

GUIDELINES FOR PREPARING PROCESS EQUIPMENT FOR MAINTENANCE AND RETURN TO SERVICE

GUIDELINES FOR
PREPARING PROCESS EQUIPMENT
FOR MAINTENANCE AND RETURN TO
SERVICE

**PUBLICATIONS AVAILABLE FROM THE
CENTER FOR CHEMICAL PROCESS SAFETY
OF THE
AMERICAN INSTITUTE OF CHEMICAL ENGINEERS**

This book is one in a series of process safety guidelines and concept books published by the Center for Chemical Process Safety (CCPS). Refer to www.wiley.com/go/ccps for full list of titles in this series.

It is sincerely hoped that the information presented in this document will lead to a better safety record for the entire industry; however, neither the American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, nor BakerRisk, and its employees and subcontractors warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented in this document. As between (1) American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, and BakerRisk and its employees and subcontractors, and (2) the user of this document, the user accepts any legal liability or responsibility whatsoever for the consequence of its use or misuse.

**Guidelines For
Preparing Process Equipment For
Maintenance And Return To Service**

CENTER FOR CHEMICAL PROCESS SAFETY

of the

AMERICAN INSTITUTE OF CHEMICAL ENGINEERS

120 Wall Street, 23rd Floor • New York, NY 10005

WILEY

Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at <http://www.wiley.com/go/permission>.

The manufacturer's authorized representative according to the EU General Product Safety Regulation is Wiley-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany, e-mail: Product_Safety@wiley.com.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty

While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data Applied for:

Hardback ISBN: 9781394237890

Cover Images: Silhouette, oil refinery © manyx31/iStock.com, Stainless steel
© Creativ Studio Heinemann/Getty Images, Dow Chemical Operations, Stade, Germany/
Courtesy of The Dow Chemical Company

CONTENTS

<i>Contents</i>	<i>vii</i>
<i>List of Figures</i>	<i>xii</i>
<i>List of Tables</i>	<i>xiii</i>
<i>List of Case Studies</i>	<i>xiv</i>
<i>Acronyms and Abbreviations</i>	<i>xvi</i>
<i>Glossary</i>	<i>xix</i>
<i>Acknowledgments</i>	<i>xxvii</i>
<i>Dedication</i>	<i>xxix</i>
<i>Foreword</i>	<i>xxxi</i>
<i>Preface</i>	<i>xxxii</i>

1	INTRODUCTION	1
1.1	Purpose and Scope of the Book	1
1.2	Key Definitions Relevant to Preparing Equipment for Maintenance and Return to Service	3
1.3	Overview of the Main Focus Areas	3
2	REGULATION AND PROCESS SAFETY	5
2.1	Regulatory Aspects	5
2.2	Company Standards and Safe Systems of Work	6
2.3	Process Safety and Personal Safety	8
3	UNDERSTANDING THE HAZARDS	11
3.1	Information Requirements-Process Safety Information	11
3.2	Equipment Hazards	12
3.3	Energy Hazards	17
3.4	Simultaneous Operations	24
3.5	Human Factors	24
3.6	Frequently Encountered Issues when Preparing Equipment for Isolation	25
3.7	Summary	26

4	PLANNING FOR ISOLATION AND DECONTAMINATION	27
4.1	Plan Considerations	27
4.2	Risk Assessment	29
4.3	Isolation/Decontamination – Which Comes First?	35
4.4	Planning The Energy Isolation	36
4.5	Planning for Decontamination and Decommissioning	39
4.6	Disposal of Chemicals from Decontaminated Processes	43
4.7	Planning for Return to Service	43
4.8	Changing Plans	46
5	THE DECONTAMINATION PLAN	47
5.1	Documented Plan	47
5.2	Phase of Decontamination	49
5.3	Managing the Decontamination Hazards and Risks	50
5.4	Training for Decontamination	53
5.5	Difficult Decontaminations	55
5.6	Moving Decontaminated Equipment	57
5.7	Checklists and Equipment Identification	57
6	EXECUTING THE DECONTAMINATION PLAN	59
6.1	Sharing the Plan	59
6.2	Tracking the Plan	60
6.3	Completing and Documenting Execution of the Plan	63
6.4	Complex Decontamination Plans	64
6.5	Equipment Readiness for Energy Isolation	66
6.6	Summary	66
7	ISOLATION AND DECONTAMINATION PLAN EXAMPLES	69
7.1	Isolating/Decontaminating Lines with Toxic Materials using “Double Block and Bleed”	69
7.2	Isolation/Decontamination for Vessel Entry	73
7.3	Isolation for Longer Term/Mothballing	77
7.4	Isolating/Decontaminating Butyl Lithium Storage Systems	78
7.5	Example – Isolating/Decontaminating a Toluene Diisocyanate Reactor Train	85
7.6	Summary	92

Contents	ix
8 OVERVIEW OF ENERGY ISOLATION	93
8.1 Degrees of Isolation	93
8.2 Human Factors in Energy Isolation	95
8.3 Designing for Energy Isolation	96
8.4 Locking and Labelling	98
8.5 Documenting Energy Isolation	99
8.6 Chemical Process Isolation	101
8.7 Electrical Isolation	101
8.8 Mechanical, Potential and Natural Energy Sources	103
8.9 Nuclear Radiation	103
8.10 Summary	104
9 WRITTEN ENERGY ISOLATION PLANS (EIP)	105
9.1 De-isolation, Testing, and Restart Considerations	106
9.2 Risk Level	106
9.3 Documentation - Safe Work Permit and EIP	109
9.4 Piping and Instrument Diagram (P&ID) Symbols for Process Isolation	110
9.5 Forms and Types of Energy Isolation	112
9.6 Lock – Tag - Try	114
9.7 Final Verification Before Release to Work	114
9.8 First Line Break	116
9.9 Monitoring Isolations	117
9.10 Summary	118
10 SPECIFIC ISOLATION REQUIREMENTS	119
10.1 Process/Instrument Isolation	119
10.2 Electrical Isolation	120
10.3 Mechanical and Potential Energy and Natural Energy Isolation	122
10.4 Nuclear Radiation	123
10.5 Boundary Isolation	124
10.6 Specialized Isolation Techniques	124
10.7 Field Verification and Changes to Isolation	125
10.8 Summary	125

x Preparing Process Equipment for Maintenance and Return to Service

11	REVERSING THE ISOLATION PLAN	127
11.1	Job Completion and Transfer of Equipment Ownership	127
11.2	De-isolation Procedure	127
11.3	Process De-isolation	130
11.4	Vents and Drains	132
11.5	De-isolation of Other Sources of Energy	132
11.6	Cleanliness	132
11.7	Bolts, Flanges, and Gaskets	133
11.8	Changes to Isolation Boundary	133
11.9	Summary	133
12	RECOMMISSIONING	135
12.1	Checks for Debris	137
12.2	Cleaning and Flushing	138
12.3	Purging	138
12.4	Leak/Pressure Testing	140
12.5	Functional Checks	144
12.6	Walk the Line (WTL)	146
12.7	Delayed Return to Service	147
13	PRE-STARTUP SAFETY REVIEW	149
13.1	PSSR and Returning Equipment to Service	149
13.2	PSSR Overview	152
13.3	PSSR Example: Short Form	152
13.4	Summary	156
14	EQUIPMENT STARTUP	157
14.1	Participation and Communication	157
14.2	Specific Startup Issues	158
14.3	Startup of Mothballed Equipment	161

Contents	xi
15 CONCLUSION	165
APPENDIX A: WORK PERMIT	167
APPENDIX B: WALK THE LINE	171
APPENDIX C: DECONTAMINATION CERTIFICATE	177
APPENDIX D: LONG FORM FOR HIGHER RISK/ COMPLEX PSSR	179
REFERENCES	189
INDEX	197

LIST OF FIGURES

Figure 1-1 Flowchart for Equipment Maintenance and Return to Service	2
Figure 4-1 First Line Break Against Single Valve	35
Figure 4-2 Purge Valve Fitted to Blind Flange	45
Figure 6-1 Fire at Husky Refinery	61
Figure 7-1 Isolation Design for a Piping System Containing a Toxic Liquid Chemical	70
Figure 7-2 Vessel Isolation Schematic for Confined Space Entry	74
Figure 7-3 Diagram of TDI CSTR System	86
Figure 8-1 Spectacle Blind Shown in Open Position	96
Figure 8-2 Fast Acting Blind Valves	97
Figure 8-3 Electrical Isolator Lock	97
Figure 8-4 Multi-hasp and Lock Box	99
Figure 9-1 Key to Typical P&ID Symbols for Energy Isolation	111
Figure 9-2 Process Isolation with Increasing Integrity of Isolation	113
Figure 10-1 Electrical Switchbox Used for Training	121
Figure 11-1 Remains of Piper Alpha on the Morning Following the Explosions and Fires	128
Figure 11-2 De-isolation with Unproven Absence of Energy Source	130
Figure 11-3 De-isolation with Ability to Prove Absence of Energy Source	131
Figure 11-4 De-isolation with Bleed Valve Allowing to Check for Absence of Energy Source	131
Figure 13-1 High Level PSSR Workflow Chart	150
Figure A-1 Safe Work Permit	168
Figure B-1 Conduct of Operations Management System Model	172

LIST OF TABLES

Table 3-1 Equipment Hazard Examples	14
Table 3-2 Energy Hazards	17
Table 3-3 Chemical Hazard Examples	18
Table 3-4 Frequently Encountered Issues to be Considered	25
Table 4-1 Example Job Safety Analysis Worksheet	32
Table 4-2 Planning for Return to Service	44
Table 5-1 Key Components of Decontamination Plan	48
Table 6-1 Decontamination Checklist	66
Table 7-1 Isolation and Decontamination Steps for Hazardous Material	71
Table 7-2 Decontamination for Vessel Entry	74
Table 7-3 Isolation and Decontamination Checklist	82
Table 7-4 Return to Service Checklist	84
Table 7-5 Outline Standard Operating Procedure for Isolation and Decontamination	89
Table 8-1 Relative Security Level of Isolation Types for Different Energy Sources	95
Table 8-2 Typical Energy Isolation Documentation and Respective Usage	100
Table 13-1 Global Examples of Pre-Startup Safety Review Related Documents	151
Table 13-2 Example Short Form for Lower Risk/Simple PSSR	153
Table C-1 Decontamination Certificate	178
Table D-1 Example Long Form for Higher Risk/Complex PSSR	181

LIST OF CASE STUDIES

Case Study 2-1 — Replacing a Sensor: New Design Leads to a Fire!	9
Case Study 2-2 — No Isolation: Possible Radiation Danger!	10
Case Study 4-1 — Breaking into the Wrong Line	29
Case Study 4-2 — Chemical Exposure	34
Case Study 4-3 — Isolation on an Oil Refinery	38
Case Study 4-4 — Isolated but Not Fully Decommissioned - 1	40
Case Study 4-5 — Left a Valve Dead-leg – Not Fully Decommissioned - 2	41
Case Study 4-6 — Isolated Longer than Intended	42
Case Study 5-1 — Toxic Break-in	49
Case Study 5-2 — Refinery Storage Tank Explosion	52
Case Study 5-3 — Solids Plugged in a Thermosyphon Reboiler	53
Case Study 5-4 — The Tank That Was Not Isolated	54
Case Study 5-5 — Pyrophoric Ignition of Structured Packing in a Crude Vacuum Column	56
Case Study 6-1 — Explosion/Fires at Refinery During Maintenance Turnaround	61
Case Study 6-2 — Decontamination of a Toxic Pipeline	65
Case Study 8-1 — Electrical Low Voltage Isolation	102
Case Study 9-1 — Lack of Energy Isolation	107
Case Study 9-2 — Inadequate Isolation	109
Case Study 9-3 — Filter Cartridges Change Out	110
Case Study 9-4 — Flash Fire Caused by Inadequate Isolation	114
Case Study 9-5 — Safety Relief Valve LOTO Compromised	118
Case Study 10-1 — Vapor Cloud Explosion at Phillips 66 Facility	120
Case Study 11-1 — Piper Alpha	128
Case Study 12-1 — Vent Line Blockage	138
Case Study 12-2 — Vessel Failure During Pneumatic Pressure Test	141
Case Study 12-3 — Thermal Oil System Boil Over and Fire	143
Case Study 12-4 — Process Safety Scrubber: Testing is Key!	145
Case Study 12-5 — Spare Reboiler Explosion	148

List of Case Studies**xv**

Case Study 13-1 — Oil Pipe Rupture after Commissioning	154
Case Study 13-2 — Fire Heater Explosion after Restart	155
Case Study 14-1 — Kleen Energy Natural Gas Explosion	160
Case Study 14-2 — ARCO Channelview Compressor Explosion	162
Case Study 15-1 — Solvent Release from Bleed on a 'Double Block and Bleed' Valve	166

ACRONYMS AND ABBREVIATIONS

ACOP	Approved Codes of Practice
ACC	American Chemistry Council
AIChE	American Institute of Chemical Engineers
BLEVE	Boiling Liquid Expanding Vapor Explosion
CCPS	Center for Chemical Process Safety
CFR	Code of Federal Regulations
CISCC	Chloride Induced Stress Corrosion Cracking
COD	Consequence of Deviation
COMAH	Control of Major Accident Hazards
CSB	Chemical Safety Board (US)
CSTR	Continuously Stirred Tank Reactor
DB&B	Double Block and Bleed
DCS	Distributed Control System
DSEAR	Dangerous Substances and Explosive Atmospheres Regulations
EA	Environment Agency
EIP	Energy Isolation Plan
EPA	Environmental Protection Agency
FCC	Fluid Catalytic Cracking
FMEA	Failure Mode and Effects Analysis
FMECA	Failure Modes, Effect and Criticality Analysis
GMP	Good Management Practice
HASAWA	Health and Safety at Work Act
HAZOP	Hazard and Operability Study
HDPE	High Density Polyethylene
HIRA	Hazard Identification and Risk Analysis
HRSG	Heat Recovery Steam Generator
HSE	Health and Safety Executive
HSG	Health and Safety Guidance
ICI	Imperial Chemical Industries
ILO	International Labor Office
IOGP	International Association of Oil and Gas Producers
ISO	International Organization for Standardization
ITPM	Inspection, Testing, and Preventive Maintenance
JSA	Job Safety Analysis
KO	Knock Out [drum]
LEL	Lower Explosive Limit

LNG	Liquefied Natural Gas
LOPA	Layer of Protection Analysis
LOPC	Loss of Primary Containment
LOTO	Lock-Out Tag-Out
LPG	Liquefied Petroleum Gas
MAWP	Maximum Allowable Working Pressure
MIC	Microbiological Introduced Corrosion
MOC	Management of Change
NDE	Non-Destructive Examination
NFPA	National Fire Protection Association
NORM	Naturally Occurring Radioactive Material
NRC	Nuclear Regulatory Commission
OECD	Organization for Economic Cooperation and Development
OEM	Original Equipment Manufacturer
ONR	Office for Nuclear Radiation
OSHA	Occupational Safety and Health Administration
P&IDs	Piping & Instrumentation Diagrams
PEI	Positive Equipment Identification
PFD	Process Flow Diagram
PHA	Process Hazard Analysis
PIS	Pyrophoric Iron Sulfide
POSM	Propylene Oxide/Styrene Monomer
PPE	Personal Protective Equipment
PRD	Pressure Relief Devices
PSE	Process Safety Event
PSI	Process Safety Information
PSM	Process Safety Management
PSSR	Pre-Startup Safety Review
PSV	Pressure Safety Valve
PTW	Permit to Work
RBPS	Risk Based Process Safety
RMP	Risk Management Program
SCBA	Self-Contained Breathing Apparatus
SCTA	Safety Critical Task Analysis
SDS	Safety Data Sheets
SEPA	Scottish Environment Protection Agency
SIMOPS	Simultaneous Operations
SME	Subject Matter Expert
SOL	Safe Operating Limit
SOP	Standard Operation Procedure
SSOW	Safe Systems of Work

xviii Preparing Process Equipment for Maintenance and Return to Service

SWA	Stop Work Authority
TIH	Toxic Inhalation Hazard
TLV	Threshold Limit Values
UNEP	United Nations Environment Programme
UV	Ultraviolet
VRU	Vapor Recovery Unit
WTL	Walk the Line

GLOSSARY

Term	Definition
Air-gapping	Removal of pipe or spool piece between process and work area (Physical disconnection)
Barrier	A control measure or grouping of control elements that on its own can prevent a threat developing into a top event (prevention barrier) or can mitigate the consequences of a top event once it has occurred (mitigation barrier). A barrier must be effective, independent, and auditable (CCPS 2019). For the subject matter of this book, this may include a closed valve, a blinded or blanked line, electrical lock-out or a safety procedure relating to a check before a line is opened.
Blank Flange or Blanking Plate	See Blind Flange.
Blind/Line Blind	A blind is a solid plate, usually fitted with a tab to aid identification, handling, and removal, inserted between two flanges to achieve a form of positive isolation. Also referred to as a Spade. See Figure 4-1. Note: Not considered as secure as physical disconnection due to potential hidden corrosion of blind.
Blind Flange	Circular plate bolted to flange at end of line and fitted with gasket to achieve positive isolation (physical disconnection). Also referred to as a Blank Flange.
"Bump Start"	See Try-Out.
Cap	A female screwed fitting (typically small bore) that achieves positive isolation (physical disconnection) by screwing onto an externally threaded section at the end of a pipe, on a drain/bleed valve, or on a piece of equipment. See Plug.

Term	Definition
Car Seal	A metal or plastic cable attached to a piece of equipment (typically a valve) that shows it should not be moved without proper authorization. While it is intended to be strong enough to prevent operation of the valve, it is not as robust as, for example, a padlock. See LOTO.
Checklist	A list of items or steps requiring verification of completion; typically, a procedure format in which each critical step is marked off (or otherwise acknowledged/verified) as it is performed (CCPS 2019).
Decontamination	Process of removal of substance(s) from equipment so that it can be worked on/disassembled without presenting a safety risk to personnel or the environment.
Decommissioning	Completely de-inventorying all materials from a process unit and permanently removing the unit from service (CCPS 2019).
De-isolation	Removing the items/devices that are excluding the sources of energy at defined points.
Design Pressure	The maximum pressure that the equipment is designed to contain, used by the mechanical designer to size the pressure-containing parts. This will typically be at or above the maximum operating pressure of the equipment.
Double Block and Bleed (DB&B)	Closure of two valves with a valved vent or drain between them. This configuration allows for the release of trapped pressure, fluid, or gas between the two blocked valves, providing an added assurance of isolation.
Energy Source	In the context of isolation from an energy source for maintenance, this could include electricity, hazardous chemicals, water, steam, pneumatic pressure, hydraulic pressure, temperature (high and low), mechanical or potential energy, radioactive materials, among others.

Term	Definition
Energy Isolation Plan (EIP)	A document that shows steps to be taken and verifications required to prevent the accidental release of energy when work is to be conducted on a process, plant, or equipment.
First Line Break	Initial, controlled opening of a line or vessel that may contain a source of energy.
Flammable	Subject to combustion if exposed to an ignition source. Per NFPA: Capable of burning with a flame. Dusts, gases, and vapors if in a confined area, can potentially explode.
Hazard Identification and Risk Analysis (HIRA)	A collective term that encompasses all activities involved in identifying hazards and evaluating risk at facilities, throughout their life cycle, to make certain that risks to employees, the public, or the environment are consistently controlled within the organization's risk tolerance (CCPS 2019).
Inspection, Testing and Preventive Maintenance (ITPM)	Scheduled proactive maintenance activities intended to (1) assess the current condition and/or rate of degradation of equipment, (2) test the operation/functionality of equipment, and/or (3) prevent equipment failure by restoring equipment condition.
Isolation	Means of preventing a release of energy beyond a defined point.
Job Safety Analysis (JSA)	A procedure that systematically identifies: 1) job steps, 2) specific hazards associated with each job step, and 3) safe job procedures associated with each step to minimize accident potential. Also called job hazard analysis (CCPS 2019).
Lock-Out-Tag-Out (LOTO)	A safe work practice in which energy sources are positively blocked away from a segment of a process with a locking mechanism and visibly tagged as such to help ensure worker safety during maintenance and some operations tasks (CCPS 2019).
Leaks by (of valve)	Fluid flowing from the high pressure side through the internals of a valve to the lower pressure side, also referred to as "passing".

Term	Definition
Leak Test	Pressurizing equipment (typically up to maximum operating pressure) using a liquid or gas (e.g., nitrogen, helium), while observing for leaks; this may include a soapy water test, "sniffer", or monitoring a drop in pressure.
Life Saving Rules	A series of key instructions that cannot be broken, which target some of the key causes of injuries and fatalities in the process industries.
Long-term Isolation	Prolonged isolation of equipment during an extended timeframe (e.g., over 90-days). This often involves comprehensive measures and controls to maintain the isolation status over a longer timeframe compared to standard LOTO procedures. This may include additional measures (preservation plans), operator checks, and MOC.
Loss of Primary Containment (LOPC)	An unplanned or uncontrolled release of material from primary containment, including non-toxic and non-flammable materials (e.g., steam, hot condensate, nitrogen, compressed CO ₂ or compressed air) (CCPS 2019).
Management of Change (MOC)	A management system to identify, review, and approve all modifications to equipment, procedures, raw materials, and processing conditions, other than replacement in kind, prior to implementation to help ensure that changes to processes are properly analyzed (for example, for potential adverse impacts), documented, and communicated to employees affected (CCPS 2019).
Maximum Allowable Working Pressure (MAWP)	Maximum pressure at specific temperature at which the vessel can safely function.
Mothballed	Taken out of service, usually disconnected (see Long-term Isolation) and preserved, with the intention of re-using/reinstating the equipment/process at a later date.