Edited by P. Suveetha Dhanaselvam Srinivasa Rao Karumuri Shiromani Balmukund Rahi Dharmendra Singh Yadav

Scrivener Publishing

WILEY

Field Effect Transistors

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Field Effect Transistors

Edited by

P. Suveetha Dhanaselvam K. Srinivasa Rao Shiromani Balmukund Rahi

and

Dharmendra Singh Yadav

This edition first published 2025 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2025 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www. wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchant-ability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 9781394248476

Front cover images supplied by Adobe Firefly Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pr	eface				xix
1	Clas	sical N	OSFET Evolution: Foundations a	nd Advantages	1
			oreishi and Samira Pahlavani	e e	
	1.1	Intro	uction of Classical MOSFET		1
		1.1.1	The Advantages of MOSFET		2
	1.2	Dual-	Gate MOSFET		2 3
		1.2.1	Advantage		4
			1.2.1.1 Scalability		4
			1.2.1.2 Improvement of Gain		4
			1.2.1.3 Low-Power Consumption	1	4
			1.2.1.4 Better I_{ON}/I_{OFF}		4
			1.2.1.5 Higher Switching Speed		4
		1.2.2	Application		4
			1.2.2.1 RF Mixer		5
			1.2.2.2 RF Amplifier		5
			1.2.2.3 Controllable Gain		6
	1.3		ll-Around MOSFET		7
			The Fabrication Procedure of GAA		7
		1.3.2	Advantage of Gate-All-Around MC	DSFETs	7
			1.3.2.1 Excellent Performance		7
			1.3.2.2 The Ability to Shrink		8
			1.3.2.3 Adjustable Nanosheet		8
			1.3.2.4 Monitoring the Channel b		8
	1.4		and $I_D - V_G$ Characteristics of Conver	ntional MOSFETs	8
			Introduction to $I_D - V_G$ Curves		8
		1.4.2	Threshold Voltage and Saturation F		10
			1.4.2.1 Role of Threshold Voltage		10
		_	1.4.2.2 Exploring the Saturation I		11
	1.5	-	tance Characteristics of Convention		12
			The Role of Capacitance in MOSFE		12
			CV Modeling of MOSFET Transist	ors	14
	1.6	-	ncy-Dependent Behavior		15
		1.6.1	The Importance of Frequency-Dep	endent Analysis of MOSFET	
			Transistors		15
		1.6.2	Applications and Implications		16

		1.	.6.2.1	RF Front-Ends	16
		1.	.6.2.2	High-Speed Data Transmission	17
	1.7	Conclusi			18
		Reference	ces		19
2	Mar	vels of M	odern	Semiconductor Field-Effect Transistors	23
	S. A	mir Ghoro	eishi, N	10hsen Mahmoudysepehr and Zeinab Ramezani	
	2.1	Introduc	ction		23
	2.2	Tunnel F	Field-Ef	fect Transistor	25
		2.2.1 Tu	unnelir	ng Junction	25
	2.3	Junction	less Tra	ansistors	27
		2.3.1 P	hysics a	and Properties	29
	2.4	GAA-FE	Ts the	Origin of Nanowire FETs and Nanosheet FETs	31
	2.5	Significa	nce in 2	Modern Electronics	32
	2.6	Main Ele	ectrical	Characteristics of GAA-FETs	33
		GAA-FE			35
				-Effect Transistors (NW-FETs)	36
				d-Effect Transistors (NS-FETs)	37
		Electrica		acteristics	38
	2.11	Conclusi			40
		Reference	ces		42
3	Intr	oduction	to Mo	dern FET Technologies	45
	<i>A</i> . <i>B</i>	abu Karu	ıppiah	and R. Rajaraja	
	3.1				45
	3.2			ield-Effect Transistors)	46
				ution from Planar to FinFET	46
				ing the Power of FinFETs	46
				Nodes, Greater Integration	47
				ions Across Industries	47
				ges and Future Prospects	47
	3.3		0	i-Gate MOSFETs: A Symphony of Efficiency	47
				ulti-Gate MOSFETs	47
				imensional Mastery	48
			-	Switching Speeds	48
				fficiency on Point	48
				ty Across Applications	48
	2.4			ire Landscape	48
	3.4		•	oscale MOSFETs: The Miniaturization Marvel	49
			•	Down to the Nanoscale	49
				n Tunneling and Beyond	49
				and Beyond	49
			•	rformance Computing	49
				yes and Innovations ure of Nanoscale MOSFETs	49 50
		J.4.0 II	ne rutu	ILE OF INATIONCALE INFORTETS	50

3.5	High-	Electron Mobility Transistors (HEMTs): A Leap into the Future	
	e	ſ Technology	50
	3.5.1	The Essence of HEMTs	50
	3.5.2	The Heterojunction Advantage	50
		Applications Across Industries	50
		Key Advantages of HEMTs	51
		Future Prospects	51
3.6		ene Field-Effect Transistors (GFETs): Pioneering the Future	
	-	ſ Technology	51
		The Wonder of Graphene	51
		The Structure of GFETs	51
	3.6.3	Key Advantages of GFETs	52
		Applications Across Industries	52
		Challenges and Future Developments	52
3.7		el Field-Effect Transistors (TFETs): Navigating the Quantum Realm	
	of Fut	ure Electronics	53
	3.7.1	The Principle of Quantum Tunneling	53
	3.7.2	How TFETs Work	53
	3.7.3	Key Advantages of TFETs	53
	3.7.4	Applications Across Industries	53
	3.7.5	Challenges and Future Prospects	54
3.8	Silicon	n Carbide (SiC) MOSFETs: Transforming Power Electronics	
	for a C	Greener Future	54
	3.8.1	The Power of Silicon Carbide	54
	3.8.2	Advantages of SiC MOSFETs	54
	3.8.3	Applications Across Industries	54
	3.8.4	Challenges and Future Developments	55
3.9	Power	MOSFETs: Empowering the Future of High-Efficiency Power	
	Electr	onics	55
	3.9.1	The Basics of Power MOSFETs	55
	3.9.2	Key Features of Power MOSFETs	55
	3.9.3	Applications Across Industries	56
	3.9.4	Challenges and Future Developments	56
3.10	Galliu	m Nitride (GaN) High-Electron Mobility Transistors (HEMTs):	
	Unlea	shing the Power of Wide Bandgap Semiconductors	56
	3.10.1	The Wonders of Wide Bandgap	56
	3.10.2	Key Features of GaN HEMTs	57
	3.10.3	Applications Across Industries	57
	3.10.4	Challenges and Future Prospects	57
3.11	Organ	ic Field-Effect Transistors (OFETs): Bridging the Gap to Flexible	
	and Su	istainable Electronics	58
	3.11.1	The Organic Advantage	58
	3.11.2	Key Features of OFETs	58

	3.11.3 Applications Across Industries	59
	3.11.4 Challenges and Future Directions	59
	3.12 Conclusion	59
	Bibliography	60
4	Scaling of Field-Effect Transistors	63
	L. Vinoth Kumar, G. Pradeep Kumar and B. Karthikeyan	
	4.1 Introduction	63
	4.2 Short-Channel Effect	65
	4.3 FinFET Overview	67
	4.3.1 History of Development	67
	4.3.2 Difficulties and Challenges	68
	4.4 GAAFET Overview	69
	4.4.1 History of Development	69
	4.4.2 Difficulties and Challenges	70
	4.5 Conclusions	71
	References	71
5	Future Prospective Beyond CMOS Technology Design	73
	P. Suveetha Dhanaselvam, B. Karthikeyan and P. Anand	
	5.1 Introduction	73
	5.2 Spintronics	74
	5.2.1 Applications	74
	5.3 Carbon Nanotube Transistors	75
	5.4 Memristor	77
	5.4.1 Working Principle	77
	5.5 Applications	78
	5.6 Quantum Dots	78 79
	5.6.1 Operation and Applications References	79 79
6	Nanowire Transistors	81
	P. Suveetha Dhanaselvam, B. Karthikeyan, S. Nagarajan	
	<i>and B. Padmanaban</i> 6.1 Introduction	01
	6.1 Introduction6.2 Nanowire FETs	81 83
	6.2.1 Device Design	88
	6.3 Organic Nanowire Transistors	89
	6.4 Conclusion	90
	References	90
7	Advancement of Nanotechnology and NP-Based Biosensors	93
-	P. Anand and B. Muneeswari	
	7.1 Introduction	93
	7.2 Metal Oxide–Based Biosensors	95
	7.3 Zinc Oxide-Based Biosensor	96

Pavani Kollamudi and K. Srinivasa Rao8.1Introduction1068.2Operating Modes Based on the Structure of the Device1128.3TCAD Simulations1168.4Effect of Temperature1198.5Results and Discussions1208.6Conclusion123References1239Breaking Barriers: Junctionless Metal-Oxide-Semiconductor1237Transistors Reinventing Semiconductor Technology1256. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar1269.1Introduction1259.1.1The Evolution of Semiconductor Technology1269.1.2Fundamentals of MOS Transistors1279.1.2Structure of a MOS Transistor1289.1.2Operation of a MOS Transistor1289.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1309.2.1Structure of Junctionless Transistor1319.2.2Junctionless Nanowire Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1349.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.4.1Current Limitations and Obstacles1399.5Conclusion1439.6Applications143			7.3.1 0D Nanostructures (Zero-Dimensional)	97
7.3.4 3D Nanostructures (Three-Dimensional) 97 7.4 AuNP-Based Biosensors 98 7.5 GR-Based Biosensors 101 References 102 8 Technology Behind Junctionless Semiconductor Devices 105 Pavani Kollamudi and K. Srinivasa Rao 106 8.1 Introduction 106 8.2 Operating Modes Based on the Structure of the Device 112 8.3 TCAD Simulations 116 8.4 Effect of Temperature 119 8.5 Results and Discussions 120 8.6 Conclusion 123 References 123 References 123 9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor 127 Transistors Reinventing Semiconductor Technology 125 9.1.1 The Evolution of Semiconductor Technology 126 9.1.2.1 Structure of a MOS Transistor 128 9.1.2.1 Structure of a MOS Transistor 128 9.1.2.2 Operation of a MOS Transistor 128 9.1.3 Overview of Junctionless Transistor 129 </td <td></td> <td></td> <td>7.3.2 1D Nanostructures (One-Dimensional)</td> <td>97</td>			7.3.2 1D Nanostructures (One-Dimensional)	97
7.3.4 3D Nanostructures (Three-Dimensional) 97 7.4 AuNP-Based Biosensors 98 7.5 GR-Based Biosensors 101 References 102 8 Technology Behind Junctionless Semiconductor Devices 105 Pavani Kollamudi and K. Srinivasa Rao 106 8.1 Introduction 106 8.2 Operating Modes Based on the Structure of the Device 112 8.3 TCAD Simulations 116 8.4 Effect of Temperature 119 8.5 Results and Discussions 120 8.6 Conclusion 123 References 123 References 123 9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor 127 Transistors Reinventing Semiconductor Technology 125 9.1.1 The Evolution of Semiconductor Technology 126 9.1.2.1 Structure of a MOS Transistor 128 9.1.2.1 Structure of a MOS Transistor 128 9.1.2.2 Operation of a MOS Transistor 128 9.1.3 Overview of Junctionless Transistor 129 </td <td></td> <td></td> <td>7.3.3 2D Nanostructures (Two-Dimensional)</td> <td>97</td>			7.3.3 2D Nanostructures (Two-Dimensional)	97
7.4 AuNP-Based Biosensors 98 7.5 GR-Based Biosensors 101 References 102 8 Technology Behind Junctionless Semiconductor Devices 102 8 Technology Behind Junctionless Semiconductor Devices 106 8.1 Introduction 106 8.2 Operating Modes Based on the Structure of the Device 112 8.3 TCAD Simulations 116 8.4 Effect of Temperature 119 8.5 Results and Discussions 120 8.6 Conclusion 123 References 123 9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor 127 Transistors Reinventing Semiconductor Technology 125 G. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar 11 and V. Kumar 125 9.1 Introduction 125 9.1.1 The Evolution of Semiconductor Technology 126 9.1.2 Punctionless Manowire Transistor 128 9.1.2 Structure of a MOS Transistor 128 9.1.3 Overview of Junctionless Transistor				97
References1028Technology Behind Junctionless Semiconductor Devices105Pavani Kollamudi and K. Srinivasa Rao8.18.1Introduction1068.2Operating Modes Based on the Structure of the Device1128.3TCAD Simulations1168.4Effect of Temperature1198.5Results and Discussions1208.6Conclusion123References1239Breaking Barriers: Junctionless Metal-Oxide-Semiconductor1257Transistors Reinventing Semiconductor Technology1259.1Introduction1259.1.1The Evolution of Semiconductor Technology1269.1.2Fundamentals of MOS Transistor1289.1.2.1Structure of a MOS Transistor1289.1.2.2Operation of a MOS Transistor1309.2.1Structure of Junctionless Metal-Oxide-Semiconductor Transistors1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1.1Gated Resistor Anal Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junctionless Transistors1349.3.1.4Transfer Characteristics1399.3.2Comparison of Junctionless Transistors1399.3.1.4Transfer Characteristics1399.3		7.4		98
8 Technology Behind Junctionless Semiconductor Devices 105 Pavani Kollamudi and K. Srinivasa Rao 106 8.1 Introduction 106 8.2 Operating Modes Based on the Structure of the Device 112 8.3 TCAD Simulations 116 8.4 Effect of Temperature 119 8.5 Results and Discussions 120 8.6 Conclusion 123 References 123 9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor 123 Transistors Reinventing Semiconductor Technology 125 9.1 Introduction 125 9.1.1 The Evolution of Semiconductor Technology 126 9.1.2 Fundamentals of MOS Transistors 127 9.1.2 Fundamentals of MOS Transistor 128 9.1.2 Operation of a MOS Transistor 128 9.1.3 Overview of Junctionless Transistor 129 9.2 Junctionless Nanowire Transistor (NT) 131 9.2.3 Bulk Planar Junctionless Transistors 134 9.3.1 Characteristics of Junctionless Transistors 134		7.5	GR-Based Biosensors	101
Pavani Kollamudi and K. Srinivasa Rao8.1Introduction1068.2Operating Modes Based on the Structure of the Device1128.3TCAD Simulations1168.4Effect of Temperature1198.5Results and Discussions1208.6Conclusion123References1239Breaking Barriers: Junctionless Metal-Oxide-Semiconductor1237Transistors Reinventing Semiconductor Technology1256. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar1269.1. Introduction1259.1.1The Evolution of Semiconductor Technology1269.1.2Fundamentals of MOS Transistors1279.1.2.1Structure of a MOS Transistor1289.1.2.2Operation of a MOS Transistor1289.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1309.2.1Structure of a MOS Transistor1319.2.2Junctionless MOS Transistor1329.3.1Structure of Iunctionless Transistor1319.2.2Junctionless Nanowire Transistor (BPJLT)1329.3.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1349.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junction and Junctionless Transistors1349.3.2.4Transfer Characteristics139 <t< td=""><td></td><td></td><td>References</td><td>102</td></t<>			References	102
8.1 Introduction 106 8.2 Operating Modes Based on the Structure of the Device 112 8.3 TCAD Simulations 116 8.4 Effect of Temperature 119 8.5 Results and Discussions 120 8.6 Conclusion 123 8.6 Conclusion 123 8.7 References 123 9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor 125 7 Transistors Reinventing Semiconductor Technology 125 9.1 Introduction 125 9.1.1 The Evolution of Semiconductor Technology 126 9.1.2 Fundamentals of MOS Transistors 127 9.1.2.1 Structure of a MOS Transistor 128 9.1.2.1 Structure of a MOS Transistor 128 9.1.2.1 Structure of Junctionless Metal-Oxide-Semiconductor Transistors 129 9.2 Junctionless MOS Transistors 129 9.1.3 Overview of Junctionless Transistor 128 9.2.1 Structure of Junctionless Transistor 131 9.2.2 Junctionless for Junctionles	8			105
8.2 Operating Modes Based on the Structure of the Device 112 8.3 TCAD Simulations 116 8.4 Effect of Temperature 119 8.5 Results and Discussions 120 8.6 Conclusion 123 References 123 9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor 7 Transistors Reinventing Semiconductor Technology 125 9. Introduction 125 9.1.1 The Evolution of Semiconductor Technology 126 9.1.2 Fundamentals of MOS Transistors 127 9.1.2 Fundamentals of MOS Transistor 128 9.1.2.1 Structure of a MOS Transistor 128 9.1.2.2 Operation of a MOS Transistor 128 9.1.3 Overview of Junctionless Metal-Oxide-Semiconductor Transistors 129 9.2 Junctionless Mos Transistor (JNT) 131 9.2.1 Structure of Junctionless Transistor 129 9.2.1 Structure of Junctionless Transistor (BPJLT) 132 9.3 Fabrication Techniques for Junctionless Transistors 134 9.3.1.1		Pav		
8.3 TCAD Simulations 116 8.4 Effect of Temperature 119 8.5 Results and Discussions 120 8.6 Conclusion 123 References 123 9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor 125 6. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar 125 9.1 Introduction 125 9.1.1 The Evolution of Semiconductor Technology 126 9.1.2 Fundamentals of MOS Transistors 127 9.1.2.1 Structure of a MOS Transistor 128 9.1.2.2 Operation of a MOS Transistor 128 9.1.3 Overview of Junctionless Metal-Oxide-Semiconductor Transistors 129 9.2 Junctionless Naowire Transistor 130 9.2.1 Structure of Junctionless Transistor 131 9.2.2 Junctionless framsistors 134 9.3.1 Ghated Resistor Characteristics 134 9.3.1 Gated Resistor Characteristics 134 9.3.1.1 Gated Resistor and Intrinsic Device Delay Time 136 9.3.1.3 <t< td=""><td></td><td></td><td></td><td></td></t<>				
8.4Effect of Temperature1198.5Results and Discussions1208.6Conclusion123References1239Breaking Barriers: Junctionless Metal-Oxide-Semiconductor1237Transistors Reinventing Semiconductor Technology1256. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar1259.1Introduction1259.1.1The Evolution of Semiconductor Technology1269.1.2Fundamentals of MOS Transistors1279.1.2.1Structure of a MOS Transistor1289.1.2.2Operation of a MOS Transistor1289.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1299.2Junctionless MOS Transistors: Principles and Concepts1309.2.1Structure of Junctionless Transistor1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor and Intrinsic Device Delay Time1369.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.2.2Comparison of Junction and Junctionless Transistor1399.3.2Comparison of Junction and Junctionless Transistor1399.4.1Current Limitations and Obstacles1399.5Conclusion1439.6Applicati				
8.5Results and Discussions1208.6Conclusion123References1239Breaking Barriers: Junctionless Metal-Oxide-SemiconductorTransistors Reinventing Semiconductor Technology125G. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar1259.1Introduction1259.1.1The Evolution of Semiconductor Technology1269.1.2Fundamentals of MOS Transistors1279.1.2.1Structure of a MOS Transistor1289.1.2.2Operation of a MOS Transistor1289.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1299.2Junctionless MOS Transistors: Principles and Concepts1309.2.1Structure of Junctionless Transistor (JNT)1319.2.2Junctionless for Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor and Intrinsic Device Delay Time1369.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junctionless Transistors1399.4.1Current Limitations and Obstacles1399.5Conclusion1439.6Applications143		8.3		116
8.6Conclusion123 References9Breaking Barriers: Junctionless Metal-Oxide-Semiconductor Transistors Reinventing Semiconductor Technology125 G. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar and V. Kumar9.1Introduction125 9.1.19.1.1The Evolution of Semiconductor Technology126 9.1.29.1.2Fundamentals of MOS Transistors127 9.1.2.19.1.2.1Structure of a MOS Transistor128 9.1.2.29.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors130 9.29.2Junctionless MOS Transistor131 9.2.39.2.1Structure of Junctionless Transistor131 9.2.39.2.3Bulk Planar Junctionless Transistor (JNT)131 9.2.39.3Fabrication Techniques for Junctionless Transistors134 9.3.1.19.3.1.2Gated Resistor Characteristics134 9.3.1.29.3.2Comparison of Junction and Junctionless Transistor137 9.3.1.49.3.2Comparison of Junction and Junctionless Transistor139 9.3.29.4.1Current Limitations and Obstacles139 9.4.19.5Conclusion143 9.6Applications			1	
References1239Breaking Barriers: Junctionless Metal-Oxide-Semiconductor Transistors Reinventing Semiconductor Technology125G. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar and V. Kumar1259.1Introduction1259.1.1The Evolution of Semiconductor Technology1269.1.2Fundamentals of MOS Transistors1279.1.2.1Structure of a MOS Transistor1289.1.2.2Operation of a MOS Transistor1289.1.3.1Overview of Junctionless Metal-Oxide-Semiconductor Transistors1299.2Junctionless MOS Transistor1319.2.2Junctionless Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1349.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.2Comparison of Junction and Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143				120
9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor 7 Transistors Reinventing Semiconductor Technology 125 <i>G. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar</i> 125 <i>and V. Kumar</i> 125 9.1 Introduction 125 9.1.1 The Evolution of Semiconductor Technology 126 9.1.2 Fundamentals of MOS Transistors 127 9.1.2.1 Structure of a MOS Transistor 128 9.1.2.1 Structure of a MOS Transistor 128 9.1.2.1 Structure of a MOS Transistor 128 9.1.2.1 Overview of Junctionless Metal-Oxide-Semiconductor Transistors 129 9.2 Junctionless MOS Transistors: Principles and Concepts 130 9.2.1 Structure of Junctionless Transistor 131 9.2.2 Junctionless Nanowire Transistor (JNT) 131 9.2.3 Bulk Planar Junctionless Transistor (BPJLT) 132 9.3 Fabrication Techniques for Junctionless Transistors 134 9.3.1.1 Gated Resistor Characteristics 134 9.3.1.2 Gated Resistor and Intrinsic Device Delay Time 136 9.3.1.3 <td></td> <td>8.6</td> <td></td> <td>123</td>		8.6		123
Transistors Reinventing Semiconductor Technology125G. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar and V. Kumar1259.1Introduction1259.1.1The Evolution of Semiconductor Technology1269.1.2Fundamentals of MOS Transistors1279.1.2.1Structure of a MOS Transistor1289.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1299.2Junctionless MOS Transistors: Principles and Concepts1309.2.1Structure of Junctionless Transistor1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (JNT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1349.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junction and Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.4.1Current Limitations and Obstacles1399.5Conclusion1439.6Applications143			References	123
G. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar and V. Kumar9.1Introduction1259.1.1The Evolution of Semiconductor Technology1269.1.2Fundamentals of MOS Transistors1279.1.2.1Structure of a MOS Transistor1289.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1299.2Junctionless MOS Transistors: Principles and Concepts1309.2.1Structure of Junctionless Transistor1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (JNT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1379.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.2Comparison of Junction and Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.4.1Current Limitations and Obstacles1399.5Conclusion1439.6Applications143	9	Brea	aking Barriers: Junctionless Metal-Oxide-Semiconductor	
and V. Kumar1259.1Introduction1259.1.1The Evolution of Semiconductor Technology1269.1.2Fundamentals of MOS Transistors1279.1.2.1Structure of a MOS Transistor1289.1.2.2Operation of a MOS Transistor1289.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1299.2Junctionless MOS Transistors: Principles and Concepts1309.2.1Structure of Junctionless Transistor1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor and Intrinsic Device Delay Time1369.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.2Comparison of Junction and Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143		Tra	nsistors Reinventing Semiconductor Technology	125
9.1Introduction1259.1.1The Evolution of Semiconductor Technology1269.1.2Fundamentals of MOS Transistors1279.1.2.1Structure of a MOS Transistor1289.1.2.2Operation of a MOS Transistor1289.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1299.2Junctionless MOS Transistors: Principles and Concepts1309.2.1Structure of Junctionless Transistor (JNT)1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1379.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.2Comparison of Junction and Junctionless Transistors1399.4.1Current Limitations of Junctionless Transistors1399.5Conclusion1439.6Applications143				
9.1.1The Evolution of Semiconductor Technology1269.1.2Fundamentals of MOS Transistors1279.1.2.1Structure of a MOS Transistor1289.1.2.2Operation of a MOS Transistor1289.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1299.2Junctionless MOS Transistors: Principles and Concepts1309.2.1Structure of Junctionless Transistor (JNT)1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1349.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.2Comparison of Junction and Junctionless Transistors1399.4.1Current Limitations of Junctionless Transistors1399.5Conclusion1439.6Applications143				125
9.1.2Fundamentals of MOS Transistors1279.1.2.1Structure of a MOS Transistor1289.1.2.2Operation of a MOS Transistor1289.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1299.2Junctionless MOS Transistors: Principles and Concepts1309.2.1Structure of Junctionless Transistor1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1Characteristics of Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor and Intrinsic Device Delay Time1369.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.2Comparison of Junction and Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143		7.1		
9.1.2.1Structure of a MOS Transistor1289.1.2.2Operation of a MOS Transistor1289.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1299.2Junctionless MOS Transistors: Principles and Concepts1309.2.1Structure of Junctionless Transistor1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1Characteristics of Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor and Intrinsic Device Delay Time1369.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junction and Junctionless Transistors1399.4.1Current Limitations of Junctionless Transistors1399.5Conclusion1439.6Applications143				
9.1.2.2Operation of a MOS Transistor1289.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1299.2Junctionless MOS Transistors: Principles and Concepts1309.2.1Structure of Junctionless Transistor1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1Characteristics of Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1349.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.2Comparison of Junction and Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143				
9.1.3Overview of Junctionless Metal-Oxide-Semiconductor Transistors1299.2Junctionless MOS Transistors: Principles and Concepts1309.2.1Structure of Junctionless Transistor1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1Characteristics of Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1349.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.2Comparison of Junction and Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143				
9.2Junctionless MOS Transistors: Principles and Concepts1309.2.1Structure of Junctionless Transistor1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1Characteristics of Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor and Intrinsic Device Delay Time1369.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junction and Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143				
9.2.1Structure of Junctionless Transistor1319.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1Characteristics of Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1349.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junction and Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143		92		
9.2.2Junctionless Nanowire Transistor (JNT)1319.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1Characteristics of Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1349.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junction and Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143		2.2	· ·	
9.2.3Bulk Planar Junctionless Transistor (BPJLT)1329.3Fabrication Techniques for Junctionless Transistors1349.3.1Characteristics of Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1369.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junction and Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143				
9.3Fabrication Techniques for Junctionless Transistors1349.3.1Characteristics of Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor Characteristics1349.3.1.3Variation of a Doping Concentration in an n-Type Gated1369.3.1.4Transfer Characteristics1379.3.2Comparison of Junction and Junctionless Transistors1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143				
9.3.1Characteristics of Junctionless Transistors1349.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor and Intrinsic Device Delay Time1369.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junction and Junctionless Transistor1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143		9.3		
9.3.1.1Gated Resistor Characteristics1349.3.1.2Gated Resistor and Intrinsic Device Delay Time1369.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junction and Junctionless Transistor1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143		210		
9.3.1.2Gated Resistor and Intrinsic Device Delay Time1369.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junction and Junctionless Transistor1399.4Real-World Implementations of Junctionless Transistors1399.5Conclusion1439.6Applications143				
9.3.1.3Variation of a Doping Concentration in an n-Type Gated Resistor9.3.1.4Transfer Characteristics9.3.2Comparison of Junction and Junctionless Transistor9.4Real-World Implementations of Junctionless Transistors9.4.1Current Limitations and Obstacles9.5Conclusion9.6Applications				
Resistor1379.3.1.4Transfer Characteristics1399.3.2Comparison of Junction and Junctionless Transistor1399.4Real-World Implementations of Junctionless Transistors1399.4.1Current Limitations and Obstacles1399.5Conclusion1439.6Applications143			•	100
9.3.1.4Transfer Characteristics1399.3.2Comparison of Junction and Junctionless Transistor1399.4Real-World Implementations of Junctionless Transistors1399.4.1Current Limitations and Obstacles1399.5Conclusion1439.6Applications143				137
9.3.2 Comparison of Junction and Junctionless Transistor1399.4 Real-World Implementations of Junctionless Transistors1399.4.1 Current Limitations and Obstacles1399.5 Conclusion1439.6 Applications143				
9.4Real-World Implementations of Junctionless Transistors1399.4.1Current Limitations and Obstacles1399.5Conclusion1439.6Applications143				
9.4.1 Current Limitations and Obstacles1399.5 Conclusion1439.6 Applications143		9.4		
9.5 Conclusion 143 9.6 Applications 143			-	
9.6 Applications 143		9.5		
••				
INTERCE INTERCES		- 10	References	143

x Contents	
------------	--

10	Perfo	rmance	Estimation of Junctionless Tunnel Field-Effect Transistor	
	(JL-T	FET): D	evice Structure and Simulation Through TCAD	145
	Prad	еер Кит	ar Kumawat, Shilpi Birla and Neha Singh	
	10.1	Introdu	action	145
		10.1.1	Introduction to TFET	146
			10.1.1.1 TFET Structure and Working	146
	10.2	Junctio	nless TFETs	148
		10.2.1	Motivation for Junctionless TFETs	148
		10.2.2	Existing Structure of Junctionless TFET	149
	10.3		Structure of Junctionless TFETs	150
		10.3.1	Junctionless TFET Structure	151
	10.4	Conclu	sion	154
		Referer	nces	154
11	Scien	ce and T	Technology of Tunnel Field-Effect Transistors	157
	Zube	r Rasool	, Nuzhat Yousf, Aadil Anam and S. Intekhab Amin	
	11.1	Phenor	nenon of Quantum Tunneling	157
	11.2	Tunnel	ing Mathematics	158
		11.2.1	Schrodinger's Equation	158
		11.2.2	Tunneling Through Rectangular Potential Barrier	160
			WKB Approximation Model	162
		11.2.4	Local Band-to-Band Tunneling Models	164
			11.2.4.1 Kane's Model	164
		11.2.5	Non-Local Band-To-Band Tunneling Models	165
	11.3	Tunnel	Field-Effect Transistors (TFETs)	165
		11.3.1	Limitations of MOSFET	165
		11.3.2	Mechanism and Structure of TFET	167
		11.3.3	Advantages and Limitations of TFET	169
		11.3.4	Types of Tunneling	170
			11.3.4.1 Point Tunneling	170
			11.3.4.2 Line Tunneling	171
		11.3.5	6	171
			11.3.5.1 Doping Engineering	171
			11.3.5.2 Geometry Engineering	171
			11.3.5.3 Material and Band Engineering	171
			11.3.5.4 Employing Techniques to Enhance TFET Performance	172
		11.3.6	RF and Small Signal Analysis of TFETs	174
			11.3.6.1 Small Signal Model of N-TFET in ON/OFF State	177
		11.3.7	Applications of TFET Devices	182
	11.4	Conclu		183
		Referer	nces	183

12	Circu	its Designed for Energy-Harvesting Applications That Leverage TFETs	
	to Ac	hieve Extremely Low Power Consumption	189
	Basu	dha Dewan	
	12.1	Introduction	189
		12.1.1 The Roadmap for Technology Scaling	189
		12.1.2 New Approaches for Upcoming Technology Generations	192
	12.2	Energy Harvesting in an Era Beyond Moore's Law	193
	12.3	Tunnel Field-Effect Transistors (TFETs) as a Vital Technology for Energy	
		Harvesting	194
	12.4	Tunnel FET Technology: State of the Art	196
	12.5	Band-to-Band Tunneling (BTBT) Current	196
	12.6	MOSFET vs. TFET	197
	12.7	Innovations in the Configurations of TFETs	200
	12.8	Conclusion	202
		References	202
13	A Fe	rroelectric Negative-Capacitance TFET with Extended Back Gate	
15		nprovement in DC and Analog/HF Parameters	205
		Kumar Pathakamuri, Chandan Kumar Pandey, Diganta Das,	200
		kanta Nanda and Shiromani Balmukund Rahi	
		Introduction	206
		Architectural Configuration and Simulation Approach	207
		Results and Discussion	208
	10.0	13.3.1 DC Characteristics	200
		13.3.2 Optimization of Device Dimensions	211
		13.3.3 Analog/RF Performance	214
		13.3.4 Transient Behavior	216
	13.4	Conclusion	217
		References	217
14		Concepts of Heterojunction Tunnel Field-Effect Transistors	221
		veetha Dhanaselvam, B. Karthikeyan, K. Kavitha and P. Kavitha	
		Introduction	221
		Boosting TFET ON Current	223
	14.3	Heterojunction TFET	225
	14.4	Various Heterojunction Structures	226
	14.5	Conclusion	232
		References	233
15	Boos	ting Performance of Charge Plasma-Based TFETs	235
	Iman	Chahardah Cherik, Saeed Mohammadi and Hadiseh Hosseinimanesh	
	15.1	Introduction	235
	15.2	What is Charge Plasma Concept?	236
	15.3	Techniques to Enhance the Performance of Dopingless TFETs	238
	15.4	Materials Engineering	238
		15.4.1 III/V Dopingless TFETs	239

		15.4.2	Organic Materials	240
		15.4.3	Ferroelectric Materials	241
		15.4.4	Cladding Layer–Based Dopingless TFET	241
		15.4.5	Dopingless TFETs Based on 2D Materials	242
	15.5	Enhance	ement of the Electrostatic Control	243
		15.5.1	Electrostatically Doped PNiN Dopingless TFET	244
		15.5.2	Metal Implant Technique	244
		15.5.3	Nanotube Dopingless TFET	246
	15.6	Drawba	cks of Dopingless TFET	247
			Quantum Confinement	247
		15.6.2	Defects at the Semiconductor-Oxide and Source-Channel Interface	248
		15.6.3	Ambipolar Conduction	249
	15.7	Benchm	e	251
	15.8	Summa	•	252
		Future S		252
		Referen	ces	253
16	TFET	Device	Modeling Using ML Algorithms	257
			ulvanna Nayaki Marimuthu, N. B. Balamurugan	
		1. Hemai	,	
	16.1	Introdu	ction	258
	16.2	Role of 2	ML Algorithms in Device Modeling	259
		16.2.1	Challenges in Device Modeling	259
		16.2.2	Role of ML Algorithms	260
	16.3	Simulati	ion of Devices and ML Techniques	261
	16.4	Dataset	Generation	262
	16.5	ML Wo	rkflow	263
	16.6		rison of ML Algorithms	264
		Referen	ces	267
17	Desig	n of Nex	t-Generation Field-Effect Transistors Using Machine Learning	269
	K. Giı	rija Srav	ani, M. Srikanth, Manikanta Sirigineedi	
	and P	adma Be	ellapukonda	
	17.1	Introdu	ction	269
	17.2	Descrip	tion	270
		17.2.1	Extensive Dataset Development	270
		17.2.2	Design Elements and Feature Engineering	270
		17.2.3	Applications of Multi-Functional ML Models	271
		17.2.4	Thorough Assessment and Validation	271
		17.2.5	Making the Most of the FET Design Space	271
		17.2.6	Advancements in Manufacturing and Their Integration	271
		17.2.7	An Adaptive Framework for Design	271
	17.3	-	zing FET Performance through Machine Learning	271
	17.4		ing Predictive Accuracy and Robustness	275
	17.5	0	ing ML-Optimized FET Structures with Manufacturing Advances	279
	17.6	Conclus		282
		Bibliogr	aphy	282

18	Mach	ine Lea	rning-Augmented Blockchain-Based Graphene Field-Effect	
	Trans	sistor Se	ensor Platform for Biomarker Detection	287
	K. Sr	inivasa I	Rao, M. Srikanth, J.M.S.V. Ravi Kumar and Bhanurangarao M.	
	18.1	Introdu	uction	287
	18.2	Descri	ption	288
		18.2.1	Gather Patient Information, Such as Identifying Details, Biomarkers,	
			and GFET Sensor Readings, and Prepare the Data for Analysis	288
		18.2.2	Enhancing Biomarker Detection Precision With GFET Sensors	
			and Machine Learning	291
		18.2.3	Accelerating Biomarker Detection with Machine Learning	
			and GFET Sensors	296
		18.2.4	Securing Biomarker Data: Blockchain Role in Ensuring	
			Transparency and Immutability	299
		18.2.5	Multidisciplinary Applications of the Biomarker Detection Platform	306
	18.3	Conclu	ision	306
		Bibliog	raphy	306
19	Heter	rojuncti	on Concept and Technology for FET Developments	311
17		•	mar Dubey, Soumak Nandi, Kondaveeti Girija Sravani,	511
			nakar, Mukesh Kumar and Aminul Islam	
	19.1	-		311
			pt of Heterojunction	313
	19.3		junction Field-Effect Transistors (HFETs): An Advanced FET	315
	17.5		Selection of Materials for the Development of HFET or HEMT	316
	19.4		Based HEMTs	318
	19.5		sed HEMTs	319
	19.6		ased HEMTs and its Applications	320
	17.0		AlGaN/GaN-Based HEMT Structure and Working Principle	320
			Polarization in AlGaN/GaN-Based HEMT	322
		19.6.3		323
		19.6.4		324
		19.6.5		0-1
		171010	on AlGaN/GaN-Based HEMT Performance	325
		19.6.6		326
	19.7		oplications and Future Scope of GaN HEMT	326
	19.8	Conclu		327
		Referei		327
20	Char			222
20			ic Analysis of GOS HTFET	333
			nnarayana, T. S. S. Phani, A. K. C. Varma, G. Prasanna Kumar,	
			vara Rao and Prudhvi Raj Budumuru	222
	20.1	Introdu		333
	20.2	20.1.1	0	334
	20.2	•	Considerations of GOS HTFET	335
		20.2.1	GOS Technique	335

		20.2.2	Energy Band Diagrams	336
		20.2.3	Subthreshold Swing Operation	337
		20.2.4	Low-Bandgap (LBG) Materials	338
		20.2.5	High-k Gate Dielectric Materials	338
	20.3		Physics and Structures of GOS HTFETs	339
		20.3.1	Device Parameters	339
		20.3.2	Conventional Design of HTFET	339
		20.3.3	Design of GOS-HTFET	341
		20.3.4	Features of GOS HTFET	342
	20.4	Model	of GOS HTFET	343
		20.4.1	Concept of Device Modeling	343
		20.4.2	Surface Potential Model	344
	20.5	Simula	tion and Validation of GOS HTFET	345
		20.5.1	2D Simulation Model	345
			3D Simulation Model	346
	20.6		teristics of GOS HTFET	346
		20.6.1	V-I and Transfer Characteristics	347
			20.6.1.1 GOS HTFET Transfer Characteristics	347
			20.6.1.2 GOS HTFET Drain Characteristics	348
			C-V Characteristics and Capacitance Model	348
			Subthreshold Swing	349
			ON-OFF Current Ratio	350
			tions of GOS HTFET	351
	20.8		ation of GOS HTFET in SRAM Design	351
	20.9	Conclu		352
		Referen	nces	353
21			sed 2D Mathematical Model for Dual-Material Gate Fe-Doped	255
			GaN High-Electron Mobility Transistors	355
	N. В. 21.1		urugan, M. Hemalatha, M. Suguna and D. Sriram Kumar	250
				356
			Structure and Description	356
	21.3		natical Formulation Relarization Charge and Randgen Calculation	358
			Polarization Charge and Bandgap Calculation	358
		21.3.2	Sheet Charge Density Model	359
			21.3.2.1 Region 1: $(E_f < E_0)$ 21.3.2.2 Region II $(E_f < E_c < AE_c)$	359
			21.3.2.2 Region II $(E_0 < E_f < \Delta E_c)$	360
			21.3.2.3 Region III $(E_f > \Delta E_c)$ 21.3.2.4 Unified Sheet Charge Density Model	360
		21 2 2	21.3.2.4 Unified Sheet Charge Density Model	361
		21.3.3	Mobility Model	362
		21.3.4 21.3.5	Drain Current Model	362
		21.3.5 21.3.6	Transconductance Model	363
			Gate Capacitance Model	364
	21.4	21.3.7 Summ	Cutoff Frequency Model	365
	21.4	Summa Referen	,	370 370
		NEIGIGI	1005	370

 374 375 375 376 377 378 379 379 381 381 382 382
 373 374 375 375 376 377 377 378 379 379 381 382 382 382 382
 374 375 375 376 377 378 379 379 381 381 382 382
375 375 376 377 377 378 379 379 381 381 382 382
 375 376 377 378 379 379 381 381 382 382 382
 376 377 378 379 379 381 381 382 382
377 378 379 379 381 381 382 382
 377 378 379 379 381 381 382 382
378 379 379 381 381 382 382
379 379 381 381 382 382
379 381 381 382 382
381 381 382 382
381 382 382
382 382
382
382
383
384
384
384
393
394
394
396
397
399
401
403
404
405
407
407
408
410
410 412

xvi Contents

24	Nega	tive-Cap	acitance Fi	eld-Effect Transistor for Optimization of Power				
	Factor for Modern Applications Shiromani Balmukund Rahi, Abhishek Kumar Upadhyay, Hanumant Lal							
	and Srinivasa Rao Karumuri							
	24.1	Introdu	iction		418			
	24.2	Require	ement of Lo	w-Power MOSFET	418			
	24.3	Challer	iges in Clas	sical MOS Devices	419			
	24.4	Negativ	e Capacitai	nce: Low-Power Device	421			
	24.5	Fundar	nental of N	egative-Capacitance Technology	422			
	24.6	Negativ	e-Capacita	nce Transistors	426			
	24.7	Fundar	nental Appi	roach for Low-Power Circuit Design	426			
	24.8	Future			427			
	24.9	Conclu			428			
		Referer	ices		428			
25	Nano	scale Hi	gh-K Tri-M	laterial				
23			•		433			
	Surrounding-Gate MOSFET—An Insight Analysis P. Suveetha Dhanaselvam, S. Vasuki, B. Karthikeyan and D. Sriram Kumar							
		Introdu		n, 5. vusuri, D. Kurinike yun unu D. Srirum Kumur	433			
			ed Structur	۵	435			
		-	cal Model		435			
	20.0		Surface Pc	stential	437			
			Electric Fi		439			
				old Current	440			
	25.4	Conclu			441			
	20.1	Referer			441			
					443			
26	Nanoscale Field-Effect Transistors (FETs) in RF Applications							
	Rajeswari P., Gobinath A., Suresh Kumar N. and Anandan M.							
	26.1	Introdu			444			
			Nanoscale		444			
	26.1.2 RF Applications of Nanoscale FETs				445			
	26.2 Fundamental Principles and Operating Characteristics							
		of FETs			447			
	26.3	0	U	in Nanoscale FETs for RF Applications	450			
		26.3.1		ciples of FETs and Scaling	450			
				Miniaturization Effects	450			
				Gate Leakage	450			
		26.3.2	•	Effects in Small-Scale Devices	450			
				Quantum Confinement	450			
				Electron Mobility	450			
		26.3.3	Material C	6	451			
				Material Limitations	451			
				Manufacturing Precision	451			
		26.3.4	•	Concerns	451			
				Aging and Wear	451			
			26.3.4.2	Variability	451			

	26.4	Explori	ng the Landscape: Field-Effect Transistors (FETs)				
		in Radi	ofrequency (RF) Applications	452			
	26.5	Conclusion					
		References					
27	Emer	ging Sul	othreshold Swing FET for Next-Generation Technology Nodes	457			
	G. La	kshmi P	riya, T. Ranjith Kumar, G. Gifta, A. Andrew Roobert				
	and N	1. Venka	itesh				
		Introdu		458			
	27.2		nental Challenges with Conventional FET Device	458			
		27.2.1	8	458			
			27.2.1.1 Problems with the Scaling of the Gate Oxide	459			
			27.2.1.2 Short-Channel Effects (SCEs)	459			
	27.3	-	ped Emerging Subthreshold Swing FET and its Working Principle	465			
			Tunnel FET (TFET)	465			
			Junctionless Transistor (JLT)	467			
			Silicon Nanowire Transistor (SNW)	468			
			Carbon Nanotubes Transistor (CNT)	469			
			ions of Emerging Subthreshold Swing FET	470			
	27.5		ques to Overcome the Limitations of Emerging Subthreshold	. – .			
		Swing H		470			
			Gate Metal Engineering	470			
			Multiple Gate Architecture	471			
		27.5.3	Gate Oxide Engineering	471			
	25 (0 1	27.5.3.1 Stacked Gate-Oxide Structure	471			
	27.6	Conclu		472			
		Referen	lces	472			
28			f the Impact of Nano Heat Transfer Variability	477			
	on Three-Dimensional Field-Effect Transistors						
		Faouzi Nasri, Husien Salama, Billel Smaani and Khalifa Ahmed Salama					
	28.1	Introdu		478			
		28.1.1	Background of Metal-Oxide-Semiconductor Field-Effect				
			Transistor MOSFET	479			
		28.1.2	I_{DS} - V_{GS} MOSFET Characteristics and I_{DS} - V_{DS} MOSFET				
			Characteristics	479			
	a a a	28.1.3	The FinFET Layout	481			
	28.2		natical Formulation and Structural Analysis	482			
		28.2.1	Structural Analysis: FinFET and SG-FET Devices	482			
	20.2	28.2.2	Mathematical Approaches	483 485			
	28.3						
	28.4	Conclu		490			
		Referen	ices	491			
Ab	out th	ne Edito	Drs	493			
-							

Index

495

Preface

The aim of this book is to uncover the complexities of the technological marvels through pioneering designs like Nanosheet FET, NC FET, Junction less MOSFET, NC TFET, Tunnel FET, Fe MOSFET GAA etc. The idea is to provide an understanding of these transistors, showcasing their attributes and applications. One of the device architecture Tunnel Field Effect Transistor (TFET) has a lower subthreshold swing with the added benefit of reduced leakage current under OFF state. Despite its many advantages over MOSFET, TFET has a low ON current. To overcome this challenge as well as to simplify complex fabrication process, "junctionless tunnel field effect transistor (JL-TFET)" was constructed. TFET and JL-TFET work on the same mechanism of band-to-band tunneling and is therefore expected to help in the reduction of power consumption. In this book we are analysing the different structure of existing JL-TFET and simulating a junctionless transistor using TCAD tool. The book starts with discussing the quantum physics approach of tunneling then short comings of MOSFET technology and finally move towards the TFET technology. Physics and working mechanism of the TFET in ON-state, OFF-state, ambipolar state is explained in detailed manner.

The application of FET as biosensors have enlarged the need for the device and it is also discussed in detail. Various applications of nanoscale FETs are explored, including the detection of biomolecules, label-free sensing, studies on protein-protein interactions, DNA/ RNA sensing with high specificity and sensitivity, pathogen detection and the early detection of cancer biomarkers. Following that, Nanosheet FETs and Nanowire FETs, offering superior control over current flow and enhanced device performance, are examined. The challenges of the short channel effect and methods to overcome them are also discussed. A comprehensive overview of these modern Field Effect Transistors, including their design principles, operational characteristics, and potential applications is provided. The future trends and innovations in FET technology are contemplated, offering readers a glimpse into the exciting possibilities on the horizon. This book serves as a foundational exploration, bridging historical context with contemporary advancements, and providing readers with a holistic understanding of the multifaceted world of Field Effect Transistors. Eventhough multigate FETs are superior in many aspects, there are certain limitations especially when scaled beyond. This is slowly ratified in the emerging alternate devices like spintronics, carbon nanotubes, photonics, Graphene materials, HEMT, etc.. This book also highlights the basic concepts of these emerging technologies and it also discusses the features for future applications. This book also provides a comprehensive exploration of Nanowire Transistors (NWTs) as a transformative element in semiconductor technology. The integration of SNTs into existing frameworks and the exploration of novel architectures promise to redefine the boundaries of performance and energy efficiency in electronic systems.

XX PREFACE

In the next few chapters of the book, we present a comprehensive exploration of the fundamental concepts underlying Heterojunction Tunnel Field-Effect Transistors (HTFETs), a novel transistor paradigm with immense potential for ultra-low power applications. This book also provides insights in to device physics and a comprehensive analysis of the electrical characteristics of Gate oxide Overlap on to Source HTFET (GOS HTFET).

A new approach to improving FET design is presented in this book, utilizing machine learning (ML). Collecting and assembling large datasets is the first step in the process. Then comes feature engineering and the use of different machine learning models, such as neural networks, decision trees, and regression. This model training and validation process rapidly explores the FET design space. ML-driven FET designs can be applied in real-world applications due to advancements in the manufacturing process.

In the last few chapters, HEMTs—particularly those based on III–IV materials like InSb—have been discussed which becomes essential in the search for electronic components that are quicker, more effective, and have a larger capacity. The scaling of electronic systems is still driven by the study of novel nanoelectronic devices and the convergence of technologies, with HEMTs being a key facilitator of these developments. The role of HFETs in future communication systems pertaining to consumer market, defense sector and space related applications have been discussed in detail.

The significant gains in channel engineering and device fabrication techniques have influenced the continued scaling of devices. The semiconductor sector's economic viability needs considerable scalability of power, speed, as well as area with each emerging technology node presented in two-year intervals. As IoT devices proliferate, they necessitate higher data transmission rates, storage systems, and retention, as well as instant access to cloud servers for data retrieval. As a result, the need for relatively small, efficient, and ultra-lowpower semiconductor devices will tend to develop for at least another decade.

Classical MOSFET Evolution: Foundations and Advantages

S. Amir Ghoreishi^{1*} and Samira Pahlavani²

¹Department of Materials Science and Engineering, Arizona State University, Tempe, AZ, USA ²Electrical and Computer Engineering Department, Semnan University, Semnan, Iran

Abstract

The realm of MOSFET innovations within the dynamic landscape of semiconductor technology is explored in this chapter. The complexities of these technological marvels through pioneering designs like nanosheet field-effect transistor (FET), negative-capacitance (NC) FET, junction less metaloxide-semiconductor FET (MOSFET), NC tunnel FET (TFET), tunnel FET, Fe MOSFET gate-allaround (GAA), and various others are uncovered. The aim is to provide an understanding of these transistors, showcasing their attributes and applications. Junction less MOSFETs, a development in semiconductor technology, are started with. The principles, characteristics, and advancements of these innovations are delved, illustrating how they have redefined the landscape of device design. Next, TFETs, where tunneling phenomena are used for low-power operations, are examined. The workings of TFETs and their potential in electronics are uncovered. Nanosheet FETs and nanowire FETs, as well as nanoscale wonders, are then investigated. Their features, including their control over current flow, leading to enhanced performance, are studied. The short-channel effect in nanoscale transistors and strategies to mitigate it are also addressed. FinFETs, known for their threedimensional structure, are focused on. Their principles and their role in semiconductor technology, especially in computing applications, are learned. GAA FETs are scrutinized, dissecting their architecture and their contributions to performance and efficiency. The landscape of these modern FETs is navigated, highlighting their design, characteristics, and applicability in electronics. This exploration, including insights into nanoscale transistors and the short-channel effect, serves as a resource for engineers, researchers, and enthusiasts seeking to harness these devices. By the end, the principles of these transistors and their role in electronic technologies will be understood by readers.

Keywords: Field-effect transistors, short-channel effect, FinFETs, classical MOSFET, dual-gate MOSFET

1.1 Introduction of Classical MOSFET

Julius Edgar Lilienfeld laid the foundation for the concept of MOSFET fabrication in 1926 [1], suggesting a three-electrode structure using copper-sulfide semiconductor material.

^{*}Corresponding author: sghorei1@asu.edu

P. Suveetha Dhanaselvam, Srinivasa Rao Karumuri, Shiromani Balmukund Rahi and Dharmendra Singh Yadav (eds.) Field Effect Transistors, (1–22) © 2025 Scrivener Publishing LLC

Figure 1.1 A simple structure of a MOSFET.

While Lilienfeld's exploration sparked the idea of a new transistor type, the MOSFET, as we know it today, the concept was introduced by William Shockley, John Bardeen, and Walter Houser Brattain. The defect of this structure was the traps located on the surface of the semiconductor, which interfered with the mobility of electrons. Growing a layer of silicon dioxide on silicon wafer surface was the solution which Carl Frosch and L. Derick accidentally achieved in 1955. This layer acts as an insulator, preventing the diffusion of dopants into the silicon wafer. According to this achievement other scientists such as M. Atalla demonstrated that silicon dioxide plays a key role in solving the surface problems of wafers [2].

Special crystal clear, the metal-oxide-semiconductor field-effect transistors (MOSFETs) because of their special specifics and high performance not only have revolutionized in the electronic world but also have opened a new window in modern technology to engineers. They are the prevalent type of field-effect transistor (FET), used widespread in electrical devices ranging from memory to smartphone. MOSFETs are widely applied in both analog and digital circuits and are considered the most vital component of integrated circuits. They may be viewed as electronic switches and amplifiers, wherein the flow of current between the source and drain terminals is regulated by the voltage applied to the gate terminal. Figure 1.1 demonstrates a basic structure of classic MOSFETs. They consist of three terminals, entitled gate, drain, and source.

1.1.1 The Advantages of MOSFET

There are a variety of advantages for MOSFETs that can be mentioned. The milestone of MOSFETs is their high speed and low power consumption when they act as a switch. Furthermore, they possess reasonable efficiency in high frequency. Today, because of growing usage of portable electrical devices like smartphones and laptops, demand for fabricating electronics devices with small scale has increased. Manufacturing in small dimension is another ability of MOSFETs, which paves the way for producing semiconductor chips with numerous numbers of them. In terms of thermal stability, a wide temperature range is defined for them to operate accurately. This characteristic is crucial.

1.2 Dual-Gate MOSFET

According to a number of previous research that have been conducted [3], the classical MOSFET represents some restrictions when its gate length is shrunk under 30 nm. Enormous investigations have been carried out to reduce this limitation, and new architectures have been proposed during recent years [4, 5]. The dual-gate (DG) transistors are the most popular devices that maintain their characteristics when their gate-length is 30 nm [6]. Dual-gate MOSFET is a kind of MOSFET, consisting of two gate terminals that are electrically isolated from each other. These gates are embedded one after other along channel length and affect current, flowing among drain and source, thus providing better electrostatic control on channel. The increasing demand for the supply of this useful semiconductor device has prompted many well-known producers to fabricate them, in which Motorola, NXP Semiconductors, and Hitachi are pioneers in the production of these stateof-art transistors. Figures 1.2 and 1.3 illustrate circuit symbol of P-channel and N-channel MOSFET along with device structure of DG MOSFET, respectively.

The DG MOSFET consists of a source, a drain, and two gates. These gates are separated from the channel by oxide layers, with a metal layer positioned above them. As a classical MOSSFET, carriers enter the devices from source and leave them from drain terminal. Additionally, the gate regulates the flow of carriers. Among the recent high-technology MOSFETs, this model is like the classical model. However, there are several differences between them. Firstly, the second gate fortifies their abilities for controlling the channel. Secondly, DG MOSFET has two work modes based on their gate's situation. When both

Figure 1.2 Electronic symbol of DG MOSFET.

Figure 1.3 Dual-gate MOSFET structure.

gates are activated, the DG MOSFET functions like a single-gate device. However, when only one gate is activated, the device operates in a mode referred to as "substrate biasing."

1.2.1 Advantage

Compared to the single-gate form, double-gate MOSFET has shown better performance in some electrical aspects.

1.2.1.1 Scalability

The most important factor preventing MOSFETs from scaling down is the short-channel effect. Because two gates control the channel and its current, this arrangement results in less short-channel effects, which provides greater flexibility for scaling and lower subthreshold current.

1.2.1.2 Improvement of Gain

In addition, the unique structure of DG MOSTFETs boosts the gain of them. The point is that, when they work in substrate biasing mode, situation that only one gate is on, turned-off gate creates depletion region. This region acts as a barrier against the device current flow to restrict it.

1.2.1.3 Low-Power Consumption

Another advantage of DG MOSFETs is consuming lower power. If a gate is off, then the channel length and gate leakage current will be reduced that contributes to power saving.

1.2.1.4 Better I_{ON}/I_{OFF}

Previous studies simulated their proposed models and reported that $\rm I_{_{ON}}/I_{_{OFF}}$ is improved in DG MOSFETs [7].

1.2.1.5 Higher Switching Speed

The body of DG MOSFETs significantly decreases junction capacitances of drain and source. Hence, reducing the junction capacitance can enhance the switching speed of DG MOSFETs. Plus, the amount of feedback capacitance between the input and output of the devices can be significantly reduced by using the second control terminal.

1.2.2 Application

The characteristics of DG MOSFETs make them appropriate to be used in various applications, which will be mentioned.

1.2.2.1 RF Mixer

Radio frequency (RF) mixer consists of two inputs: local oscillator (LO) and RF. The DG MOSFET architecture fulfills the requirement of RF mixer as it has two inputs for the LO and RF signal. As demonstrated in Figure 1.4, commonly, gate 1 is allocated to RF signal, and the second signal is connected to gate 2. The channel current is regulated by two input signals, and the mixer generates a frequency based on its specific needs.

1.2.2.2 RF Amplifier

The most application of DG MOSFETs is in RF circuits especially in RF amplifiers. This type of transistors can operate efficiently at high frequency, due to elimination of unwanted capacitive and short-channel effects. Every single DG MOSFET has the ability to be converted to a two-stage amplifier, known as cascode structure. Figure 1.5 shows a conventional cascode circuit that comprises two separate MOSFETs. The input stage is a common-source amplifier, driven by an input signal source, Vin. The output signal Vout is connected to a common-gate amplifier that is the second stage, where the first stage is responsible for driving it.

A DG MOSFET can provide a cascode structure as it has two gates which G1 can play the role of stage where has common-source arrangement and G2 is the gate, connected to constant voltage and form a common-gate type. Therefore, by means of minimal components and power consuming, an amplifier can be designed that not only improves Miller effect by eliminating the capacitance existing between input and output but also occupies less space in circuits. A biasing for DG is depicted in Figure 1.6 to operate as a cascade amplifier.

Figure 1.4 A circuit of RF mixer.

Figure 1.5 Cascade circuit with two classical MOSFETs.

Figure 1.6 Design a cascade construction by a dual-gate MOSFET.

1.2.2.3 Controllable Gain

The output voltage of DG MOSFETs is depended to voltage level of both gates' terminal. To put it differently, if a constant voltage is considered for one of the gates, varying the voltage

on another gate terminal can affect output voltage. Indeed, a linear gain controller can be proposed by MOSFTEs, having two gates.

1.3 Gate-All-Around MOSFET

Over the past few decades, miniaturizing transistors has posed a significant challenge for electronics companies. They have competed with their peers to achieve a feasible solution. Accordingly, researchers are trying to figure out a structure with greater density, lower cost, higher performance, smaller dimension, and so on. However, when the length of channel varies, undesirable variations occur that should be considered. Research in this field resulted in a variety of promising schemes like multi-gate and gate-all-around FET.

Fujio Masuoka, a Japanese engineer, was a person who invented the first gate-all-around (GAA) MOSFET model that was showcased by Toshiba in 1988 [8]. GAA MOSFET, entitled "surrounding gate transistor" (SGT) is a semiconductor, surrounded by its own gate. The gate surrounds the channel on all four sides. It is a nanoscale silicon with a gate placed around it, which can have two or four effective gates. Small-scale design capability and compatibility with shorter channel length are the two main advantages of this feature, making it a strong competitor to overtake FinFets as it is expected to have better efficiency below 7 nm. In this structure, the gate has more contact with nanosheet or nanowire channel that leads to more control over the channel characteristics. Moreover, the controllable width of nanosheets in GAA FETs facilitates convenient adjustment of the device specifications [9].

Regarding manufacturing technology, nanowire and nanosheet structures have been introduced for the fabrication of GAA transistors. Because the nanowires offer better electrostatic control and nanosheets provide higher on current, they are more popular than other proposed architectures among semiconductor manufacturers [10].

1.3.1 The Fabrication Procedure of GAA MOSFETs

Nanosheets, known as foundation of GAA MOSFETs, should be formed first. For creating them, on the Si substrate, a stack of Si and SiGe epitax6ial layers should be alternatively grown. It is essential to be accurately checked the layers' thickness. In the next step, an inner dielectric spacer is eventually deposited in an indentation in the SiGe layers between source and drain, next to the pillar and the space where the gate will be. This spacer defines the gate width and the channel release and protects the drain and source regions. When the inner spacers are in place, a channel release etch eliminates the SiGe. Then, the gate dielectric and metal will be deposited into the spaces between the silicon nanosheets by atomic layer deposition (ALD).

1.3.2 Advantage of Gate-All-Around MOSFETs

1.3.2.1 Excellent Performance

Fabrication technology such as other fields of semiconductor industry is evolving. Although most companies have turned to FinFET technology, it seems that this trend has achieved its threshold. The point is that FinFETs cannot bear more scaling down and, when become

smaller, is not able to maintain their stability and specifics in many aspects. Reducing the control of both leakage current and short-channel effects, Finfet transistors' operation malfunctions. In this situation, GAA has shown its superiority by removing these defects and performing properly on the nanoscale.

1.3.2.2 The Ability to Shrink

The proposed methods for fabricating GAA MOSFET allow electronic devices producers to manufacture transistors with dimensions of 3 nm. Although their size can be reduced, the cost of production has not decreased.

1.3.2.3 Adjustable Nanosheet

Another benefit of GAA MOSFET is that their nanosheets width and number can be adjusted. This option serves more flexibility for electronic designers to alter the devices characteristics by varying the width of nanosheets and achieve their desired architect.

1.3.2.4 Monitoring the Channel by Gate

The exceptional performance of the GAA MOSFET can be attributed to the gate's effective management of the channel, creating a surround effect. This structure ensures precise control of leakage current and mitigates short-channel effects by achieving optimal channel dimensions and layout.

1.4 I_p-V_c and I_p-V_c Characteristics of Conventional MOSFETs

1.4.1 Introduction to I_D-V_G Curves

The I_D-V_D characteristics showcase the behavior of MOSFETs concerning variations in drain voltage while keeping the gate voltage constant. This relationship is crucial for understanding how MOSFETs operate under different operating conditions.

The $I_D - V_D$ curve of a MOSFET transistor exhibits two distinct regions: The transistor operates in two main regions: the linear region and the saturation region. In the linear region, the drain current (I_D) rises linearly with the drain-source voltage (V_{DS}) at a given gate voltage (V_G). On the other hand, the saturation region is characterized by the drain current (I_D) becoming independent of the drain-source voltage (V_{DS}) and reaching a maximum value for a given gate voltage (V_G).

The shift from the linear region to the saturation region happens when the drain-source voltage (V_{DS}) hits a crucial point known as the pinch-off voltage (V_p) . This pinch-off voltage (V_p) equals the gate voltage (V_G) subtracted by the threshold voltage (V_t) of the MOSFET transistor. The threshold voltage (V_t) represents the minimum gate voltage (V_G) necessary to activate the MOSFET transistor.

Various factors can influence the $I_D - V_D$ curve of a MOSFET transistor, including channel length modulation (λ), drain-induced barrier lowering (DIBL), and velocity saturation (vsat).