INFORMATION VISUALIZATION FOR INTELLIGENT SYSTEMS DITIOTION

0011 011 011

Edited By Premanand Singh Chauhan, Rajesh Arya, Rajesh Kumar Chakrawarti, Elammaran Jayamani, Neelam Sharma, and Romil Rawat

Scrivener Publishing

0 an

Information Visualization for Intelligent Systems

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Information Visualization for Intelligent Systems

Edited by Premanand Singh Chauhan Rajesh Arya Rajesh Kumar Chakrawarti Elammaran Jayamani Neelam Sharma and

Romil Rawat

This edition first published 2025 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2025 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-30578-0

Front cover images supplied by Adobe Firefly Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pr	Preface x		xvii
1	Ana Alg	lysis of Restaurant Reviews Using Novel Hybrid Approach orithm Over Convolutional Neural Network Algorithm	
	with	1 Improved Accuracy	1
	K. A	Abhilash Reddy and Uma Priyadarsini P.S.	
		Introduction	1
		Related Work	3
		Existing Methodology	4
		Convolutional Neural Network Algorithm	4
		Proposed Methodology	5
		Novel Hybrid Approach Algorithm	6
		Statistical Analysis	7
		Results	7
		Discussion	12
		Conclusion	14
		References	14
2	For	ecasting of Product Demand Using Hybrid Regression	
	Mo	del in Comparison with Autoregressive Integrated Moving	
	Ave	rage Model	17
	Adi	bhatla Ajay Bharadwaj and M. Gunasekaran	
	2.1	Introduction	18
	2.2	Materials and Methods	19
		Novel Hybrid Regression Model	20
		Autoregressive Integrated Moving Average	21
		Statistical Analysis	21
	2.3	Tables and Figures	22
	2.4	Results	22
	2.5	Discussion	24
		Conclusion	26
		References	26

vi Contents

3	Ide	Identification of Stress in IT Employees by Image Processing		
	Usi	ng Novel KNN Algorithm in Comparison of Accuracy		
	witl	with SVM		
	<i>C. S</i>	rinath and S. Parthiban		
		Abbreviations Used	30	
	3.1	Introduction	30	
	3.2	Materials and Methods	31	
		K-Nearest Neighbor	32	
		Support Vector Machine	32	
	3.3	Statistical Analysis	33	
	3.4	Results	33	
	3.5	Discussions	37	
	3.6	Conclusion	37	
		Acknowledgements	38	
		References	38	
4	Obs	erving the Accuracy of Breast Cancer Using Support		
	Vec	tor Machine with Digital Mammogram Data		
	in C	Comparison with Naive Bayes	41	
	M. A	. Aasiya Banu and K. Thinakaran		
		Introduction	41	
		Materials and Methods	42	
		Support Vector Machine	43	
		Naive Bayes Algorithm	43	
		Statistical Analysis	44	
		Results	45	
		Discussion	46	
		Conclusion	47	
		References	47	
5	Ana	lyzing and Improving the Efficiency of Winning Prediction		
	in C	Chess Game Using AlexNet Classifier in Comparison		
	witl	1 Support Vector Machine for Improved Accuracy	49	
	Kee	rthana P. and G. Mary Valantina		
		Introduction	50	
		Materials and Methods	51	
		AlexNet	51	
		Support Vector Machine	52	
		Statistical Analysis	53	
		Results	53	
		Discussion	55	

		Conclusion	58
		References	58
6	Acc	urate Prediction of Vehicle Number Plate Segmentation	
U	and	Classification with Inception Compared over Alexnet	61
	F K	Subramanian and V Sudharshan Reddy	01
	61	Introduction	61
	0.1	Organization of Chapter	62
	62	Relevant Works	63
	6.3	Proposed Methodology	63
	010	Inception Algorithm	64
		Alexnet Algorithm	65
	6.4	Resources and Techniques	66
		Tables and Figures	66
	6.5	Results and Discussion	69
	6.6	Conclusion	70
		References	70
-			
/	A N	over Method to Analyze a Server Instance's Performance	
		ring a Crypto-Jacking Attack Using Novel Random Forest	70
	Alg	orithm Compared with Logistic Regression	/3
	K. <i>I</i>	Allow i di control de la contr	74
	71	Abbreviations Used	74
	/.1		/4
	7.2	Materials and Methods	75
	7.3	Statistical Analysis	//
	7.4	Results	77
	7.5	Discussion	/8
			81
		Acknowledgements	81
		References	81
8	A C	omparative Analysis of Twin Segmentation	
	and	Classification Over MultiClass SVM and Innovative CNN:	
	An	Innovative Approach	85
	Pru	dhvi Venkata Narasimha Varma R. and Senthil Kumar R.	
	8.1	Introduction	86
		Statistical Analysis	88
		Results	89
		Discussion	92
		Conclusion	93
		References	93

viii Contents

9 Prediction of Yields in Semiconductor Using XGBoost			
	Class	sifier in Comparison with Random Forest Classifier	95
	Soor	ya K. and Michael G.	
	9.1	Introduction	95
		Results	98
		Discussion	100
		Conclusion	102
		References	103
10	A Ro	bust Medical Image Watermarking Scheme with	
	a Bet	ter Peak Signal-to-Noise Ratio Based on a Novel	
	Mod	ified Embedding Algorithm and Spatial	
	Dom	ain Algorithm	105
	P. He	emanth and P. Shyamala Bharathi	
	10.1	Introduction	106
		10.1.1 Materials and Methods	107
		10.1.2 Statistical Analysis	107
	10.2	Result	108
	10.3	Discussion	113
	10.4	Conclusion	114
		References	114
11	BER	Comparison of BPSK-DCO-OFDM	
	and	OOK-DCO-OFDM in Visible Light Communication	115
	C. Cl	handu Ganesh and B. Anitha Vijayalakshmi	
		Abbreviations Used	116
	11.1	Introduction	116
	11.2	Materials and Methods	117
	11.3	Statistical Analysis	119
	11.4	Results	121
	11.5	Discussions	124
	11.6	Conclusion	125
		References	126
12	Imp	roved Accuracy in Blockchain-Based Smart Vehicle	
	Tran	sportation System Using KNN in Comparison with SVM	129
	Meka	alathuru Yuvaraj and K.V. Kanimozhi	
		Abbreviations Used	129
	12.1	Introduction	130
	12.2	Materials and Methods	131
	12.3	Tables and Figures	131

		KNN Algorithm	131
		Support Vector Machine	133
		Statistical Analysis	135
	12.4	Results	135
	12.5	Discussion	136
	12.6	Conclusion	136
		References	137
13	Impr Whit	ovement in Accuracy of Red Blood Cells (RBC), e Blood Cells (WBC), and Platelets Detection Using	
	Artifi	cial Neural Network and Comparison with Hybrid	
	Conv	olution Neural Network	139
	A. Sa	i Abhishek and T. J. Nagalakshmi	
	13.1	Introduction	140
	13.2	Materials and Methods	141
		13.2.1 Statistical Analysis	144
	13.3	Results	144
	13.4	Discussion	147
	13.5	Conclusion	149
		References	149
14	Nove	l Design of Meta Ring Array Antenna Using FR4	
14	11010	8	
14	for B	iomedical Applications	151
14	for Bi	iomedical Applications a Lakshmi Deekshitha and R. Saravanakumar	151
14	for B Thota 14.1	iomedical Applications A Lakshmi Deekshitha and R. Saravanakumar Introduction	151 151
14	for B Thota 14.1 14.2	iomedical Applications a Lakshmi Deekshitha and R. Saravanakumar Introduction Related Work	151 151 153
14	for B Thota 14.1 14.2 14.3	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods	151 151 153 153
14	for B <i>Thota</i> 14.1 14.2 14.3 14.4	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods Results	151 151 153 153 155
14	for B Thota 14.1 14.2 14.3 14.4 14.5	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods Results Discussions	151 151 153 153 155 158
14	for B Thota 14.1 14.2 14.3 14.4 14.5 14.6	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods Results Discussions Conclusion	151 153 153 155 158 158
14	for Bi Thota 14.1 14.2 14.3 14.4 14.5 14.6	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods Results Discussions Conclusion Abbreviations Used	151 153 153 155 158 158 158
14	for Bi Thota 14.1 14.2 14.3 14.4 14.5 14.6	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods Results Discussions Conclusion Abbreviations Used References	151 153 153 155 158 158 158 158 159
14	for Bi Thota 14.1 14.2 14.3 14.4 14.5 14.6 Review	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods Results Discussions Conclusion Abbreviations Used References w: Recommendation System in Tourism and Hospitality	151 153 153 155 158 158 158 158 158
14	for Bi Thota 14.1 14.2 14.3 14.4 14.5 14.6 Revie Baseo	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods Results Discussions Conclusion Abbreviations Used References w: Recommendation System in Tourism and Hospitality I on Comparison of Different Algorithms	 151 153 153 155 158 158 158 158 159 161
14	for Bi Thota 14.1 14.2 14.3 14.4 14.5 14.6 Revie Basec Abhis	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods Results Discussions Conclusion Abbreviations Used References ew: Recommendation System in Tourism and Hospitality I on Comparison of Different Algorithms shek Tiwari and Pratosh Bansal	 151 153 153 155 158 158 158 159 161
14	for Bi Thota 14.1 14.2 14.3 14.4 14.5 14.6 Revice Basec Abhis 15.1	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods Results Discussions Conclusion Abbreviations Used References w: Recommendation System in Tourism and Hospitality d on Comparison of Different Algorithms Shek Tiwari and Pratosh Bansal Introduction	 151 153 153 155 158 158 158 159 161 162
14	for Bi Thota 14.1 14.2 14.3 14.4 14.5 14.6 Revice Baseo Abhis 15.1	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods Results Discussions Conclusion Abbreviations Used References ew: Recommendation System in Tourism and Hospitality I on Comparison of Different Algorithms Shek Tiwari and Pratosh Bansal Introduction 15.1.1 Recommendation for Tourism Spots	 151 153 153 155 158 158 158 159 161 162 171
14	for Bi Thota 14.1 14.2 14.3 14.4 14.5 14.6 Revie Basec Abhis 15.1 15.2	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods Results Discussions Conclusion Abbreviations Used References ew: Recommendation System in Tourism and Hospitality I on Comparison of Different Algorithms Shek Tiwari and Pratosh Bansal Introduction 15.1.1 Recommendation for Tourism Spots Literature Review	 151 153 153 153 158 158 158 159 161 162 171 171
14	for Bi Thota 14.1 14.2 14.3 14.4 14.5 14.6 Revice Basec Abhis 15.1 15.2	iomedical Applications <i>Lakshmi Deekshitha and R. Saravanakumar</i> Introduction Related Work Materials and Methods Results Discussions Conclusion Abbreviations Used References w: Recommendation System in Tourism and Hospitality I on Comparison of Different Algorithms Shek Tiwari and Pratosh Bansal Introduction 15.1.1 Recommendation for Tourism Spots Literature Review 15.2.1 Collaborative Filtering-Based Recommendation	 151 153 153 155 158 158 158 159 161 162 171 171

x Contents

		15.2.2	Content Filtering-Based Recommendation	
			Systems for Tourism	173
		15.2.3	Recommendation System from Neural Network	174
		15.2.4	CNN in Tourism Recommendation	174
		15.2.5	Use of Semantic Analysis in Tourism	
			Recommendation	175
		15.2.6	Tourism Recommendation with Artificial	
			Intelligence	176
		15.2.7	Genetic Algorithms for Tourism	
			Recommendations	176
		15.2.8	Some Other Algorithms that are Used	
			for Tourism Recommendation	177
	15.3	Resear	ch Gaps	178
		15.3.1	Effect of COVID-19 on Tourism	180
	15.4	Conclu	ision	182
	15.5	Future	Work	183
		Abbrev	viations Used	185
		Referen	nces	185
16	Secu	re and R	eliable Routing for Hybrid Network to Support	
	Disas	ster Reco	overy and Management	193
	Sana	t Jain, A	mit Dangi, Garima Jain and Ajay Kumar Phulre	
		Abbrev	viations	194
	16.1	Introdu	action	194
	16.2	Related	l Work	199
	16.3	Propos	ed Methodology	202
	16.4	Experi	mental Results	205
		16.4.1	Simulation Parameter	206
		16.4.2	Simulation Result	206
	16.5	Conclu	ision	208
		Acknow	wledgments	208
		Referei	nces	208
17	Mach	nine Lea	rning Techniques for Sentimental Analysis	213
	Ghan	ishyam l	Prasad Dubey, Sahil Upadhyay and Ayush Giri	
	Abbr	eviations	s Used	214
	17.1	Introdu	uction	214
	17.2	Applica	ations of Sentimental Analysis	217
	17.3	Related	l Work	218
	17.4	Existin	g Methodology	220
	17.5	Compa	arison and Discussion	224

	17.6	Conclusion References	225 226
18	Desig Perm	gn of 40-mm Period, 0.8-Tesla Variable-Gap Pure anent Magnet Undulator Magnet in RADIA	229
	G. M	Ishra, Geetanjali Sharma ana Vikesh Gupta	220
	10.1	Introduction	229
	18.2	Discussion	231
	10.5	A cknowledgment	230
		References	239
19	Predi	icting Academic Performance of Students: An ANN	
	Appr	oach	241
	Priya	nka Asthana and Manish Maheshwari	
		Abbreviations Used	241
	19.1	Introduction	242
	19.2	Literature Survey	244
	19.3	Proposed ANN Model	245
		19.3.1 Data Gathering	245
		19.3.2 Data Preprocessing	247
		19.3.3 Splitter	247
		19.3.4 Build Model	247
		19.3.5 Performance Analysis	247
	19.4	Experimental Setup	248
		19.4.1 Environmental Setting	249
		19.4.2 Configuration Settings	249
	19.5	Result Analysis	250
	19.6	Conclusion and Future Scope	254
		Acknowledgements	254
		References	254
20	A De	ep Study on Discriminative Supervised	
	Learı	ning Approach	259
	Garin	na Jain, Sanat Jain, Harshlata Vishwakarma	
	and S	Shilpa Suman	
	20.1	Introduction	259
	20.2	Literature Survey	261
	20.3	Introductory Information About Deep Learning	
		and Its Features	263
	20.4	Methodology of DL Approaches	266
	20.5	Deep Learning Network Structures	270

xii (Contents

	20.6	Conclusion	275
		References	276
21	AI M	edical Assistant Machine Learning Techniques	281
	S. Pa	dmakala	
	21.1	Introduction	282
	21.2	Literature Review	283
	21.3	Data and Methodology	286
	21.4	Result and Discussion	288
	21.5	Conclusion	292
		References	293
22	Early	Schizophrenia Prediction Using Wearable Devices	
	and I	Machine Learning	295
	R. De	epa and A. Packialatha	
	22.1	Introduction	296
	22.2	Related Works	298
	22.3	Proposed Methodology	300
		Methodology	301
	22.4	Results and Discussion	304
	22.5	Comparison with Existing Methods	309
	22.6	Conclusion	311
		References	311
23	Fore	casting the Trends in Stock Market Employing Optimally	
	Tune	d Higher Order SVM and Swarm Intelligence	315
	Rahu	l Maheshwari1 and Vivek Kapoor2	
		Abbreviations Used	316
	23.1	Introduction	316
	23.2	Related Work	317
	23.3	Proposed Methodology	321
	23.4	Result	328
		23.4.1 Performance Analysis	329
	23.5	Conclusion	330
		Acknowledgements	330
		References	331
24	Socia	l Media Text Classification Analysis and Influence	
	of Fe	ature Selection Methods on Classification Performance	333
	Vedp	riya Dongre and Pragya Shukla	
	24.1	Introduction	334
	24.2	Literature Review	334

	24.3	Proposed Work	337
	24.4	Results Analysis	343
	24.5	Conclusions	345
		References	346
25	4G V	ersus 5G Communication Using Machine Learning	
	Tech	niques	349
	S. Pa	dmakala	
	25.1	Introduction	350
	25.2	Literature Review	351
	25.3	Data and Methodology	352
	25.4	4G and 5G Methodology	355
	25.5	4G and 5G Algorithm	357
	25.6	Conclusion	366
		References	368
26	Desig	n and Development of Programmable and UV-Based	
	Auto	mated Disinfection for Sanitization of Package Surfaces	371
	Padn	akar Pachorkar, P. S. Chauhan, Akash Pawar,	
	Anil S	Singh Yadav and Neeraj Agrawal	
	26.1	Introduction	372
	26.2	Materials and Methodology	373
	26.3	Result and Discussion	375
	26.4	Conclusion	377
		Funding	377
		Acknowledgements	378
		References	378
27	Fuzzy	7-Based Segmentations Performance Analysis for Breast	
	Tumo	or Detection Using Spatial Fuzzy C-Means Filtering	
	with	Preconditions (SFCM-P) Over Bilateral Fuzzy K-Mean	
	Clust	ering Algorithm (BiFKC)	381
	K. Su	rya Prakash and D. Sungeetha	
	27.1	Introduction	382
	27.2	Materials and Methods	383
	27.3	Results	385
	27.4	Discussion	390
	27.5	Conclusion	393
		References	393

xiv	Contents
111 4	CONTRACTO

28	Anal Class	ysis of Vehicle Accident Prediction Using GoogleNet	
	to En	hance Accuracy	397
	Prak	ash Dilli, Nelson Kennedy Babu C. and A. Akilandeswari	077
	28.1	Introduction	398
		Organization of Chapter	399
	28.2	Significance of GoogleNet and AlexNet for Vehicle	
		Accidents	399
	28.3	Related Work	400
	28.4	Proposed Methodology	401
		GoogleNet	401
		AlexNet	402
		Statistical Analysis	403
	28.5	Results Analysis	403
		Tables and Figures	403
	28.6	Conclusion	407
		References	408
29	Maxi	mizing the Accuracy of Fake Indian Currency Prediction	
	Using	g Particle Swarm Optimization Classifier in Comparison	
	with	Lasso Regression	411
	Kisho	ore Kumar R., Nelson Kennedy Babu C.	
	and A	A. Akilandeswari	
	29.1	Introduction	412
	29.2	Significance of PCO and Lasso Regression	413
		Organization of Chapter	414
	29.3	Related Work	414
	29.4	Proposed Methodology	416
		Particle Swarm Optimization (PSO)	417
		Lasso Regression (LR)	417
		Statistical Analysis	418
	29.5	Result Analysis	418
	29.6	Conclusion	422
		References	423
30	Conv	olutional Neural Network Algorithm for Proliferative	
	Diab	etic Retinopathy Detection and Comparison	
	with	GoogleNet Algorithm to Improve Accuracy	427
	P. Sri	nivasan, R. Thandaiah Prabu and A. Ezhil Grace	
		Abbreviations Used	428
	30.1	Introduction	428
	30.2	Materials and Methods	429

	30.3	Statisti	cal Analysis	432						
	30.4	.4 Results								
	30.5	Discus	sion	437						
	30.6	Conclu	ision	438						
		Acknow	wledgements	439						
		Referen	nces	439						
31	Conv	versatior	nal AI – Security Aspects for Modern Business							
	Appl	ications		441						
	Hites	h Rawat	t, Anjali Rawat, Jean-François Mascari,							
	Ludovica Mascari and Romil Rawat									
		Abbrev	viations Used	442						
	31.1	Introdu	action	442						
	31.2	CAI –	Security Threats	442						
	31.3	Literati	ure Review	449						
	31.4	Mitigat	tion Strategies	452						
	31.5	CAI M	odels	452						
	31.6	Future	Research Directions	455						
	31.7	Conclu	ision	457						
		Referei	nces	458						
32	Literature Review Analysis for Cyberattacks									
	at Ma	anageme	ent Applications and Industrial Control Systems	461						
	Hites	h Rawat	t, Anjali Rawat, Anand Rajavat and Romil Rawat							
		Abbrev	viations Used	462						
	32.1	Introduction								
		32.1.1	Available Research and Findings	465						
		32.1.2	Research Objectives	466						
		32.1.3	Contributions	466						
	32.2	Literati	ure Survey	467						
	32.3 Research Techniques									
		32.3.1	Analysis of Observations	472						
		32.3.2	Parameters for Manuscript							
			(Inclusion and Exclusion) IE	473						
		32.3.3	Outcome Identification	473						
		32.3.4	IE-Qualitative	473						
		32.3.5	Statistics and Facts Extraction	474						
		32.3.6	Statistics and Facts IE	475						
			32.3.6.1 Publications	475						
	224	Observ	vational Values	476						

xvi Contents

	32.5	Analys	S		477			
		32.5.1	What are the OSCMN Application	ions Focused	470			
		22 5 2	ICSS- RQI?	Tachairman	4/8			
		32.3.2	and Methode DO22	E lechniques	470			
		22 5 2	Availability of Datasate with CT	II Dalatad	4/9			
		52.5.5	Availability of Datasets with C1	LI-Related	190			
	326	CICS	Statistics- KQ5		400			
	32.0	Eutura	Work		401			
	54.7	Acknow	viedgements		402			
		Referen	ces		483			
	_	1			100			
33	Fract	al Natu	al Language Semantics and Fra	ctal Machine				
	Learn	iing Eng	ineering: Cultural Heritage Ger	nerative	400			
	Mana	igement	Systems		489			
	Jean-	Françoi:	Mascari, Ludovica Mascari, Hi	tesh Rawat,				
	Anjal	Anjali Rawat and Romil Rawat						
	33.1	Introdu			490			
	33.2	Frameworks, Directions, and Domains						
	33.3	Un-Gewis Architecture						
		33.3.1	Material: "Landscapes, Heritage	, and Culture"	40.0			
			Interaction System	1 -	493			
			33.3.1.1 Components, Tools, a	and Contexts	494			
			33.3.1.2 Interaction Networks		496			
			33.3.1.3 Networks of Network	S	498			
			33.3.1.4 Networks of Network	s of Networks N ³	501			
		33.3.2	Services Dualities and Dynamic	Data-Driven				
			Simulations		501			
			33.3.2.1 Services Dualities		502			
		33.3.3	Dynamic Data-Driven Applicat	ions Systems	504			
	33.4	Conclu	sions		508			
		Referen	ces		509			
At	out tl	he Edito	ors		511			
In	dex				513			

Preface

The book focusses on advanced computing, or machine intelligence, the ability of a technology (a machine, device, or algorithm) to interact with its surroundings intelligently. This means that the technology can make decisions and take actions that will increase the likelihood that its objectives will be met. In contrast to the natural intelligence exhibited by people, artificial intelligence (AI), sometimes referred to as machine intelligence, is intelligence manifested by machines. The modern world is experiencing a period of paradigm shifts. New technologies have contributed to these shifts in part because they offer high-speed computing capabilities that make complicated machine intelligence systems possible. These advancements are paving the way for the creation of new cyber systems, which employ continually generated data to construct machine intelligence models that carry out specific functions inside the system. While the isolated use of cyber systems is becoming more common, the synchronic integration of these systems with other cyber systems to create a compact and intelligent structure that can interact deeply and independently with a physical system is still largely unanswered and has only been briefly discussed from a philosophical perspective in a few works.

Modern civilisation has undergone many paradigms shifts as a result of technological breakthroughs. These developments brought in immense data creation, cloud data storage systems, near-instantaneous worldwide information exchange, very quick computer capabilities, etc. Additionally, they paved the way for the development of cutting-edge cyber systems that employ systematically created data pipelines to carry out certain tasks. For instance, in certain nations, video surveillance imagery is used to detect criminals or possible criminals using machine intelligence (MI) models. Moreover, autonomous MI systems have applications in the medical field, where they enable prompt detection of infections like COVID-19. The chemical industry also uses a variety of applications.

Analysis of Restaurant Reviews Using Novel Hybrid Approach Algorithm Over Convolutional Neural Network Algorithm with Improved Accuracy

K. Abhilash Reddy and Uma Priyadarsini P.S.*

Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India

Abstract

The goal of this endeavor is to assess restaurant evaluations using a novel hybrid approach method in conjunction with the algorithm known as convolutional neural network (CNN). The study presents a novel hybrid approach that uses deep learning to classify restaurant evaluations as either good or negative. A collection of reviews was compiled in order to assess the efficacy of the proposed method. The hybrid approach algorithm (accuracy = 96.1%) analyzes the reviews and increases the measured accuracy over CNN (accuracy = 92.30%) with a statistically significant value of 0.004. The findings from the assessment conducted on the test dataset indicate that, in comparison to alternative methodologies currently in use, the novel hybrid approach technique yields the most precise reviews.

Keywords: Sentiment analysis, novel hybrid approach, convolutional neural network, deep learning, restaurant reviews, polarity, food

Introduction

In recent years, the growth of restaurants through online platforms has been significant, with websites becoming the primary way for customers

^{*}Corresponding author: umapriyadarsini@saveetha.com

Premanand Singh Chauhan, Rajesh Arya, Rajesh Kumar Chakrawarti, Elammaran Jayamani, Neelam Sharma and Romil Rawat (eds.) Information Visualization for Intelligent Systems, (1–16) © 2025 Scrivener Publishing LLC

2 INFORMATION VISUALIZATION FOR INTELLIGENT SYSTEMS

to provide their opinions and assess the quality of restaurants and food services. The sentiment of customers can be inferred from these online reviews, which play a crucial role in shaping the reputation of an eatery. The potential to evaluate customers' opinions and make adjustments is provided by the contact between customers and owners via Internet platforms. Training machines with labeled data provides the benefit of more accurate future analysis of customer sentiment (Young et al., 2018). The significance of this study extracted features from reviews and predicted their sentiment using a mixed deep learning technique. The findings of this study will help business owners by offering insightful information for making decisions. The procedure entails removing text from the web, classifying it, and figuring out how it feels. This contribution comprises a dataset comprising one thousand reviews sourced from Bangladesh. Chinsha T.C. proposed a feature based on an analysis of restaurant reviews (Chinsha and Joseph, 2015). The applications of the analysis of restaurant reviews using the novel hybrid approach algorithm include (Sharif, Hoque, and Hossain, 2019) the following: Improving Restaurant Operations: The analysis of customer feedback can be used by restaurants to identify areas for improvement and make informed decisions about menu offerings, food services, and other aspects of their operations. Customer Segmentation: Customers can be divided into groups according to their opinions and preferences using the hybrid approach, allowing restaurants to tailor their customers (Mohammad, Kiritchenko, and Zhu, 2013).

The examination of restaurant review systems has generated a significant amount of scholarly interest in recent years. On Google Scholar, over 191 papers were published, whereas on IEEE, over 97 papers were published. This research aims to analyze individuals' perspectives about restaurants using an innovative method. By utilizing deep learning architectures, this study seeks to achieve higher accuracy in sentiment analysis of restaurant reviews. The innovative combination of a convolutional neural network (CNN) and a novel hybrid strategy is suggested to address the diversity of recent datasets. A sample of 1000 reviews was collected and preprocessed to structure the unstructured and unlabeled data, with labels assigned as positive or negative. The CNN model learns the representation of words, while the novel hybrid approach learns more nuanced representations specific to the classification task. Hyperparameters were optimized before training the model to improve accuracy. Sentiment analysis is a common approach to predict customer reviews, as shown in previous studies by authors like Gan, who assessed restaurants based on factors like the quality of the food, cost, service, or atmosphere, and its context, and Jia, who created a model for categorizing restaurant reviews (Jia, 2020). Using a set of data of 1060

reviews, author Niphat Claypo developed a sentiment analysis framework using a combination of K-means clustering and the MRF feature selection (Claypo and Jaiyen, 2015). The optimal average K-means accuracy was 71.73%. An opinion mining model with 70% accuracy was proposed by author Sun using a dependency parser and Sentiwordnet (Sun, Luo, and Chen, 2017). Author Soujanya Poria developed the CNN methodology for identifying sentiment meaning using aspect uprooting. A multilayer CNN was used for word tagging according to Young *et al.* (2018).

The research gap is to overcome these limitations, a hybrid approach combining deep learning and sentiment analysis is proposed to classify sentiment polarity as either positive or negative. However, it is important to note that the accuracy of the machine learning models is contingent upon the quality of the training data, and any biases or inaccuracies could result in incorrect predictions. Additionally, the interpretability of some machine learning models, such as deep learning networks, can be limited, making it challenging to comprehend their reasoning. This study evaluates the effectiveness of a new hybrid approach method in comparison to a CNN algorithm for improving the accuracy of emotion polarity categorization in restaurant reviews.

Related Work

In the past five years, between 2017 and 2021, there has been an analysis of restaurant review systems that have been the subject of a sizable number of research articles. There are over 191 papers published on Google Scholar and over 97 papers published in IEEE. Hossain, Sharif, and Hoque (2020) conducted an analysis utilizing 4000 Bengali movie reviews, suggested a sentiment analysis model, and achieved a precision of 88.90% for long short-term memory (LSTM) and 82.42% for SVM. Utilizing the multinomial naive Bayes system that has an accuracy rating of 84%, 2000 Bengali critiques of books were utilized to categorize sentiment opposites into positive and negative categories (Hossein, Hoque, and Sarker, 2021). Sarker (2019) offered an LSTM-based sentiment analysis with an accuracy of 55.23% to categorize 1500 tweets into positive, negative, and neutral groups. The study of Wahid, Hasan, and Alom (2019) introduces a method for sentiment analysis utilizing LSTM (long short-term memory) on a dataset of 10,000 comments on Facebook to divide Bengali content into either positive or negative groups with 95% accuracy.

An LSTM-based algorithm was used to classify attitudes from Facebook tweets, achieving an 85% accuracy on a set of 10,000 Bengali messages.

4 INFORMATION VISUALIZATION FOR INTELLIGENT SYSTEMS

Previous studies on sentiment analysis in Bengali focused on datasets such as Twitter posts, book reviews, and movie ratings, but these datasets were generally small. There is a dearth of research on sentiment analysis of restaurant reviews in the Bengali language other than this study. A total of 6625 restaurant reviews were gathered for the current study from a variety of online sources, including restaurant pages (1763), groups (1940), and Facebook comments (2922). Furthermore, 2000 restaurant reviews were acquired using the Yelp dataset. Data obtained from February 2020 to June 2020 contained inconsistent reviews. To address this, a filter was designed to exclude duplicates, comments with a minimum of three terms, mixed language evaluations, neutral sentiment evaluations, and reviews containing punctuation, numerals, and emojis. The filter produced a refined dataset of 6435 evaluations, which had been manually annotated by three annotators with 12 to 18 months of expertise in natural language processing (NLP). The annotation process entailed preserving the labels of 2000 evaluations from the Yelp dataset. Mohammad, Kiritchenko, and Zhu (2013) employed Cohen's Kappa to assess the inter-rater agreement among annotators for evaluating the annotation quality. The data exhibit good quality, as indicated by the average Kappa value of 0.81 (Kwok & Yu, 2013).

Existing Methodology

Convolutional Neural Network Algorithm

CNNs are a deep learning technique known for their effectiveness in image identification and may also be applied to text classification tasks like sentiment evaluation of restaurant reviews. In the case of restaurant reviews, the text data are transformed into numerical data using techniques such as tokenization, padding, and one-hot encoding. The CNN model is then trained using the numerical data. During training, the model learns the patterns and relationships between the words and phrases in the reviews and the corresponding sentiment (positive, neutral, or negative). After the model has undergone training, it can be utilized to categorize fresh reviews and forecast the sentiment expressed in the review. Evaluating the model's accuracy can be done by utilizing metrics such as precision, recall, and F1-score.

Overall, using a CNN algorithm for sentiment analysis of restaurant reviews can lead to effective and efficient classification results.

Algorithm Steps

- # Data preprocessing
- 1. Load the restaurant review dataset
- 2. Clean and preprocess the text data
- 3. Tokenize the text data into sequences of words or phrases
- 4. Pad the sequences to a fixed length
- 5. One-hot encode the sequences
- # Model building and training
- 6. Define the CNN architecture (number of layers, filter size, etc.)
- 7. Compile the model by defining the loss function, optimizer, and metrics
- 8. Train the model on the preprocessed data using a suitable batch size and number of epochs
- # Model evaluation
- 9. Evaluate the trained model on a test set of reviews
- 10. Calculate evaluation metrics such as precision, recall, and F1-score
- # Model deployment
- 11. Save the trained model for later deployment
- 12. Load the saved model and use it to classify new restaurant reviews and predict their sentiment.

Proposed Methodology

The dataset used in this research work is based on the concept of restaurant reviews (Govindarajan, 2014). The dataset used in this research is collected from Kaggle. The sample size was determined through GPower software, where two groups of 10 sets were selected. Using the GPower 3.1 tool, a pre-test strength value was determined with $\alpha = 0.05$ and power = 0.80, the necessary parameters for a test of statistical significance comparing two independent means. The study employed a novel hybrid method and CNN algorithm by utilizing Technical Analysis software. Human or animal samples were not used due to the absence of ethical approval requirements. The hardware configuration comprised an Intel i5 core processor paired with 16 GB of RAM. The software utilized included HTML, Python, Java, Tomcat/Glassfish server, Jupyter Notebook, My SQL database, CSS web technologies, and J2SDK1.5 Java version.

Novel Hybrid Approach Algorithm

The novel hybrid approach algorithm for analyzing restaurant reviews combines multiple techniques from NLP to provide a comprehensive analysis of customer opinions and sentiments. The algorithm uses methods such as sentiment analysis, topic modeling, and entity recognition to identify trends and patterns in the data. The objective is to help restaurant owners and managers make informed decisions about their business and food services by understanding the strengths and weaknesses of their establishment through the analysis of customer reviews. The insights obtained from the study can be used to improve the customer experience and enhance overall satisfaction.

Pseudocode for a Hybrid Approach Algorithm for Analyzing Restaurant Reviews:

Step 1: Preprocessing

Input: Raw restaurant reviews Output: Cleaned and preprocessed reviews Remove irrelevant information such as punctuation, stop words, and special characters. Tokenize the reviews into individual words. Utilize lemmatization or stemming to simplify words to their most basic form.

Step 2: Sentiment Analysis

Input: Cleaned and preprocessed reviews Output: Sentiment scores for each review Utilize an analysis of sentiment tool or algorithm to categorize each review as favorable, negative, or neutral. Calculate the sentiment score for each review based on the classification results.

Step 3: Topic Modeling

Input: Cleaned and preprocessed reviews Output: Topics and their distributions in the reviews Apply LDA (latent Dirichlet allocation) for topic modeling to determine the primary subjects covered in the reviews. Calculate the distribution of topics in the reviews. Step 4: Entity Recognition

Input: Cleaned and preprocessed reviews Output: Entities mentioned in the reviews Use an entity recognition tool or model to identify entities such as food items, services, ambiance, etc. mentioned in the reviews. Store the entities and their mentions in a data structure.

Step 5: Combination of Results

Input: Sentiment scores, topic distributions, and entity mentions Output: comprehensive analysis of the restaurant reviews Combine the results from the sentiment analysis, topic modeling, and entity recognition steps to obtain a comprehensive analysis of the restaurant reviews.

Use the results to identify patterns and trends in the data.

Step 6: Visualization and Reporting

Input: Comprehensive analysis of the restaurant reviews Output: Visualizations and reports Use data visualization techniques to present the results of the anal-

ysis in an intuitive and easy-to-understand manner.

Statistical Analysis

In order to statistically analyze restaurant evaluations, SPSS software employs a special hybrid approach strategy that outperforms the naive Bayes approach in terms of accuracy. Accuracy is the dependent variable, and efficacy is the independent variable. A sample size of ten has been used for the analysis. The novel hybrid approach algorithm's accuracy is determined using the statistical T-test analysis.

Results

The hybrid approach algorithm and the CNN algorithm were run independently in Jupyter Notebook using an experiment size of 10.

Table 1.1 displays the expected accuracy and loss of the hybrid approach algorithm.

Table 1.2 represents the CNN's expected accuracy and loss. The statistical values that can be utilized for comparison are computed for each of

8 INFORMATION VISUALIZATION FOR INTELLIGENT SYSTEMS

Table 1.1 An analysis of accuracy and loss was conducted on a novel hybrid approach algorithm using a sample size of 10. The hybrid approach algorithm achieves a precision rate of 96.10% with a corresponding error rate of 3.90%.

Iteration	Accuracy (%)	Loss (%)		
1	96.63	3.37		
2	97.46	2.54		
3	98.25	1.75		
4	94.52	5.48		
5	95.66	4.34		
6	95.68	4.32		
7	95.25	4.75		
8	96.25	3.75		
9	95.20	4.80		
10	96.10	3.90		

the 10 data samples together with the associated loss values. According to the findings, the CNN had a mean accuracy of 92.30% and the hybrid approach algorithm had a mean accuracy of 96.1%.

Table 1.3 represents the mean accuracy scores for the CNN and the hybrid approach algorithm. When compared to the CNN, the hybrid approach algorithm's mean value is superior, with standard deviations of 2.08555 and 2.18436, respectively.

Table 1.4 shows the hybrid approach algorithm and CNN-independent sample T-test data with a statistically significant value of 0.004 (p < 0.05).

Table 1.5 evaluates the convolutional neural network, also known as CNN [20–25], algorithm's accuracy against that of the hybrid approach algorithm. The hybrid approach algorithm attains an efficacy of 96.10%, whereas the CNN (convolutional neural network) algorithm yields a success rate of 92.30%. In terms of accuracy, the hybrid approach algorithm performs better than the CNN model algorithm.

Table 1.2 A CNN with a sample size of10 is used to analyze its accuracy and loss.92.30% precision and 7.70% error rates areattained using the CNN.

Iteration	Accuracy (%)	Loss (%)		
1	91.15	9.85		
2	94.32	5.68		
3	93.46	6.54		
4	91.07	9.93		
5	93.18	6.82		
6	94.74	5.26		
7	90.56	9.44		
8	90.78	9.22		
9	91.44	8.56		
10	92.30	7.70		

Table 1.3 The group statistics for the novel hybrid model show a mean accuracy of 96.10% with a standard deviation of 1.11. In comparison, the LSTM model has a mean accuracy of 92.30% with a standard deviation of 1.52.

	Group	N	Mean	Std. deviation	Std. error of the mean
Accuracy	Hybrid algorithm	10	96.1000	1.11427	0.35236
	CNN	10	92.3000	1.52996	0.48382

Figure 1.1 illustrates the flow chart of a distinctive hybrid methodology that integrates a CNN (convolutional neural network) to analyze the sentiments of online restaurant reviews.

Figure 1.2 shows the average accuracy difference between the hybrid approach algorithm and the CNN. With a mean of 93.3571, a standard

10 INFORMATION VISUALIZATION FOR INTELLIGENT SYSTEMS

Table 1.4 Performing a T-test on an independent sample to establish significance and compute the standard error. A p-value of less than 0.05 is considered statistically significant, and a confidence interval of 95% was calculated. The hybrid approach algorithm demonstrates superior performance compared to CNNs, with a statistically significant p-value of 0.004, meeting the criteria for significance at a two-tailed level of p < 0.05.

Levene's equality of variances test				T-test for means equality					95% Confidence interval for the difference	
		F	Sig	t	df	Sig. (two-tailed)	Mean difference	Std. error difference	Lower	Upper
Accuracy	Assuming equal variance	0.309	0.014	6.349	18	0.004	3.80000	0.59853	2.54254	5.05746
	No assumption of equal variances			6.349	16.451	0.004	3.80000	0.59853	2.53400	5.06600