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Foreword

The field of biosensing has seen remarkable advancements in recent years. This book is a 
timely contribution, offering an in-depth understanding of the latest developments in soft 
material-based biosensors.

The book is divided into sixteen chapters, each authored by experts in the field, covering 
topics such as synthesizing soft materials, liquid crystals, ionic hydrogel strain sensors, nat-
ural product-based soft materials, nanotechnology-enhanced soft materials, and graphene 
oxide-based biosensors, among others. Each chapter explores the potential applications of 
these biosensors across various fields, including biomedicine, environmental monitoring, 
and drug delivery.

One of the key strengths of this book is its comprehensive coverage of soft material-based 
biosensors. The authors have done an excellent job of summarizing the current state-of-the-
art and offering insights into future research directions and opportunities in the field. It is 
also an excellent resource for graduate students and researchers new to soft material-based 
biosensors.

I am confident that this book will be a valuable resource for the scientific community, 
particularly for those involved in developing biosensors for various applications. I con-
gratulate the editors and authors for their contributions in producing such an important 
work. I highly recommend this book to anyone interested in the field of soft material-based 
biosensors.

Dr. Shyamal Kumar Kundu
Professor, Galgotias University, Greater Noida, India





xix

Preface

Soft materials have gained significant attention in biosensing due to their unique proper-
ties, such as flexibility, biocompatibility, and responsiveness to external stimuli. This book 
highlights recent advancements in soft material-based biosensors and their applications 
across various fields, including biomedicine, environmental monitoring, and drug delivery. 
The book is divided into sixteen chapters, beginning with an introduction to soft materials 
and their unique properties. The following chapters explore various aspects of soft material- 
based biosensors, including synthesizing soft materials, the use of liquid crystals as poten-
tial biosensors, ionic hydrogel strain sensors, natural product-based soft materials in elec-
trochemical biosensors, nanotechnology-enhanced soft materials, and soft and flexible 
material-based affinity sensors.

Furthermore, the book delves into specific applications of soft material-based biosen-
sors, such as detecting cancer biomarkers, drug delivery, and the detection and treatment 
of oral cancer. It also examines the use of functionalized biomaterials in treating diabetic 
patients and recent advancements in 3D printable biosensors. The final chapter focuses on 
the environmental implications of soft materials, highlighting their journey from the lab to 
industry, with a discussion on sustainable and cost-effective biosensors and their potential 
applications in environmental monitoring.

This book is designed for researchers, scientists, and graduate students interested in soft 
material-based biosensors and their applications. It offers a comprehensive overview of 
recent advancements in the field and their potential applications, from the lab to industry. 
We hope this book will inspire further research and development in soft material-based 
biosensors. We extend our gratitude to everyone who contributed to this important work, 
and to Martin Scrivener and Scrivener Publishing for making its publication possible.

The Editors
December 2024
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Introduction to Soft Materials
Athul Satya and Ayon Bhattacharjee*

Department of Physics, National Institute of Technology, Meghalaya, India

Abstract
Soft materials are a class of materials having properties intermediate between fluids and crystals. 
Colloids, liquid crystals, foams, gels, and polymer solutions are some examples of soft materials. 
The study of soft materials began with Alberts Einstein’s work on Brownian motion. Pierre-Gilles 
de Gennes has been referred to as the “father of soft matter.” The most important characteristics of 
soft materials include Brownian motion due to thermal fluctuation, short-range order of intermo-
lecular forces, and its self-assembling tendency due to reaction-limited aggregation (RLA) and diffu-
sion-limited aggregation (DLA). Soft materials experience a repulsive force because all the particles 
obey the Pauli-exclusion principle.

Keywords:  Soft materials, Brownian motion, colloids, liquid crystals, polymers

List of Abbreviations

DLA	 Diffusion-Limited Aggregation
LCs	 Liquid Crystals
LCD	 Liquid Crystal Display
PVC	 Poly Vinyl Chloride
RLA	 Reaction-Limited Aggregation
SEM	 Scanning Electron Microscopy
TBDA    terephthalylidene-bis-[4-n-decylaniline]
TEM	 Transmission Electron Microscopy

1.1	 Introduction

Soft materials are a class of materials that include liquid crystals (LCs), colloids, foams, gels, 
and polymer solutions. Soft materials have complex properties intermediate between those 
of fluids and crystals, and they resemble naturally occurring systems like membranes and 
tissue systems. Pierre-Gilles de Gennes has been referred to as the “father of soft matter.”  
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In 1991, Pierre-Gilles de Gennes was awarded the Nobel Prize in Physics for his groundbreak-
ing work demonstrating that the methods used to understand order phenomena in basic 
systems can be extended to the more complex field of soft matter. Specifically, de Gennes’s 
research focused on the properties of LCs and polymers, two important classes of soft materi-
als [1, 2]. Because of their huge molecular scale and entangled structure, soft materials such as 
polymers display distinctive dynamic behavior. The idea of reptation scaling theory provides 
a framework for understanding and describing the motion of entangled polymer chains. de 
Gennes and Edward’s reptation model describes the dynamics of polymer chains in a melt by 
imagining them flowing within a tube. Entanglements and topological limitations imposed 
by interactions with other chains are shown by the tube. This model has proven significant 
in understanding polymer dynamics and rheology by providing insights into the behavior 
and mobility of polymer chains in melts. According to this hypothesis, the relaxation period 
in entangled systems is proportional to the cube of molecule mass. It was Pierre de Gennes 
who developed the concept of polymer reptation and derived scaling relationships. Later, 
another scientist from Cambridge, Sir Sam Edwards, devised tube models and predictions of 
the shear relaxation modulus. Based on the architecture, there are different kinds of molec-
ular structures such as flexible coil, rigid rod, cyclic polymers, and polyrotaxane structures 
as shown in Figure 1.1. There are certain cross-linked structures such as loosely cross-linked 
polymers, densely cross-linked polymers, and interpenetrating networks. At the same time, 
there are branched structures such as random-short, random-long, regular comb, regular 
short-branched, and star-branched structures. Another class of soft materials is called den-
dritic, which consists of random hyperbranched, dendrigrafts, dendrons, and dendrimers [3].

1.2	 Brief Introduction to Theories of Soft Matter

Soft matter systems have micrometer-scale diameters, resulting in their typical short-range 
order. By simplifying the system and focusing on essential elements, coarse-grained models 

Linear Branched Cross-linked Dendritic
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(c)

(d)
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Figure 1.1  Different types of molecular architecture. (a) Flexible coil, (b) rigid rod, (c) polyrotaxane, 
(d) cyclic, (e) branched, (f) comb-branched, (g) star-branched, (h) loosely cross-linked, (i) tightly crosslinked, 
(j) interpenetrating network, (k) random hyperbranched, (l) dendrigrafts, and (m) dendrons.
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successfully reflect the behavior of soft matter. Brownian motion, which is caused by con-
tinual random motion, is a significant characteristic of soft matter, particularly colloidal 
particles. The ability of soft matter to self-assemble is an important trait that drives the 
development of complex structures. The Lennard–Jones potential, which accounts for van 
der Waals attractions and hard-sphere repulsion, is frequently used to explain interactions 
in soft materials. These theories will be discussed in detail in subsequent sections, providing 
further insights into soft matter phenomena.

1.3	 Classification of Soft Materials

Soft materials can be classified into colloids, polymers, foams, gels, LCs, and biological 
membranes based on the structures and properties that they exhibit.

1.3.1	 Colloids

A colloid has sub-μm particles (but not single molecules) of one phase dispersed in a con-
tinuous phase. The size scale of the dispersed phase is between 1 nm and 1 μm [4, 5]. The 
dispersed phase and the continuous phase can consist of either a solid (S), liquid (L), or gas 
(G). In a combination of any two of these phases, however, there is no gas-in-gas colloid 
because there is no interfacial tension between gases [6]. Figure 1.2 shows an example of a 
colloidal structure made by an element of gold [22]. The classification of colloids is shown 
in Table 1.1.

There are several ways for the preparation of colloids such as physical, chemical, as well 
as some dispersion methods, among which the given two methods are the most important:

¾¾ Physical method: Large-size particles can be dispersed into the colloidal 
dimensions by spraying, milling, or shaking and mixing.

¾¾ Chemical method: Using redox reactions, condensation, and precipitation, 
small, dissolved molecules can be condensed into larger colloidal particles.

0.5 mm

Figure 1.2  TEM image of a colloid aggregate of gold showing DLA structure [22].
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The wettability of colloidal particles and the interactions that occur at the particle-
surface contact are critical in determining the structure and equilibrium characteristics of 
interfaces that include colloidal particles [29]. The interactions of colloidal particles trapped 
at a fluid interface differ from those found in three-dimensional systems. This is because the 
fluid interface serves as a constrained habitat for the colloidal particles. A colloidal particle 
is thought to be linked to a fluctuating surface that divides two distinct phases with differing 
physicochemical properties, such as density, dielectric permittivity, and ionic strength. The 
properties of colloidal particle surfaces can be impacted by a variety of parameters, includ-
ing the assembled size, shape, charge, wettability, and surface chemistry of the object. These 
characteristics influence the behavior of the interface, making it challenging to develop 
an analytical account of the interactions that occur in systems where colloids are confined 
at fluid interfaces. There are certain forces that influence the assembly of colloidal parti-
cles. These forces are divided mainly into two categories: direct interactions and external 
interactions.

Direct interactions are naturally tied to colloidal object properties such as size, shape, 
the chemical composition of the surface, the charge carried by the colloidal particles, and 
their roughness. These parameters regulate the attractive or repulsive forces experienced by 
the particles and impact their arrangement at the contact as shown in Figure 1.3. External 
interactions, on the other hand, are connected with the presence of external fields operating 
on single objects or groups of particles. These fields can impose forces such as electric, mag-
netic, or gravitational forces on colloidal particles, affecting their placement and alignment 
[7].

The interfacial area of the colloid is an important factor that affects the behavior of col-
loids. For a spherical particle having radius r, the ratio of surface area to volume is
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The interface becomes more significant when the size of the particles is small. Consider 
a 1-cm3 phase dispersed in a continuous medium. If it is made up of a single particle, then 
the surface area is 0.0006 m2. In case the particle is broken into smaller fragments, then the 
surface area increases drastically as shown in Table 1.2.

Table 1.1  Classification of colloids. 

Dispersed phase Continuous phase Name Examples

Liquid/Solid Gas Aerosol Fog, hair spray, and smoke

Gas Liquid/Solid Foam Beer froth, shaving foam, and 
poly(urethane) foam

Liquid Liquid/Solid Emulsion Mayonnaise and salad dressing

Solid Liquid Sol Latex paint and toothpaste

Solid Solid Solid suspension Pearl and mineral rocks
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Figure 1.3  (a) Colloidal particle interactions at a fluid interface include total electrostatic repulsions caused 
by combining dipolar and coulomb interactions, which are balanced by van der Waals and capillary attractive 
forces, (b) solvation-mediated interactions that occur when the environment (temperature, pH, or ionic 
strength) changes in the case of colloidal microgel particles, (c) interactions mediated by ligands include both 
attractive hydrophobic forces and steric repulsions [22].

Table 1.2  Significance of change in total surface area with respect to the number of particles.

Number of particles Particle volume (m3) Edge length (m) Total surface area (m2)

1 10−6 10−2 0.0006

103 10−9 10−3 0.006

106 10−12 10−4 0.06

109 10−15 10−5 0.6

1012 10−18 10−6 6.0

1015 10−22 10−7 60

1018 10−24 10−8 600
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Colloids are present in various food items we consume, including dairy products like milk. 
Milk is a colloidal system in which lipid oil is dispersed in water. The protein component of 
milk consists of caseins, which are held together by calcium phosphate units, forming a com-
plex micellar structure. Ice cream is another example of a colloid. It comprises an emulsion, 
which is a mixture of fat and water, a semi-solid foam, and a gel. These components give ice 
cream its characteristic texture and stability. Paints and ink are also examples of colloids. In 
the past, paints were made by dissolving natural polymers such as resins in oil. The resulting 
mixture formed a colloidal suspension, where the solid particles were dispersed in the liq-
uid medium. Soil is a natural colloid that contains four major constituents: organic matter, 
mineral sediments, air, and water. These components interact to form a complex structure, 
with the colloidal nature of soil playing a crucial role in its fertility and ability to retain water.

Another phenomenon involving colloids is shear thickening, which is defined as a rise in 
viscosity as the shear rate increases. It is a reversible phenomenon in stable dense colloidal 
suspensions. There is no hysteresis in the flow curve measurements in such systems, indi-
cating that the behavior during increasing and decreasing shear rates is constant. However, 
when colloidal stability is decreased, resulting in particle aggregation, the rheological reac-
tion becomes time-dependent. This means that the behavior of colloidal suspension under 
shear is affected by the duration of shear as well as the history of past shear circumstances. 
As a result, the presence of particle aggregation in colloidal suspensions brings complexity 
and time-dependent rheological features [8]. The shear thickening behavior of polymer 
colloids (200-nm particles of polymers dispersed in water) shows that, at a low shear rate, it 
flows like a liquid, and, at a high shear rate, it behaves like a solid.

1.3.2	 Polymers

The acronym “polymer” is derived from the Greek words polus, which means “many” and 
meros, which means “part.” Joons Jacob Berzelius used the term polymer for the first time 
in 1833 [9]. A polymer is a large molecule, typically with 50 or more repeat units. In the 
case of a polymer, a unit is a monomer. A polymer made up of the same group of monomers 
is known as a homopolymer and with a different group of monomers is known as a copo-
lymer. Examples of a polymer include everyday plastics (polystyrene and polyethylene), 
rubbers, and biomolecules such as proteins and starch. According to physicists, a polymer 
can be described as a string of pearls in which each pearl represents a repeat unit of atoms 
linked together by strong covalent bonds as shown in Figure 1.4. Figure 1.4a-a shows the 
transmission electron microscopy (TEM) image of a necklace kind of structure formed by 
cobalt oxide nanoparticles coated with polystyrene. These nanoparticles have a diameter of 
20 nm. The image was taken after a 3-h oxidation process. After 1 week of storage, the neck-
laces are still visible but may have undergone some changes, as shown in the image Figure 
1.4a-b. Similarly, Figure 1.4a-c shows a high-magnification field-effect scanning electron 
microscopy (SEM) image of an indium tin oxide surface having discrete chains of nanopar-
ticles. Figure 1.4a-d shows a low-resolution SEM image, which provides a less detailed view 
of the necklaces formed by indium tin oxide particles after they have been calcined [30]. 
Proteins are also polymer in nature. In the case of a protein molecule, the repeat units 
are amino acids. It is possible to predict the size and shape of the polymer molecules, in 
which the most important parameter is the number of repeat units, N. Figure 1.4b-a shows 
the X-ray tomography picture of a “granular polymer” made up of several equal-length 
segments of a chain of spheres. The close-up of the darkened (red) area in Figure 1.4b-a 
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is shown in Figure 1.4b-b. The connecting connections are visible, allowing us to discern 
which spheres are linked together in each chain [22]. Addition and condensation polym-
erization are the two main methods of polymer formation. In the case of addition polym-
erization, a monomer reacts with an initiator or catalyst, forming a chain where one bond 
remains unsatisfied. This unsatisfied bond can then react with another monomer, leading 
to the continuous growth of the polymer chain. The process repeats until two chains com-
bine or an initiator terminates the chain. On the other hand, condensation polymerization 
involves the combination of a monomer with exposed hydrogen (H) atoms and a monomer 
with exposed oxygen-hydrogen (OH) atoms. This reaction results in the release of water as 
the H and OH groups combine to form H2O. This water release allows the monomers to link 
together and form a polymer.

Polymers can be classified into three main types: naturally occurring polymers, semi-
synthetic, and synthetic polymers.

¾¾ Natural polymers are polymers found in nature, which are generally extracted 
from plants and animal sources. Some common examples of natural poly-
mers include resins, proteins, starch, and cellulose.

¾¾ Semi-synthetic polymers are polymers that are synthesized from natural 
polymers but are subjected to certain chemical treatments such that they can 
change their physical properties. Vulcanized rubber, gun cotton, and rayon 
are examples of semi-synthetic polymers.

¾¾ Synthetic polymers are man-made polymers synthesized artificially by a 
method called polymerization. Nylon, synthetic rubber, poly vinyl chlorid 
(PVC), polyethylene, polystyrene, and Teflon are a few examples of synthetic 
polymers [10].

1.3.3	 Liquid Crystals

Liquid crystals (LC) are soft materials having the properties intermediate between crystal-
line solids and isotropic liquids. They have molecules having both orientational and posi-
tional ordering like that of crystalline solids and some groups of LCs have orientational 
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Figure 1.4  (a) A transmission electron microscopy (TEM) image showing the structure of a necklace formed 
by cobalt oxide nanoparticles coated with polystyrene [30]. (b) X-ray tomography picture of a “granular 
polymer” made up of several equal-length segments of a chain of spheres [22].
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order, and they behave like isotropic liquids as they exhibit fluidity. Based on the transfor-
mation to mesophase (mesophase is another name for the LC phase), LC can be classified 
as thermotropic LCs and lyotropic LCs. Thermotropic LC achieves mesophases with the 
help of thermal processes and lyotropic LC achieves mesophase by adding certain chemical 
solvents or by changing concentration. Thermotropic LC can be further divided into fields 
of calamitic (rod-shaped), discotic (disc-shaped), and cholesteric as shown in Figure 1.5. 
Among these, calamitic LC is more common in the field of application. Calamitic LCs can 
be further classified into nematic, smectic, and cholesteric LCs [11, 12]. A given liquid LC 
may exhibit a single phase or a sequence of phases. For a calamitic LC, when the tempera-
ture changes, phase transitions are observed.

During any phase transition, there is a certain symmetry breaking happening in the 
materials. Because it is difficult to describe two different phases using a single analytical 
function, a term known as order parameter has been introduced, which measures the 
breaking of symmetry. In the case of LCs, the order parameter lies between 0.3 and 0.7. 
LCs exhibit characteristic textures for every phase due to their birefringent nature. These 
textures can be studied with the help of polarizing optical microscope. The visible charac-
teristic structures include schlieren, focal conic, and fan-like, which arise due to the point 
defect and line defects as shown in Figure 1.6. A point defect can be seen at the centre of this 
schlieren textures due to certain topological defects. A point defect is a disclination in a LC 
that is marked by a localized region of broken molecular alignment. It appears as a single 
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Figure 1.5  Classification of liquid crystal and applications [13].


