Soft Materials-Based Biosensing Medical Applications

Edited by Deepak Gupta, Milan Singh, Rishabha Malyiya and Sonali Sundram

Soft Materials-Based Biosensing Medical Applications

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Soft Materials-Based Biosensing Medical Applications

Edited by Deepak Gupta Milan Singh Rishabha Malviya and Sonali Sundram

This edition first published 2025 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2025 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www. wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchant-ability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-21355-9

Front cover image courtesy of Adobe Firefly Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Foreword				
Preface				
1	Intr	oducti	on to Soft Materials	1
	Ath	ul Saty	a and Ayon Bhattacharjee	
		List o	f Abbreviations	1
	1.1	Intro	duction	1
	1.2	Brief	Introduction to Theories of Soft Matter	2
	1.3	Class	ification of Soft Materials	3
		1.3.1	Colloids	3
		1.3.2	Polymers	6
		1.3.3	Liquid Crystals	7
		1.3.4	Foams	10
	1.4	Hydr	ophobic and Hydrophilic Materials	11
	1.5	Chara	acteristics of Soft Matter	12
		1.5.1	Length Scale Between Atomic and Macroscopic	12
		1.5.2	The Importance of Thermal Fluctuations and Brownian Motion	13
		1.5.3	Tendency to Self-Assemble Into a Hierarchical Structure	16
		1.5.4	Importance of Short-Range Force and Intermolecular Forces	18
		1.5.5	Why Quantum Mechanics is Insignificant in Soft Matter?	21
	1.6	Sumr	nary	22
		Refer	ences	22
2	Syn	thesizi	ng Soft Materials: Lab to an Industrial Approach	25
	Var	sha Jai	n, Tarang Gupta and Madhusudan Maity	
		List o	f Abbreviations	26
	2.1	Intro	duction	27
	2.2	Soft C	Condensed Matter	28
		2.2.1	Colloids	29
			2.2.1.1 Challenges and Outlook	29
		2.2.2	Polymers	31
			2.2.2.1 Challenges and Outlook	32
		2.2.3	Liquid Crystals	35
			2.2.3.1 Thermotropic LCs	36
			2.2.3.2 Lyotropic LCs	36

		2233 Metallotropic I Co	38
	23	Synthesis of Smart Eurotional LCs	30
	2.5	2.3.1 Calamatic I C	38
		2.3.1.1 Acyclic Compounds	39
		2.3.1.2 Cyclic Compounds	39
		2.3.1.3 Steroids	39
		2.3.1.4 Metal Complexes	39
		2.3.1.5 Salts	40
		2.3.2 Discotic LC	41
		2.3.2.1 Physical Properties of Columnar Mesogens	42
		2.3.2.2 Classes of Compounds	43
		2.3.3 Bent-Core LCs (BLCs)	49
		2.3.3.1 Structure of BLC	49
		2.3.3.2 Structure–Property Relationship	51
	2.4	Conclusions	66
		References	67
3	Liqu	uid Crystal as a Potential Biosensing Material	81
	Ath	ul Satya, Tayssir Missaoui, Gurumurthy Hegde and Ayon Bhattacharjee	
		List of Abbreviations	81
	3.1	Introduction	82
	3.2	Classification of LC Biosensor	84
		3.2.1 LC-Solid Interface Biosensor	84
		3.2.2 LC-Aqueous Interface Biosensor	87
		3.2.3 LC-Droplet Interface Biosensor	89
	3.3	LC-Microfluidic Biosensor	90
		3.3.1 Microfluidics at LC-Solid Interface	90
		3.3.2 Microfluidics at LC-Aqueous Interface	91
	2.4	5.5.5 Microfluidics at LC-Droplet Interface	92
	3.4 2.5	Electric Field-Assisted Signal Amplified LC Biosensor	93
	3.5	LC-Dased Whispering Gallery Mode Microcavity Diosensing	93
	3.7	Summary	98
	5.7	References	98
4	Cho	esteric Liquid Crystal Emulsions for Biosensing	103
•	Buc	hajah Gollapelli and Javalakshmi Vallamkondu	105
	2000	List of Abbreviations	103
	4.1	Introduction	104
		4.1.1 Introduction to Biosensors	104
		4.1.2 Introduction to LCs	106
		4.1.3 Classification of LCs	107
		4.1.4 Optical Properties of CLCs	109
		4.1.5 LCs in Flat Geometries	110
		4.1.6 LCs in Curved Geometries	111
	4.2	Fabrication of LC Emulsions	114

	4.3	CLCs in Biosensor Applications	118
		4.3.1 Biosensing Based on Flat Geometry of CLCs	118
		4.3.2 Biosensing Based on CLC Droplets	120
		4.3.3 Biosensing Based on CLC Double Emulsions	123
	4.4	Challenges and Opportunities	124
	4.5	Conclusions	124
		References	125
5	Des	ign and Study of Ionic Hydrogel Strain Sensors for Biomedical	
5	App	lications	131
	Aan	chal Saxena	
		List of Abbreviations	131
	5.1	Introduction	131
	5.2	Applications in Biomedicine	133
		5.2.1 Strain Gauges	133
		5.2.2 Drug Delivery	134
		5.2.3 Electronic Skins	134
		5.2.4 Human Motion Detection	134
		5.2.5 Health Monitoring and Medical Diagnosis	135
	5.3	Hydrogels	135
		5.3.1 Conductive Ionic Hydrogels	136
		5.3.2 Fabrication	136
	5.4	Hardware	137
	5.5	Characteristics of the Hydrogel	139
	5.6	Limitations	139
	5.7	Conclusions and Further Study	139
		Acknowledgments	139
		References	140
6	Coll	oidal Nanoparticles as Potential Optical Biosensors for Cancer Biomarkers	145
	Kar	thika Lakshmi Servaravan. Maziah Mohd Ghazaly.	
	Mar	iickam Sundarapandi, Jagathiswary Ganasan, Kavin Tamilselvan,	
	Syal	hidatun Nisak Amir, Nur Arisya Farazuana Dzulkifli,	
	Noo	r Fatin Shabira Mohd Azli, Rameshkumar Santhanam	
	and	Vasantha Vairathevar Sivasamy	
		List of Abbreviations	145
	6.1	Introduction	146
	6.2	Cancer Biomarkers	149
	6.3	Colloidal NP-Based Optical Biosensors for Cancer Biomarkers	150
		6.3.1 Gold NP-Based Optical Biosensors for Cancer Biomarker Detection	151
		6.3.2 Silver NP-Based Optical Biosensors for Cancer Biomarker Detection	152
		6.3.3 Quantum Dot-Based Optical Biosensors for Cancer Biomarker	
		Detection	152
		6.3.4 Graphene-Based Optical Biosensors for Cancer Biomarker Detection	156
		6.3.5 Composite Colloidal NP-Based Optical Biosensors for Cancer	
		Biomarker Detection	157

viii	Contents
* ***	CONTENTO

	6.4	Oppo	rtunities,	Challenges, and Future Perspectives	157			
	6.5	Conc	lusions		158			
		Ackn	owledgm	ent	159			
		Refer	ences		159			
7	Poly	meric	Compos	ite Soft Materials for Anticancer Drug Delivery				
	and	Detect	tion	0 1	165			
	Tha and	ngaras Vairat	u Mohan hevar Siv	raj, Thavasilingam Nagendraraj, Jamespandi Annaraj vasamy Vasantha				
		List o	f Abbrevi	ations	166			
	7.1	Intro	duction		168			
		7.1.1	Soft Ma	terials	170			
			7.1.1.1	Polymer Nanocomposites as Soft Materials	170			
			7.1.1.2	Role of Polymer Nanocomposites in Drug Delivery				
				and Biosensors	170			
			7.1.1.3	Importance of Drug Delivery and Detection of Anticancer				
				Drugs	171			
	7.2	Polyn	ner Comp	posite Soft Material–Based Anticancer Drug Delivery	176			
		7.2.1	Factors	Affecting Drug Release	177			
		7.2.2	Drug D	elivery Systems for Antimetabolites	177			
		7.2.3	Drug D	elivery Systems for Alkylating Agents	178			
		7.2.4	Drug D	elivery Systems for Anthracyclines	179			
		7.2.5	Drug D	elivery Systems for Plant Alkaloids	180			
		7.2.6	Drug D	elivery Systems for Kinase Inhibitors	183			
	7.3	Polyn	Polymer Composite Soft Material-Based Sensors for Anticancer					
		Drug	Detection	n	184			
		7.3.1	Electroc	chemical Sensors for Anticancer Drugs	184			
			7.3.1.1	Electrochemical Sensors for Antimetabolites	185			
			7.3.1.2	Electrochemical Sensors for Alkylating Agents	186			
			7.3.1.3	Electrochemical Sensors for Plant Alkaloids	193			
			7.3.1.4	Electrochemical Sensors for Anthracyclines	193			
			7.3.1.5	Electrochemical Sensors for Kinase Inhibitors	194			
			7.3.1.6	Electrochemical Sensors for Some Other Anticancer Drugs	195			
		7.3.2	Polymer	r Composite Soft Material–Based Optical Sensors				
			for Anti	cancer Drugs	195			
			7.3.2.1	Optical Sensor for Antimetabolites	195			
			7.3.2.2	Optical Sensor for Alkylating Agents	197			
			7.3.2.3	Optical Sensor for Plant Alkaloids	197			
			7.3.2.4	Optical Sensors for Anthracyclines	198			
			7.3.2.5	Optical Sensor for Kinase Inhibitors	198			
			7.3.2.6	Optical Sensors for Other Anticancer Drugs	198			
	7.4	Discu	ission		199			
	7.5	Conc	lusion		206			
		Ackn	owledgm	ent	206			
		Refer	ences		206			

8	Nan	otechnology-Doped	Soft Material-Based Biosensors	217
	Smr	iti Ojha, Ankita Moh	arana, Gowri Shankar Chintapalli,	
	Shiv	endra Mani Tripathi	and Sudhanshu Mishra	
		List of Abbreviation	S	218
	8.1	Introduction		218
	8.2	The Principle Behin	d Doped Soft Nanomaterial-Based Biosensor	219
		8.2.1 Immobilizati	on of Biological Molecules	220
		8.2.2 Transduction	of Biochemical Signals	220
		8.2.3 Readout of th	ne Sensor Signal	220
	8.3	Classification of Sof	t Materials	221
		8.3.1 Organic Soft	Matter	222
		8.3.2 Soft Organic	Thermoelectric Materials	223
		8.3.3 Soft Magnetie	c Materials	223
		8.3.4 Biological So	ft Materials	224
	8.4	Physical and Chemi	cal Behavior of Soft Material	224
	8.5	Synthesis of Soft Na	nomaterial–Based Biosensor	225
		8.5.1 Selection of S	Soft Nanomaterial	225
		8.5.2 Functionaliza	ation of the Soft Nanomaterial	225
		8.5.3 Integration o	f Transducer	225
		8.5.4 Optimization	of Sensor Performance	226
	8.6	Application of Nanc	o-Based Biosensor	227
	8.7	Emerging Trends an	d Future Directions in Nanotechnology-Doped Soft	
		Material-Based Bios	sensors	227
	8.8	Challenges and Lim	itations	228
	8.9	Conclusion		228
		References		229
~	0			
9	Can	cer Cell Biomarker I	Exosomes are Detected by Biosensors Based	
	on	off Materials		233
	Sub	ha Ranjan Das		
	9.1	Introduction		233
	9.2	Exosome Biogenesis	s, Isolation, and Study of Exosome Composition	235
	9.3	Exosome Profiling		237
		9.3.1 Protein Profi	ling	237
		9.3.2 Nucleic Acid	Profiling	238
		9.3.3 Assessment of	f a Single Exosome	239
	9.4	Exosomes Produced	l by Cancer: Clinical Evaluation	239
		9.4.1 Pancreatic Ca	ancer	239
		9.4.2 Lung Cancer		240
		9.4.3 Colorectal Ca	ancer	240
		9.4.4 Breast Cance	r	241
		9.4.5 Other Cancer	rs	241
	9.5	Important Biosenso	r-Related Components	242
		9.5.1 Recognition		242

		9).5.1.1	Recognition Moieties	242
		9).5.1.2	Surface Functionalization	243
		9.5.2 1	Transdu	cers for Biosensor	243
		9.5.3 S	ignal P	rocessing	244
	9.6	Soft Ma	terial-F	Based Biosensors are a Recent Development in Cancer Cell	
		Biomarl	ker Exo	some Detection	245
		9.6.1 (Colorim	letric Biosensors	246
		9.6.2 F	luoresc	cent Biosensors	248
		9.6.3 S	urface I	Plasmon Resonance Biosensors	251
		9.6.4 S	burface-	Enhanced Raman Scattering Biosensors	252
		9.6.5 E	Electroc	hemical Biosensors	255
		9).6.5.1	Voltammetric Biosensors	255
		9).6.5.2	Impedimetric Biosensors	257
		9).6.5.3	Amperometric Biosensors	259
	9.7	Conclus	sion and	d Future Perspectives	261
		Referen	ces		263
10	Nati	iral-Pro	duct-Ba	ased Soft Materials in Electrochemical Biosensors	
10	for (Cancer B	iomark	kers	275
	Shui	ımuga N	ainar S	Shunmuga Nathan, Wan Irvani Wan Ismail,	
	Pira	man Sha	ıkkthive	el, Vairathevar Sivasamy Vasantha and Mathew Mathew	
		List of	Abbrev	viations	276
	10.1	Introd	uction		278
	10.2	Biopol	ymer C	composite-Based Electrochemical Biosensors for Cancer	
		Bioma	rkers	•	281
		10.2.1	β-Cyc	clodextrin-Based Electrochemical Biosensors	
			for Ca	ancer Biomarkers	281
		10.2.2	Chito	san-Based Electrochemical Biosensors for Cancer Biomarkers	283
		10.2.3	Other	r Biopolymer Composite-Based Electrochemical Biosensors	
			for Ca	ancer Biomarkers	286
	10.3	Protein	n/Amin	o Acid-Based Electrochemical Biosensors for Cancer	
		Bioma	rkers		287
		10.3.1	Strept	tavidin-Based Proteins in the Electrochemical Detection	
			of Ca	ncer Biomarkers	287
		10.3.2	Cyste	amine-Based Amino Acid Derivatives in the Electrochemical	
			Biose	nsors for Cancer Biomarkers	290
		10.3.3	Other	r Proteins/Amino Acid Derivatives in the Electrochemical	
			Detec	ction of Cancer Biomarkers	292
	10.4	Oppor	tunities	s, Future Recommendations, and Challenges	293
	10.5	Conclu	isions		303
	10.6	Ackno	wledgm	ients	303
		Refere	nces		303
11	Rece	ent Adva	nces an	d Development in 3D Printable Biosensors	311
	Lata	Sheo Ba	ichan U	Ipadhyay and Pratistha Bhagat	
		List of	Abbrev	viations	312
	11.1	Introd	uction		313

	11.2	3D Prir	ntable Biosensors Based on Technology	317
		11.2.1	Role of Material Extrusion in Biosensor Development	317
			11.2.1.1 Fused Deposition Modeling (FDM)	319
			11.2.1.2 Inkjet Printing	319
			11.2.1.3 Aerosol Jet Printing (AJP)	320
		11.2.2	Role of Vat Photopolymerization in Biosensor Development	322
			11.2.2.1 Stereolithography (SLA)	323
			11.2.2.2 Digital Light Processing (DLP)	325
		11.2.3	Role of Material Jetting in Biosensor Development	325
	11.3	3D Prir	ntable Biosensors Based on Product Type	326
		11.3.1	Wearable Biosensors	327
		11.3.2	Non-Wearable Biosensors	328
	11.4	3D Prir	ntable Biosensors Based on Medical Applications	329
		11.4.1	Disease Diagnosis	329
		11.4.2	Pathogen Detection	331
		11.4.3	Drug Detection and Drug Delivery	332
	11.5	3D Prir	ntable Biosensors Based on Sensor Types	332
		11.5.1	Enzymatic Biosensors	333
		11.5.2	Optical Biosensors	334
	11.6	Conclu	sion	334
		Referen	nces	335
12	Com	putation	al Panorama of Soft Material for Biosensing Applications	341
	Deep	ak Kajla	, Dinesh Kumar Sharma and Amit Mittal	
	1	Abbrev	iations	341
	12.1	Introdu	iction	343
		12.1.1	The Computational Landscape of Soft Materials for Biosensing	
			Application	344
		12.1.2	Basics and Uses of Nanomaterials in Biosensors	344
		12.1.3	Nano-Inspired Plant Biosensor Trends	345
		12.1.4	Electrochemical Biosensors: An Examination of Functional	
			Nanomaterials for Real-Time Monitoring	346
		12.1.5	The Bio-Nano Internet of Things with Redox and Electrochemistry	346
		12.1.6	A Rigorous Evaluation of Nanomaterial-Based Fluorescence	
			Biosensors for Environmental Pollutant Detection	346
		12.1.7	Carbon Nano-Tube Yarn to Generate Electricity Using	
			Ferritin Biscrolled	347
		12.1.8	Biosensors Built on Nanomaterials for the Identification	
			of Cancer Cells	347
		12.1.9	A Look at Biosensors and the Most Current Developments	
			in Nanostructured Material-Enabled Biosensors	347
		12.1.10	Hybrid Materials That are Both Active and Based on Soft Matter	348
	12.2	Compu	itational Application of Soft Gel Biosensing Techniques	
		in Micr	rofluids	349
		12.2.1	Fluorescence Biosensors for Monitoring Essential Body Fluids	349

	12.2.2	Studying the Use of Disposable Voltammetric Immunosensors	
		on Microfluidic Apparatus for Biomedical, Industrial,	
		and Culinary Research	349
	12.2.3	3D Printed Microfluidic Devices and Advancement	350
12.3	Compu	itational Panorama of Soft Hydrogel Technique in Diagnostics	350
	12.3.1	Diagnostic Biosensors in Medicine	350
	12.3.2	Advancements and Problems in Chemiluminescence	
		for Bioimaging and Therapies	351
	12.3.3	Immunosensors with Bio-Chemiluminescence Detection	351
	12.3.4	High-Sensitivity Bioaffinity Electrochemiluminescence Sensors:	
		Achievements to Date and Possibilities for the Future	352
	12.3.5	Cell-Based Biosensors: Present Trends, Issues, and Possibilities	353
	12.3.6	Point-of-Care Nucleic Acid and Blood Diagnostics	353
	12.3.7	Biosensing for Typhoid and Paratyphoid Fever	354
	12.3.8	Continuous Cerebral Neural Activity Could be Recorded Using	
		Biosensing Neural Devices	354
12.4	Compu	itational Landscaping of Spectroscopy-Based Biosensors and Their	
	Applica	ations	354
	12.4.1	Surface-Enhanced Raman Spectroscopy-Based Biosensor	
		Applications	354
	12.4.2	Portable Electrochemical Impedance Spectroscopy-Based Sensing	
		System and their Application	355
	12.4.3	Computational Uses of Surface-Enhanced Raman Spectroscopy's	
		Chemometrics Techniques	356
	12.4.4	Enhancements to Surface-Enhanced Point-of-Care Raman	
		Scattering Sensors	356
	12.4.5	Surface-Enhanced Raman Scattering in Biochemical	
		and Pharmacological Studies	356
12.5	Use of '	Wearable Biosensors in Computation for Treatment, Diagnosis,	
	and Me	edical Monitoring	357
	12.5.1	Biosensors for Medical Monitoring that are Wearable	357
	12.5.2	A Novel Device that Uses EEG Data to Identify Seizures	
		in Real-Time	358
	12.5.3	Hybrid Gelatin Gels in a Wearable Device for Artificial Olfaction,	
		and the Effect of Film Thickness on Biosensing	358
12.6	Compu	itational Panorama of Optical Biosensor	359
	12.6.1	Applications at the Point-of-Care with Integrated Photonic	
		Biosensors	359
	12.6.2	Hydrogel-Based Nanocarbon for Nonlinear Optical Applications	360
12.7	Compu	itational Applications of Hydrogel-Based Sensor Networks	360
12.8	Hydrog	gel-Based Self-Supporting Materials with Computational Panorama	
	for Flex	xible/Stretchable Sensors	361
12.9	Waterb	orne Pathogen Detection Using Biosensors and Molecular	
	Technie	ques	362

	12.10	Applica The Lat	ations of Biomimetic Electrochemical Devices in Detecting	362
	12,11	for Sen	sing Applications	363
	12 12	Novel A	Aerial Image of Dissolving Microneedles Used for Transdermal	505
	12,12	Medici	ne Deliverv	363
	12.13	Making	Use of Potentiometric Biosensors to Find Biomarkers	364
	12.14	Biosens	sor Framework Enabled by Multiphoton Effects and Machine	
		Learnii	ng	364
	12.15	Conclu	sion	365
		Referer	nces	366
13	Soft N	Aaterial	s for Implantable Biosensors for Humans	369
	Periya	isamy A	nanthappan, Karuppathevan Ramki, Jayalakshmi Mariakuttikan,	
	Fatim	ah bint	i Hashim and Vairathevar Sivasamy Vasantha	
		List of	Abbreviations	369
	13.1	Introdu	action	372
	13.2	Nature	of Implantable Materials	373
	13.3	Import	ance of Soft Materials in the Field of Implantable Biosensors	373
	13.4	Types of	of Soft Materials	377
		13.4.1	Nanomaterial-Based Soft Materials	377
			13.4.1.1 Carbon Nanocomposites	377
			13.4.1.2 Metallic Nanocomposites	379
		13.4.2	Polymer Composite-Based Soft Materials	382
	13.5	Factors	Influencing the Implantable Biosensors	382
		13.5.1	Chemical Inertness	383
		13.5.2	Potential Window	383
		13.5.3	High Conductivity	384
		13.5.4	Biocompatibility	385
		13.5.5	Facile Surface Chemical Modification	385
		13.5.6	Mechanical Deformability	385
		13.5.7	Self-Powered Implantable Biosensors	386
	13.6	Applica	ations of Soft Materials for Implantable Biosensors in Humans	386
		13.6.1	Soft Material-Based Implantable Sensors for Diabetic Monitoring	386
		13.6.2	Soft Material-Based Implantable Sensors for Cancer Diagnosis	393
		13.6.3	Soft Material-Based Implantable Sensors for Kidney Dystunction	395
		13.6.4	Soft Material-Based Implantable Biosensors for the Neuro	200
		1265	Degeneracy Disease	399
	127	15.0.5 Challer	In Vivo Monitoring of pri Using Implantable Biosensors	407
	13./	Decom	iges for soft infaterials for implantable blosensors	40ð 711
	13.0	Conclu	licination	411 /12
	13.7	Acknow	viledaments	412 412
		Referen		412
		rererer		114

14	Treat	ment of Diabetic Patients with Functionalized Biomaterials	423
	Jyotsn	na Priyam	
		List of Abbreviations	423
	14.1	Background and Introduction	424
	14.2	Mechanism of Insulin Release in Diabetes Mellitus	425
	14.3	Relationship Between Diabetic Complications and Glycation Process	426
	14.4	Biomaterials and Their Surface Functionalization	428
	14.5	Surface Functionalization of Biomaterials Using Surface Modification	
		Technologies	429
	14.6	Biomaterials with Natural Polymer Bases to Treat Diabetes	430
	14.7	Biomaterials Based on Chitosan for the Treatment of Diabetes	432
	14.8	Synthetic Polymer-Based Biomaterials for the Treatment of Diabetes	432
	14.9	Hydrogel-Based Adaptable Biomaterials for Managing and Treating	
		Diabetes	434
	14.10	Topical Gel-Based Biomaterials for Diabetic Foot Ulcer Therapy	434
	14.11	Creating Immunomodulatory Biomaterials to Treat Diabetes	435
	14.12	Using Functionalized Biomaterials in Diabetic Wound Management	437
		14.12.1 Delivery System for Diabetic Wound Management	437
		14.12.2 As a Means of Administering Medications with Anti-Inflammatory	
		Properties	437
		14.12.3 Application of Functionalized Biomaterials in Diabetic Wounds as	100
		Bioactive Agencies Like Exosomes, Growth Factors, and Probiotics	438
		14.12.4 Role of Antibacterial Nanoparticles to Enhance Diabetic	420
		Wound Recovery	439
		14.12.5 Effects of Composite Biodegradable Biomaterials on the Healing	420
	1412	of Diabetic wounds	439
	14.13	Applications of Functionalized Biomaterials for Diabetes Mellitus-Related	4 4 1
	1 / 1 /	Conclusion and Future Score	441
	14.14	A stra suladamenta	442
		Deferences	442
		References	442
15	Treat	ment and Detection of Oral Cancer Using Biosensors: Advances	
	and P	Prospective	449
	Shatr	udhan Prajapati, Rishabha Malviya and Priyanshi Goyal	
		List of Abbreviations	449
	15.1	Introduction	450
		15.1.1 Biosensors are Necessary for Treatment	452
		15.1.2 Several Biosensor Types for Detecting Cancer	453
		15.1.3 Genomic Sensors	454
		15.1.4 RNA Biosensor	456
		15.1.5 Protein Biosensor	456
	15.2	Therapeutic Value of Mouth Liquids as a Bio Medium	457
		15.2.1 Saliva-Based Biosensors	458
	15.3	Salivary Metabolomics	459

		15.3.1	Salivary Proteomics	459
	15.4	Electro	chemical Biosensors	459
		15.4.1	Bio-Optical Sensors	460
	15.5	Biosen	sors on a Nanoscale	461
	15.6	Conclu	isions	461
		Referen	nces	462
16	Envir	onment	tal Aspect of Soft Material: Journey of Sustainable	
	and C	Cost-Eff	ective Biosensors from Lab to Industry	467
	Harsh	iita Ran	a, Pratichi Singh, Ashish Kumar Agrahari and Shikha Yadav	
		List of	Abbreviations	468
	16.1	Introdu	action	469
	16.2	Soft Ma	aterials	469
		16.2.1	Conducting Polymers	470
		16.2.2	Carbon Nanomaterials	470
		16.2.3	Carbon Nanotubes	470
		16.2.4	Carbon Metal Nanocomposites	471
		16.2.5	Metallic Noble Material	471
		16.2.6	Biomaterials and Biological Materials	471
		16.2.7	Additional Soft Materials	471
	16.3	Enviro	nmental Impact	472
	16.4	Biosen	sors	474
		16.4.1	Electrochemical Biosensors	475
		16.4.2	Optical Biosensors	476
		16.4.3	Wearable Biosensor	476
		16.4.4	Enzymatic Biosensors	477
		16.4.5	Immunosensors	477
		16.4.6	Whole Cell Biosensors	478
	16.5	Applica	ations of Biosensors in Several Disciplines	478
		16.5.1	Detection of Genotoxicity and Carcinogenicity	478
		16.5.2	Food Industry	478
		16.5.3	Medical Field	480
		16.5.4	Engineering in Metabolism and Biology of Plants	480
		16.5.5	Pharmaceutical Industries	481
		16.5.6	Detection of Pathogens	481
	16.6	Advan	cement in Biosensors	482
		16.6.1	Biosensor Immobilization	482
		16.6.2	Photochemical Biosensor	482
		16.6.3	Colorimetric Biosensor	482
	16.7	Fluores	scent Tag Biosensors	483
		16.7.1	FKE1-Based Assays	483
		16.7.2	Fluorescence Aptawitches	483
		16.7.3	FRET-Based Fluorescence Immunoassays	484
		16.7.4	Time-Resolved Fluorescence (TRF) Immunoassay	484
	16.8	Plasmo	onic Fiber Optic Biosensors	485

Index			493
	Referei	nces	487
16.9	Conclusion		486
	16.8.4	Surface Plasmon Sensor Implementations in Optical Fiber	486
	16.8.3	Localized Surface Plasmon Resonance	486
	16.8.2	Surface Plasmon Resonance	485
	16.8.1	Plasmonic Fiber Optic Absorbance Biosensor	485

Foreword

The field of biosensing has seen remarkable advancements in recent years. This book is a timely contribution, offering an in-depth understanding of the latest developments in soft material-based biosensors.

The book is divided into sixteen chapters, each authored by experts in the field, covering topics such as synthesizing soft materials, liquid crystals, ionic hydrogel strain sensors, natural product-based soft materials, nanotechnology-enhanced soft materials, and graphene oxide-based biosensors, among others. Each chapter explores the potential applications of these biosensors across various fields, including biomedicine, environmental monitoring, and drug delivery.

One of the key strengths of this book is its comprehensive coverage of soft material-based biosensors. The authors have done an excellent job of summarizing the current state-of-theart and offering insights into future research directions and opportunities in the field. It is also an excellent resource for graduate students and researchers new to soft material-based biosensors.

I am confident that this book will be a valuable resource for the scientific community, particularly for those involved in developing biosensors for various applications. I congratulate the editors and authors for their contributions in producing such an important work. I highly recommend this book to anyone interested in the field of soft material-based biosensors.

Dr. Shyamal Kumar Kundu Professor, Galgotias University, Greater Noida, India

Preface

Soft materials have gained significant attention in biosensing due to their unique properties, such as flexibility, biocompatibility, and responsiveness to external stimuli. This book highlights recent advancements in soft material-based biosensors and their applications across various fields, including biomedicine, environmental monitoring, and drug delivery. The book is divided into sixteen chapters, beginning with an introduction to soft materials and their unique properties. The following chapters explore various aspects of soft materialbased biosensors, including synthesizing soft materials, the use of liquid crystals as potential biosensors, ionic hydrogel strain sensors, natural product-based soft materials in electrochemical biosensors, nanotechnology-enhanced soft materials, and soft and flexible material-based affinity sensors.

Furthermore, the book delves into specific applications of soft material-based biosensors, such as detecting cancer biomarkers, drug delivery, and the detection and treatment of oral cancer. It also examines the use of functionalized biomaterials in treating diabetic patients and recent advancements in 3D printable biosensors. The final chapter focuses on the environmental implications of soft materials, highlighting their journey from the lab to industry, with a discussion on sustainable and cost-effective biosensors and their potential applications in environmental monitoring.

This book is designed for researchers, scientists, and graduate students interested in soft material-based biosensors and their applications. It offers a comprehensive overview of recent advancements in the field and their potential applications, from the lab to industry. We hope this book will inspire further research and development in soft material-based biosensors. We extend our gratitude to everyone who contributed to this important work, and to Martin Scrivener and Scrivener Publishing for making its publication possible.

The Editors December 2024

Athul Satya and Ayon Bhattacharjee*

Department of Physics, National Institute of Technology, Meghalaya, India

Abstract

Soft materials are a class of materials having properties intermediate between fluids and crystals. Colloids, liquid crystals, foams, gels, and polymer solutions are some examples of soft materials. The study of soft materials began with Alberts Einstein's work on Brownian motion. Pierre-Gilles de Gennes has been referred to as the "father of soft matter." The most important characteristics of soft materials include Brownian motion due to thermal fluctuation, short-range order of intermo-lecular forces, and its self-assembling tendency due to reaction-limited aggregation (RLA) and diffusion-limited aggregation (DLA). Soft materials experience a repulsive force because all the particles obey the Pauli-exclusion principle.

Keywords: Soft materials, Brownian motion, colloids, liquid crystals, polymers

List of Abbreviations

- DLA Diffusion-Limited Aggregation
- LCs Liquid Crystals
- LCD Liquid Crystal Display
- PVC Poly Vinyl Chloride
- RLA Reaction-Limited Aggregation
- SEM Scanning Electron Microscopy
- TBDA terephthalylidene-bis-[4-n-decylaniline]
- TEM Transmission Electron Microscopy

1.1 Introduction

Soft materials are a class of materials that include liquid crystals (LCs), colloids, foams, gels, and polymer solutions. Soft materials have complex properties intermediate between those of fluids and crystals, and they resemble naturally occurring systems like membranes and tissue systems. Pierre-Gilles de Gennes has been referred to as the "father of soft matter."

^{*}Corresponding author: ayonbh@gmail.com

Deepak Gupta, Milan Singh, Rishabha Malviya and Sonali Sundram (eds.) Soft Materials-Based Biosensing Medical Applications, (1–24) © 2025 Scrivener Publishing LLC

2 SOFT MATERIALS-BASED BIOSENSING MEDICAL APPLICATIONS

Figure 1.1 Different types of molecular architecture. (a) Flexible coil, (b) rigid rod, (c) polyrotaxane, (d) cyclic, (e) branched, (f) comb-branched, (g) star-branched, (h) loosely cross-linked, (i) tightly crosslinked, (j) interpenetrating network, (k) random hyperbranched, (l) dendrigrafts, and (m) dendrons.

In 1991, Pierre-Gilles de Gennes was awarded the Nobel Prize in Physics for his groundbreaking work demonstrating that the methods used to understand order phenomena in basic systems can be extended to the more complex field of soft matter. Specifically, de Gennes's research focused on the properties of LCs and polymers, two important classes of soft materials [1, 2]. Because of their huge molecular scale and entangled structure, soft materials such as polymers display distinctive dynamic behavior. The idea of reptation scaling theory provides a framework for understanding and describing the motion of entangled polymer chains. de Gennes and Edward's reptation model describes the dynamics of polymer chains in a melt by imagining them flowing within a tube. Entanglements and topological limitations imposed by interactions with other chains are shown by the tube. This model has proven significant in understanding polymer dynamics and rheology by providing insights into the behavior and mobility of polymer chains in melts. According to this hypothesis, the relaxation period in entangled systems is proportional to the cube of molecule mass. It was Pierre de Gennes who developed the concept of polymer reptation and derived scaling relationships. Later, another scientist from Cambridge, Sir Sam Edwards, devised tube models and predictions of the shear relaxation modulus. Based on the architecture, there are different kinds of molecular structures such as flexible coil, rigid rod, cyclic polymers, and polyrotaxane structures as shown in Figure 1.1. There are certain cross-linked structures such as loosely cross-linked polymers, densely cross-linked polymers, and interpenetrating networks. At the same time, there are branched structures such as random-short, random-long, regular comb, regular short-branched, and star-branched structures. Another class of soft materials is called dendritic, which consists of random hyperbranched, dendrigrafts, dendrons, and dendrimers [3].

1.2 Brief Introduction to Theories of Soft Matter

Soft matter systems have micrometer-scale diameters, resulting in their typical short-range order. By simplifying the system and focusing on essential elements, coarse-grained models

successfully reflect the behavior of soft matter. Brownian motion, which is caused by continual random motion, is a significant characteristic of soft matter, particularly colloidal particles. The ability of soft matter to self-assemble is an important trait that drives the development of complex structures. The Lennard–Jones potential, which accounts for van der Waals attractions and hard-sphere repulsion, is frequently used to explain interactions in soft materials. These theories will be discussed in detail in subsequent sections, providing further insights into soft matter phenomena.

1.3 Classification of Soft Materials

Soft materials can be classified into colloids, polymers, foams, gels, LCs, and biological membranes based on the structures and properties that they exhibit.

1.3.1 Colloids

A colloid has sub- μ m particles (but not single molecules) of one phase dispersed in a continuous phase. The size scale of the dispersed phase is between 1 nm and 1 μ m [4, 5]. The dispersed phase and the continuous phase can consist of either a solid (S), liquid (L), or gas (G). In a combination of any two of these phases, however, there is no gas-in-gas colloid because there is no interfacial tension between gases [6]. Figure 1.2 shows an example of a colloidal structure made by an element of gold [22]. The classification of colloids is shown in Table 1.1.

There are several ways for the preparation of colloids such as physical, chemical, as well as some dispersion methods, among which the given two methods are the most important:

- Physical method: Large-size particles can be dispersed into the colloidal dimensions by spraying, milling, or shaking and mixing.
- Chemical method: Using redox reactions, condensation, and precipitation, small, dissolved molecules can be condensed into larger colloidal particles.

Figure 1.2 TEM image of a colloid aggregate of gold showing DLA structure [22].

Dispersed phase	Continuous phase	Name	Examples
Liquid/Solid	Gas	Aerosol	Fog, hair spray, and smoke
Gas	Liquid/Solid	Foam	Beer froth, shaving foam, and poly(urethane) foam
Liquid	Liquid/Solid	Emulsion	Mayonnaise and salad dressing
Solid	Liquid	Sol	Latex paint and toothpaste
Solid	Solid	Solid suspension	Pearl and mineral rocks

Table 1.1 Classification of colloids.

The wettability of colloidal particles and the interactions that occur at the particlesurface contact are critical in determining the structure and equilibrium characteristics of interfaces that include colloidal particles [29]. The interactions of colloidal particles trapped at a fluid interface differ from those found in three-dimensional systems. This is because the fluid interface serves as a constrained habitat for the colloidal particles. A colloidal particle is thought to be linked to a fluctuating surface that divides two distinct phases with differing physicochemical properties, such as density, dielectric permittivity, and ionic strength. The properties of colloidal particle surfaces can be impacted by a variety of parameters, including the assembled size, shape, charge, wettability, and surface chemistry of the object. These characteristics influence the behavior of the interface, making it challenging to develop an analytical account of the interactions that occur in systems where colloids are confined at fluid interfaces. There are certain forces that influence the assembly of colloidal particles. These forces are divided mainly into two categories: direct interactions and external interactions.

Direct interactions are naturally tied to colloidal object properties such as size, shape, the chemical composition of the surface, the charge carried by the colloidal particles, and their roughness. These parameters regulate the attractive or repulsive forces experienced by the particles and impact their arrangement at the contact as shown in Figure 1.3. External interactions, on the other hand, are connected with the presence of external fields operating on single objects or groups of particles. These fields can impose forces such as electric, magnetic, or gravitational forces on colloidal particles, affecting their placement and alignment [7].

The interfacial area of the colloid is an important factor that affects the behavior of colloids. For a spherical particle having radius r, the ratio of surface area to volume is

$$\frac{A}{V} = \frac{4\pi r^2}{\frac{4}{3}\pi r^3} \approx \frac{1}{r}$$
(1.1)

The interface becomes more significant when the size of the particles is small. Consider a 1-cm³ phase dispersed in a continuous medium. If it is made up of a single particle, then the surface area is 0.0006 m². In case the particle is broken into smaller fragments, then the surface area increases drastically as shown in Table 1.2.

Figure 1.3 (a) Colloidal particle interactions at a fluid interface include total electrostatic repulsions caused by combining dipolar and coulomb interactions, which are balanced by van der Waals and capillary attractive forces, (b) solvation-mediated interactions that occur when the environment (temperature, pH, or ionic strength) changes in the case of colloidal microgel particles, (c) interactions mediated by ligands include both attractive hydrophobic forces and steric repulsions [22].

Number of particles	Particle volume (m ³)	Edge length (m)	Total surface area (m ²)
1	10 ⁻⁶	10 ⁻²	0.0006
10 ³	10 ⁻⁹	10 ⁻³	0.006
10 ⁶	10 ⁻¹²	10 ⁻⁴	0.06
109	10 ⁻¹⁵	10 ⁻⁵	0.6
1012	10 ⁻¹⁸	10 ⁻⁶	6.0
1015	10 ⁻²²	10 ⁻⁷	60
10 ¹⁸	10 ⁻²⁴	10 ⁻⁸	600

 Table 1.2 Significance of change in total surface area with respect to the number of particles.

6 SOFT MATERIALS-BASED BIOSENSING MEDICAL APPLICATIONS

Colloids are present in various food items we consume, including dairy products like milk. Milk is a colloidal system in which lipid oil is dispersed in water. The protein component of milk consists of caseins, which are held together by calcium phosphate units, forming a complex micellar structure. Ice cream is another example of a colloid. It comprises an emulsion, which is a mixture of fat and water, a semi-solid foam, and a gel. These components give ice cream its characteristic texture and stability. Paints and ink are also examples of colloids. In the past, paints were made by dissolving natural polymers such as resins in oil. The resulting mixture formed a colloidal suspension, where the solid particles were dispersed in the liquid medium. Soil is a natural colloid that contains four major constituents: organic matter, mineral sediments, air, and water. These components interact to form a complex structure, with the colloidal nature of soil playing a crucial role in its fertility and ability to retain water.

Another phenomenon involving colloids is shear thickening, which is defined as a rise in viscosity as the shear rate increases. It is a reversible phenomenon in stable dense colloidal suspensions. There is no hysteresis in the flow curve measurements in such systems, indicating that the behavior during increasing and decreasing shear rates is constant. However, when colloidal stability is decreased, resulting in particle aggregation, the rheological reaction becomes time-dependent. This means that the behavior of colloidal suspension under shear is affected by the duration of shear as well as the history of past shear circumstances. As a result, the presence of particle aggregation in colloidal suspensions brings complexity and time-dependent rheological features [8]. The shear thickening behavior of polymer colloids (200-nm particles of polymers dispersed in water) shows that, at a low shear rate, it flows like a liquid, and, at a high shear rate, it behaves like a solid.

1.3.2 Polymers

The acronym "polymer" is derived from the Greek words polus, which means "many" and meros, which means "part." Joons Jacob Berzelius used the term polymer for the first time in 1833 [9]. A polymer is a large molecule, typically with 50 or more repeat units. In the case of a polymer, a unit is a monomer. A polymer made up of the same group of monomers is known as a homopolymer and with a different group of monomers is known as a copolymer. Examples of a polymer include everyday plastics (polystyrene and polyethylene), rubbers, and biomolecules such as proteins and starch. According to physicists, a polymer can be described as a string of pearls in which each pearl represents a repeat unit of atoms linked together by strong covalent bonds as shown in Figure 1.4. Figure 1.4a-a shows the transmission electron microscopy (TEM) image of a necklace kind of structure formed by cobalt oxide nanoparticles coated with polystyrene. These nanoparticles have a diameter of 20 nm. The image was taken after a 3-h oxidation process. After 1 week of storage, the necklaces are still visible but may have undergone some changes, as shown in the image Figure 1.4a-b. Similarly, Figure 1.4a-c shows a high-magnification field-effect scanning electron microscopy (SEM) image of an indium tin oxide surface having discrete chains of nanoparticles. Figure 1.4a-d shows a low-resolution SEM image, which provides a less detailed view of the necklaces formed by indium tin oxide particles after they have been calcined [30]. Proteins are also polymer in nature. In the case of a protein molecule, the repeat units are amino acids. It is possible to predict the size and shape of the polymer molecules, in which the most important parameter is the number of repeat units, N. Figure 1.4b-a shows the X-ray tomography picture of a "granular polymer" made up of several equal-length segments of a chain of spheres. The close-up of the darkened (red) area in Figure 1.4b-a

Figure 1.4 (a) A transmission electron microscopy (TEM) image showing the structure of a necklace formed by cobalt oxide nanoparticles coated with polystyrene [30]. (b) X-ray tomography picture of a "granular polymer" made up of several equal-length segments of a chain of spheres [22].

is shown in Figure 1.4b-b. The connecting connections are visible, allowing us to discern which spheres are linked together in each chain [22]. Addition and condensation polymerization are the two main methods of polymer formation. In the case of addition polymerization, a monomer reacts with an initiator or catalyst, forming a chain where one bond remains unsatisfied. This unsatisfied bond can then react with another monomer, leading to the continuous growth of the polymer chain. The process repeats until two chains combine or an initiator terminates the chain. On the other hand, condensation polymerization involves the combination of a monomer with exposed hydrogen (H) atoms and a monomer with exposed oxygen-hydrogen (OH) atoms. This reaction results in the release of water as the H and OH groups combine to form H_2O . This water release allows the monomers to link together and form a polymer.

Polymers can be classified into three main types: naturally occurring polymers, semisynthetic, and synthetic polymers.

- Natural polymers are polymers found in nature, which are generally extracted from plants and animal sources. Some common examples of natural polymers include resins, proteins, starch, and cellulose.
- Semi-synthetic polymers are polymers that are synthesized from natural polymers but are subjected to certain chemical treatments such that they can change their physical properties. Vulcanized rubber, gun cotton, and rayon are examples of semi-synthetic polymers.
- Synthetic polymers are man-made polymers synthesized artificially by a method called polymerization. Nylon, synthetic rubber, poly vinyl chlorid (PVC), polyethylene, polystyrene, and Teflon are a few examples of synthetic polymers [10].

1.3.3 Liquid Crystals

Liquid crystals (LC) are soft materials having the properties intermediate between crystalline solids and isotropic liquids. They have molecules having both orientational and positional ordering like that of crystalline solids and some groups of LCs have orientational

8 SOFT MATERIALS-BASED BIOSENSING MEDICAL APPLICATIONS

order, and they behave like isotropic liquids as they exhibit fluidity. Based on the transformation to mesophase (mesophase is another name for the LC phase), LC can be classified as thermotropic LCs and lyotropic LCs. Thermotropic LC achieves mesophases with the help of thermal processes and lyotropic LC achieves mesophase by adding certain chemical solvents or by changing concentration. Thermotropic LC can be further divided into fields of calamitic (rod-shaped), discotic (disc-shaped), and cholesteric as shown in Figure 1.5. Among these, calamitic LC is more common in the field of application. Calamitic LCs can be further classified into nematic, smectic, and cholesteric LCs [11, 12]. A given liquid LC may exhibit a single phase or a sequence of phases. For a calamitic LC, when the temperature changes, phase transitions are observed.

During any phase transition, there is a certain symmetry breaking happening in the materials. Because it is difficult to describe two different phases using a single analytical function, a term known as order parameter has been introduced, which measures the breaking of symmetry. In the case of LCs, the order parameter lies between 0.3 and 0.7. LCs exhibit characteristic textures for every phase due to their birefringent nature. These textures can be studied with the help of polarizing optical microscope. The visible characteristic structures include schlieren, focal conic, and fan-like, which arise due to the point defect and line defects as shown in Figure 1.6. A point defect can be seen at the centre of this schlieren textures due to certain topological defects. A point defect is a disclination in a LC that is marked by a localized region of broken molecular alignment. It appears as a single

Figure 1.5 Classification of liquid crystal and applications [13].