transplantation 
experiments have revealed that all mouse HSC subsets 
actively contribute to the platelet lineage, but with the excep-
tion of HSCs contributing to all mature blood cell lineages, 
these studies have demonstrated that the adult mouse bone 
marrow contains a high frequency of HSCs which lack contri-
bution towards one or more blood cell lineages. HSCs exclu-
sively contributing to mature platelets were the only 
uni-lineage HSC detected in these studies. Platelets generated 
from megakaryocytes are critical for preserving normal body 
function and life through their ability to prevent life-
threatening bleeding. Mature megakaryocytes undergo mul-
tiple rounds of endomitosis, increasing ploidy and cytoplasm 
to ultimately allow platelet formation (see Chapter  40 for 
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more details on platelet formation and function). Although 
platelets are the second most abundant cell in blood (after red 
blood cells), they have the shortest lifespan and critically 
dependent on efficient production from HSCs. Interestingly, 
both in human and mouse haemopoiesis alternative differen-
tiation pathways for the generation of mature platelets from 
haemopoietic stem and progenitor cells have been proposed, 
including so-called emergency pathways which bypass inter-
mediate multipotent progenitor cell stages and allow the gen-
eration of megakaryocyte progenitor cells directly from 
HSCs. The identification of human HSC subsets generating 
platelets through alternative and potentially faster differentia-
tion pathways has clinical relevance as these represent candi-
date pathways that can be exploited therapeutically to 
expedite platelet production in patients with life-threatening 
platelet deficiencies.

The ability to enrich human HSCs has not only been impor-
tant for allowing cellular, molecular and functional characteri-
sation of human HSCs, but has also been applied in clinical 
practice. Allogeneic bone marrow transplantation, where the 
donor bone marrow originates from a person that has a similar 
but not fully identical HLA match to the recipient, carries the 
risk of promoting a graft-versus-host-disease (GvHD) mediated 
by the donor T cells included in the transplant which mediate 
an allogeneic immune reaction against the recipient’s own cells. 
In the worst case, such a reaction can have deadly outcome. In 
an effort to minimise the severity of the GvHD reaction, identi-
fying a way to reduce the number of T cells included in the 
transplant without impacting the number of HSCs required for 
the reconstitution of recipient haemopoiesis was explored. 
Towards this, CD34 enrichment is sometimes used for this pur-
pose, allowing the simultaneous enrichment of HSCs and deple-
tion of T cells from whole bone marrow, as well as peripheral 
blood following donor-conditioning with a HSC mobilising 
agent that recruits CD34+ cells from the bone marrow into 
peripheral blood.

Development of haemopoietic stem cells

Although the bone marrow is the primary site of HSCs and 
blood cell production in the adult, the emergence, expansion 
and differentiation of HSCs takes place at different sites and 
time points during embryonic development. Studies in mice 
and human embryos have shown a conserved appearance of 
the first haemopoietic cells, which are first detected in the 
human extra-embryonic yolk sac already 16–18.5 days post-
conception. However, these cells lack bona fide HSC activity 
as the direct isolation of cells capable of reconstituting all 
blood lineages so far has not been possible from these first 
haemopoietic cells found in the developing yolk sac and are 
referred to as primitive haemopoiesis. Instead, the first HSCs 

and definitive haemopoiesis originate from within the human 
embryo around 19–27  days post-conception, where emerg-
ing haemopoietic cells can be found as budding off from 
endothelial cells lining the dorsal aorta in the aorta-gonad 
mesonephros region. Upon establishment of circulation, 
these cells migrate to and seed the fetal liver, which represent 
the major site of HSCs and haemopoietic differentiation dur-
ing the embryonic period. In contrast to the highly quiescent 
HSCs in adult bone marrow, HSCs are during embryonic 
development highly proliferative and to a large degree 
undergo symmetric self-renewal divisions resulting in the 
rapid expansion of the number of HSCs in the embryo. This 
is critical, as the pool of HSCs required to sustain haemopoie-
sis through adult life are formed during this period. Shortly 
before birth, HSCs migrate from the fetal liver and other 
embryonic haemopoietic sites to seed the bone marrow 
which now takes over as the primary haemopoietic organ. In 
the mouse, bone marrow HSCs still remain in a proliferative 
phase for a period of around 3–4  weeks after birth, where-
upon they enter the quiescent phase of the cell cycle and 
remain largely dormant unless stimulated to exit quiescence 
following exposure to stress.

In light of the challenges with recovery of sufficient HSCs 
for clinical application, including bone marrow trans
plantation, the mechanisms regulating the distinct prolifera-
tive states and symmetrical self-renewal divisions during 
embryonic and adult haemopoiesis has been a major focus. 
Uncovering the conditions and regulatory mechanisms that 
allow for rapid HSC expansion without loss of multipotency 
and self-renewal potential represents a key to unlocking the 
ability to expand HSCs for clinical use. Recent techniques 
have been developed which allow the ex  vivo expansion of 
human and mouse HSC and now awaits clinical validation. 
Several transcription factors have been implicated towards 
this and this remains a major interest for translational biolo-
gists. Although the site of HSC and active haemopoiesis does 
not change following birth, ageing is associated with altered 
HSC performance and output. Both in mice and humans, 
the number of phenotypic HSCs expands with age. However, 
they appear to loose both proliferative potential and capacity 
for  multi-lineage differentiation. In particular lymphoid 
potential is reduced with ageing, resulting in skewed myeloid 
differentiation from aged HSCs. Similarly, the frequency 
of  single mouse HSCs capable of reconstituting mouse 
haemopoiesis declines with age.

Regulation of haemopoietic stem cells

The preservation of the normal HSC pool in the adult bone 
marrow, including maintaining their predominant quiescent 
state during steady-state haemopoiesis and the activation of 


