

Andreas Bach

Thermal Analysis of Thermosets

HANSER

Bach
**Thermal Analysis
of Thermosets**

Andreas Bach

Thermal Analysis of Thermosets

HANSER

Print-ISBN: 978-1-56990-384-1
E-Book-ISBN: 978-1-56990-342-1

All information, procedures, and illustrations contained in this work have been compiled to the best of our knowledge and is believed to be true and accurate at the time of going to press. Nevertheless, errors and omissions are possible. Neither the authors, editors, nor publisher assume any responsibility for possible consequences of such errors or omissions. The information contained in this work is not associated with any obligation or guarantee of any kind. The authors, editors, and publisher accept no responsibility and do not assume any liability, consequential or otherwise, arising in any way from the use of this information – or any part thereof. Neither do the authors, editors, and publisher guarantee that the described processes, etc., are free of third party intellectual property rights. The reproduction of common names, trade names, product names, etc., in this work, even without special identification, does not justify the assumption that such names are to be considered free in the sense of trademark and brand protection legislation and may therefore be used by anyone.

The final determination of the suitability of any information for the use contemplated for a given application remains the sole responsibility of the user.

Bibliographic information of the German National Library:

The German National Library lists this publication in the German National Bibliography; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

This work is protected by copyright.

All rights, including those of translation, reprint, and reproduction of the work, or parts thereof, are reserved. No part of this work may be reproduced in any form (photocopy, microfilm, or any other process) or processed, duplicated, transmitted, or distributed using electronic systems, even for the purpose of teaching – with the exception of the special cases mentioned in §§ 53, 54 UrhG (German Copyright Law) – without the written consent of the publisher.

No part of the work may be used for the purposes of text and data mining without the written consent of the publisher, in accordance with § 44b UrhG (German Copyright Law).

© 2025 Carl Hanser Verlag GmbH & Co. KG, Munich
Kolbergerstraße 22 | 81679 Munich | info@hanser.de

www.hanserpublications.com

www.hanser-fachbuch.de

Editor: Dr. Mark Smith

Production Management: Cornelia Speckmaier

Cover concept: Marc Müller-Bremer, www.rebranding.de, Munich

Cover design: Max Kostopoulos

Cover picture: © Mettler Toledo

Typesetting: Lumina Datamatics Ltd., München

Printed and bound by: CPI Books GmbH, Leck

Printed in Germany

Preface to the First Mettler Toledo Edition, 2006

This applications booklet provides an insight into the thermal analysis of thermosets and presents a large number of practical examples. The main techniques used for sample measurement are differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA). In special cases, combined on-line techniques such as SDTA, visual monitoring, and evolved gas analysis have also been employed.

Thermosets are thermosetting polymers that have undergone a permanent chemical reaction known as curing or crosslinking to form a giant crosslinked network structure. They are rigid, typically insoluble materials of high mechanical strength and high temperature stability. In contrast to thermoplastics, thermosets cannot be remelted or remolded into another shape after curing. Thermosetting materials include a wide range of chemically different compounds. Nowadays, more and more different types of polymers are being combined in order to develop new material properties. This makes it sometimes difficult to distinguish between thermosets, thermoplastics, and elastomers. For this reason, the focus in this booklet is on relatively simple systems that can be clearly identified as thermosets.

The Thermosets Collected Applications booklet is published in two separate volumes.

Volume 1 first presents an overview and brief description of the analytical techniques commonly used to characterize thermosets. The second part deals with the chemistry of individual thermosets and discusses the use of these materials. This section is intended for readers who are new to the field of thermosetting polymers and who wish to learn more about the properties and applications of thermosets. Finally, the third and larger part discusses the properties and effects that can be investigated using different thermoanalytical techniques. In general, the same resin systems were used for the measurements in order to facilitate comparison.

Volume 2 concentrates on practical examples. These have been subdivided according to the type of resin system. The applications describe the different properties that can be investigated, measured, or simply checked during the lifecycle of a thermoset.

I hope that the applications described in these two volumes will find wide interest and stimulate new ideas both for experts and for newcomers to this rather complex but immensely interesting field.

I am very grateful for the many contributions in this volume supplied by my colleagues at METTLER TOLEDO. Some of these experiments have already been described in past issues of the METTLER TOLEDO thermal analysis UserCom journal or elsewhere. My thanks therefore go to Mrs. Ni Jing, Dr. Jürgen Schawe, Dr. Markus Schubnell, Dr. Matthias Wagner, Georg Widmann and Marco Zappa. Mrs. Myrta Pfister deserves special mention for the large number of sample measurements she performed for this publication.

Finally, I thank all my colleagues, especially Dr. Jürgen Schawe and Georg Widmann for valuable discussions and proofreading, and Dr. Dudley May for translating the original German manuscript into English.

Schwerzenbach, November 2006

Dr. Rudolf Riesen

Preface to This Hanser Edition, 2025

Since the first edition published in 2006, METTLER TOLEDO's line of thermal analysis instrumentation has expanded and now also includes chip calorimetry by Flash DSC. METTLER TOLEDO has also introduced several new techniques in addition to mass spectroscopy (MS) and Fourier transform infrared (FTIR) that can be connected to a TGA for advanced evolved gas analysis (EGA), including gas chromatography/mass spectrometry (GC/MS) and Micro GC. A modular humidity generator can now also be coupled to the TMA for investigations at defined relative humidity levels using a TMA Sorption Analyzer System.

This edition of the handbook is now published as a single, unified volume, and includes a number of experiments recently obtained using the new techniques mentioned above. In addition, the handbook now includes an expanded section with a brief description of these analytical techniques, which are commonly used to characterize thermosets. The section dealing with the chemistry of individual thermosets was also updated. I would like to thank several colleagues for their valuable support in producing this handbook:

- The Materials Characterization Support Group, especially Nicolas Fedelich
- Naomi Towers and Dr. Markus Schubnell for reviewing the text

Nänikon, January 2025

Dr. Andreas Bach

Contents

Preface to the First Mettler Toledo Edition, 2006	1
Preface to This Hanser Edition, 2025	2
Applications List of Part 1	9
Applications List of Part 2	11
Part 1	17
1 Introduction to Thermal Analysis.....	19
1.1 Differential thermal analysis (DTA, SDTA)	19
1.2 Differential scanning calorimetry (DSC)	19
1.2.1 Conventional DSC	19
1.2.2 Chip calorimetry	20
1.2.3 Temperature-modulated DSC	21
1.2.3.1 ADSC	21
1.2.3.2 IsoStep	22
1.2.3.3 TOPEM	22
1.2.4 DSC photocalorimetry	23
1.2.5 DSC microscopy	23
1.3 Thermogravimetric analysis (TGA)	24
1.4 Thermomechanical analysis (TMA).....	25
1.5 Dynamic mechanical analysis (DMA)	26
1.6 Evolved gas analysis (EGA)	28
1.6.1 TGA-MS and TMA-MS	28
1.6.2 TGA-FTIR	29
1.6.3 TGA-GC/MS	30
1.6.4 TGA-Micro-GC/MS	31
1.7 Sorption	32
2 Structure, Properties and Applications of Thermosets.....	35
2.1 Introduction.....	35
2.2 Chemical structure of thermosets	35
2.2.1 Macromolecules	35
2.2.2 Thermosets, a general overview	36
2.2.3 Resins.....	37
2.2.3.1 Epoxy resins, EP.....	38
2.2.3.2 Phenolic resins, PF.....	40
2.2.3.3 Amino resins, UF, MF	42
2.2.3.4 Alkyds, unsaturated polyester resins, UP	43
2.2.3.5 Vinyl ester resins, VE	44
2.2.3.6 Allylics, DAP molding compounds.....	44
2.2.3.7 Polyacrylate, PAK.....	44
2.2.3.8 Polyurethane systems, PUR	45
2.2.3.9 Dicyanate resins.....	46
2.2.3.10 Polyimides (PI), Bismaleimide resins (BMI)	46
2.2.3.11 Silicone resins, SI	47
2.3 The curing reaction.....	47
2.3.1 Crosslinking steps	47

2.3.2	TTT diagram	48
2.3.3	Curing kinetics	49
2.4	Applications of thermosets	51
2.4.1	Properties	51
2.4.2	Processing	52
2.4.3	Areas of application and properties of individual resins	52
2.4.3.1	Epoxy resins, EP	52
2.4.3.2	Phenol-formaldehyde resins, PF	53
2.4.3.3	Amino resins, UF/MF	54
2.4.3.4	Polyester resins, UP	54
2.4.3.5	Vinyl ester resins, VE	55
2.4.3.6	DAP molding compounds	55
2.4.3.7	Acrylates	55
2.4.3.8	Polyurethanes, PUR	55
2.4.3.9	Dicyanate resins	56
2.4.3.10	Polyimides, PI and BMI	56
2.4.3.11	Silicone resins	56
2.4.4	Overview of the areas of use and application	56
2.5	Characterization methods for thermosets	58
2.5.1	Overview of information required	58
2.5.2	TA techniques for the characterization of thermosets	59
2.5.3	The glass transition	60
2.5.3.1	Glass transition and relaxation: thermal and dynamic glass transition	60
2.5.3.2	Determination of the glass transition temperature	61
2.5.4	Standard methods for thermoset analysis	63
3	Basic Thermal Effects of Thermosets	69
3.1	Measurement effects with DSC	69
3.1.1	Determination of the glass transition	69
3.1.1.1	Measurement of the glass transition temperature by DSC	70
3.1.1.2	Evaluation possibilities for the glass transition by DSC	71
3.1.1.3	Influence of sample pretreatment on the glass transition	76
3.1.1.4	Measurement of the glass transition by ADSC	79
3.1.2	Determination of the specific heat capacity	81
3.1.3	The curing reaction measured by DSC	83
3.1.3.1	Dynamic curing: first and second heating measurements	83
3.1.3.2	Isothermal curing by DSC	86
3.1.3.3	Postcuring and degree of cure by DSC	88
3.1.3.4	Glass transition as a function of the conversion	90
3.1.3.5	Rate of cure and kinetics, isothermal measurements	92
3.1.3.6	Curing rate, dynamic measurements	95
3.1.3.7	Kinetic evaluations and predictions	96
3.1.4	Separation of the glass transition and postcuring (TOPEM)	99
3.1.5	UV curing measured by DSC	100
3.2	Measurement effects with TGA	103
3.2.1	Mass changes on heating a thermoset	103
3.2.2	Content determination: moisture, filler and resin content	104
3.2.3	TGA analysis of a phenol-formaldehyde condensation reaction	106
3.3	Measurement effects with TMA	107
3.3.1	Determination of the linear expansion coefficient	107
3.3.2	Measurement of the glass transition by TMA	110
3.3.2.1	Determination of the glass transition by means of the expansion curve	110
3.3.2.2	Determination of the softening temperature of thin coatings	111
3.3.2.3	Determination of the glass transition from bending measurements	112

3.3.3	Measurement of the curing reaction by TMA	114
3.3.3.1	Investigation of the curing reaction using bending measurements.....	115
3.3.3.2	Determination of the gelation time by DLTMA.....	117
3.4	Measurement effects with DMA	118
3.4.1	Determination of the glass transition by DMA.....	118
3.4.2	The frequency dependence of the glass transition	121
3.4.3	The dynamic glass transition.....	123
3.4.4	Isothermal frequency sweeps.....	125
3.4.5	Master curve construction and mechanical relaxation spectrum.....	126
3.4.6	Curing measured by DMA	128
3.5	A comparison of the glass transition measured by DSC, TMA and DMA	129
Part 2	133
4	Epoxy resins	135
4.1	Factors affecting curing reactions	135
4.1.1	Influence of curing conditions (temperature, time)	135
4.1.2	Influence of the mixing ratio of the components	136
4.1.3	Influence of the type of accelerator	139
4.1.4	Influence of accelerator content on the curing reaction.....	140
4.1.5	EP: Prediction of conversion behavior and verification	142
4.1.6	Curing of an EP resin measured by DMA.....	145
4.1.7	Curing of a prepreg measured by DMA	147
4.1.8	Curing of a powder coating.....	148
4.2	Influences affecting the glass transition	150
4.2.1	Effect of repeated post curing on the glass transition	150
4.2.2	The effect of stoichiometry on curing and the resulting glass transition temperature	152
4.2.3	Influence of reactive diluents on the resulting glass transition temperature	154
4.2.4	Vitrification.....	157
4.2.4.1	Determination of the dependence of the glass transition temperature on curing conversion	157
4.2.4.2	Chemically induced glass transition in an isothermal curing reaction measured by temperature-modulated DSC	160
4.2.4.3	Model free kinetics and vitrification during curing	161
4.2.4.4	Measurement of vitrification during curing	163
4.2.5	Determination of a Time-Temperature-Transformation (TTT) diagram	165
4.2.5.1	TTT diagram: Determination from post curing experiments.....	165
4.2.5.2	TTT diagram: Application of temperature-modulated DSC.....	166
4.2.5.3	Vitrification and model free kinetics.....	168
4.2.6	Gel point and mechanical glass transition during isothermal curing	172
4.2.6.1	Change of the shear modulus during the curing reaction	172
4.2.6.2	Frequency dependence of the shear modulus during a curing reaction	174
4.3	Storage effects	176
4.3.1	Post curing after storage	176
4.3.2	EP-CF: Influence of storage on prepgs.....	177
4.4	Fillers and reinforcement fibers	178
4.4.1	Glass transition temperature and "Cure Factor" by DSC according to ICP-TM-650.....	178
4.4.2	Glass transition temperature and z-axis thermal expansion by TMA according to ICP-TM-650	180
4.4.3	Printed circuit boards, influence of fiber orientation on expansion behavior	181
4.4.4	Determination of the glass transition of CF-reinforced resins.....	182
4.4.5	Determination of the fiber content of composites by thermogravimetric analysis	185
4.4.6	Carbon fiber content in prepgs	186
4.5	Checking material properties.....	188
4.5.1	Quality assurance in the production of printed circuit boards.....	188

4.5.2	Determination of the glass transition of carbon fiber reinforced thermosets.....	190
4.5.3	Decomposition kinetics and long-term stability according to ASTM standards E1641 and E1877	192
4.5.4	Aging of printed circuit boards	194
4.5.5	Analysis of decomposition products by TGA-MS.....	195
4.5.6	Delamination of printed circuit boards by TMA-EGA	197
4.5.7	PCB: Delamination by TGA-Micro GC/MS	198
4.5.8	Time to delamination of printed circuit board by TMA according to ICP-TM-650.....	200
4.5.9	Quality assurance, failure analysis of adhesive bonds	202
4.5.10	Interaction of oil with a reinforced EP resin pipe	203
5	Unsaturated polyester resins	205
5.1	Incoming goods control: curing characteristics and glass transition	205
5.2	UP: Influence of the accelerator content.....	206
5.3	UP: Influence of the hardener content	207
5.4	Influence of the inhibitor on isothermal curing	208
5.5	UP: Curing behavior after storage	210
5.6	VE: Shift of curing temperature due to the accelerator	211
5.7	VE-GF: Degree of cure of a pipe after use	212
5.8	Curing of powder coatings using UV light.....	214
5.9	Molding times for processing SMC.....	218
6	Formaldehyde resins.....	221
6.1	PF: Influence of measurement conditions.....	221
6.2	PF: Differentiation between completely and partially cured phenolic resins by TMA.....	222
6.3	PF: Softening behavior of resins.....	223
6.4	Two different filled MF/PF molding compounds	226
6.5	PF: Paper prepgs for plywood.....	228
6.6	PF: Condensation reaction investigated by TGA/SDTA	229
6.7	PF: Curing kinetics of resol resins.....	233
6.8	UF molding compounds: Influence of processing (molding).....	234
6.9	UF: Curing kinetics of molding compounds	236
6.10	PF: Determination of thermal conductivity	238
7	Methacrylate/Acrylic Resins (MMA)	243
7.1	Light curing of a dental composite	243
8	PUR systems	245
8.1	PUR: Two-component system with solvent.....	245
8.2	PUR: Polyaddition at different temperatures	246
8.3	Softening temperature of PUR lacquer coatings.....	247
8.4	PUR: Moisture curing of an adhesive by TMA.....	248
8.5	PUR: Decomposition by TGA-GC/MS	250
8.6	PUR casting compounds: Glass transition as a quality criterion	253
9	Other Resin Systems	257
9.1	BMI-CF: Influence of storage temperature on tackiness of prepgs	257
9.2	Degradation of a polyimide coating by TGA-FTIR	258
9.3	Light curing of adhesives	260

Appendix.....	265
Terms Used in Connection with Thermosets	269
Literature	273
Subject Index	275

Applications List of Part 1

Title	Topics	Methods	Page
	Glass transition Physical properties (c_p, CTE, modulus) Curing reaction, kinetics Composition Evaluation / experimental conditions	DSC / ADSC / IsoStep / TOPEM TGA / TGA-EGA TMA / DLTMA DMA	
Measurement of the glass transition temperature by DSC	•	• •	70
Evaluation possibilities for the glass transition by DSC	•	• •	71
Influence of sample pretreatment on the glass transition	•	• •	76
Measurement of the glass transition by ADSC		•	79
Determination of the specific heat capacity	•	• •	81
Dynamic curing: first and second heating measurements		• •	83
Isothermal curing by DSC		• •	86
Postcuring and degree of cure by DSC	• •	•	88
Glass transition as a function of the conversion	• •	•	90
Rate of cure and kinetics, isothermal measurements		• •	92
Curing rate, dynamic measurements		• •	95
Kinetic evaluations and predictions		• •	96
Separation of the glass transition and postcuring (TOPEM)	• •	• •	99
UV curing measured by DSC		• • •	100
Mass changes on heating a thermoset		• •	103
Content determination: moisture, filler and resin content		• •	104
TGA analysis of a phenol-formaldehyde condensation reaction	• •	• •	106
Determination of the linear expansion coefficient	•	•	107

Title	Topics				Methods		Page			
	Glass transition	Physical properties (c_p , CTE, modulus)	Curing reaction, kinetics	Composition	Evaluation / experimental conditions	DSC / ADSC / IsoStep / TOPEM	TGA / TGA-EGA	TMA / DLTMA	DMA	
Determination of the glass transition by means of the expansion curve	•						•			110
Determination of the softening temperature of thin coatings	•						•			111
Determination of the glass transition from bending measurements	•						•			112
Investigation of the curing reaction using bending measurements		•					•			115
Determination of the gelation time by DLTMA		•					•			117
Determination of the glass transition by DMA	•	•			•			•		118
The frequency dependence of the glass transition	•	•			•			•		121
The dynamic glass transition	•	•			•			•		123
Isothermal frequency sweeps	•							•		125
Master curve construction and mechanical relaxation spectrum	•				•			•		126
Curing measured by DMA	•		•					•		128
A comparison of the glass transition measured by DSC, TMA and DMA	•				•	•	•	•	•	129

Applications List of Part 2

Title	Topics								Methods			Page
	Development of systems	Process optimization and control	Testing cured material	Glass transition, vitrification	Sample preparation	Physical properties (c_p, CTE, modulus)	Curing, postcuring	Composition degradation	Kinetic evaluation	Accessories (EGA, UV, Sorption)	DSC / ADSC / IsoStep / TOPEM	
Influence of curing conditions (temperature, time)			•	•	•							135
Influence of the mixing ratio of the components		•	•	•	•	•	•	•	•			136
Influence of the type of accelerator	•	•		•	•	•	•					139
Influence of accelerator content on the curing reaction	•				•		•					140
EP: Prediction of conversion behavior and verification		•					•	•	•			142
Curing of an EP resin measured by DMA	•		•	•		•	•				•	145
Curing of a prepreg measured by DMA	•	•	•	•			•				•	147
Curing of a powder coating	•						•		•	•		148
Effect of repeated postcuring on the glass transition			•	•							•	150
The effect of stoichiometry on curing and the resulting glass transition temperature	•			•	•						•	152
Influence of reactive diluents on the resulting glass transition temperature	•	•		•	•		•				•	154
Determination of the dependence of the glass transition temperature on conversion	•	•	•	•	•		•	•	•			157
Chemically induced glass transition in an isothermal curing reaction measured by temperature-modulated DSC	•	•	•				•			•		160

Title	Topics								Methods		Page				
	Development of systems	Process optimization and control	Testing cured material	Glass transition, vitrification	Sample preparation	Physical properties (c_p , CTE, modulus)	Curing, postcuring	Composition degradation	Kinetic evaluation	Accessories (EGA, UV, Sorption)	DSC / ADSC / IsoStep / TOP ^{EM}	TGA	TMA / DLTMA	DMA	
Model free kinetics and vitrification during curing		•		•			•		•		•				161
Measurement of vitrification during curing	•	•		•			•								163
TTT diagram: Determination from postcuring experiments	•	•		•			•				•				165
TTT diagram: Application of temperature-modulated DSC	•	•		•			•				•				166
Vitrification and model free kinetics	•	•		•			•		•	•	•				168
Change of the shear modulus during the curing reaction	•			•		•	•						•		172
Frequency dependence of the shear modulus during a curing reaction	•			•		•	•						•		174
Postcuring after storage		•			•		•				•				176
EP-CF: Influence of storage on prepgs	•	•			•		•				•				177
Glass transition temperature and "Cure Factor" by DSC according to ICP-TM-650				•	•						•				178
Glass transition temperature and z-axis thermal expansion by TMA according to ICP-TM-650				•	•		•					•			180
Printed circuit boards, influence of fiber orientation on expansion behavior				•	•		•						•		181
Determination of the glass transition of CF-reinforced resins				•	•						•				182
Determination of the fiber content of composites by thermogravimetric analysis	•		•					•			•				185
Carbon fiber content in prepgs	•		•					•			•				186

Title	Topics							Methods			Page					
	Development of systems	Process optimization and control	Testing cured material	Glass transition, vitrification	Sample preparation	Physical properties (c_p , CTE, modulus)	Curing, postcuring	Composition degradation	Kinetic evaluation	Accessories (EGA, UV, Sorption)	DSC / ADSC / IsoStep / TOPEM	TGA	TMA / DLTMA	DMA		
Quality assurance in the production of printed circuit boards			•	•						•						188
Determination of the glass transition of carbon fiber reinforced thermosets			•	•			•			•						190
Decomposition kinetics and long-term stability according to ASTM standards E1641 and E1877	•	•						•	•			•				192
Aging of printed circuit boards	•	•	•	•	•					•						194
Analysis of decomposition products by TGA-MS	•	•						•		•		•				195
Delamination of printed circuit boards by TMA-EGA				•				•		•			•			197
PCB: Delamination by TGA-Micro GC/MS				•				•		•		•				198
Time to delamination of printed circuit board by TMA according to ICP-TM-650				•				•					•			200
Quality assurance, failure analysis of adhesive bonds	•	•	•			•				•						202
Interaction of oil with a reinforced EP resin pipe			•	•				•			•					203
Incoming goods control: curing characteristics and glass transition	•	•		•			•				•					205
UP: Influence of the accelerator content	•	•			•		•					•				206
UP: Influence of the hardener content		•			•		•				•					207
Influence of the inhibitor on isothermal curing	•	•			•		•				•					208
UP: Curing behavior after storage		•			•		•				•					210
VE: Shift of curing temperature due to the accelerator	•	•			•		•				•					211

Title	Topics								Methods		Page				
	Development of systems	Process optimization and control	Testing cured material	Glass transition, vitrification	Sample preparation	Physical properties (c_p , CTE, modulus)	Curing, postcuring	Composition degradation	Kinetic evaluation	Accessories (EGA, UV, Sorption)	DSC / ADSC / IsoStep / TOP ^{EM}	TGA	TMA / DLTMA	DMA	
VE-GF: Degree of cure of a pipe after use			•	•			•				•				212
Curing of powder coatings using UV light	•	•		•	•		•			•	•				214
Molding times for processing SMC		•		•	•		•				•				218
PF: Influence of measurement conditions	•	•			•		•				•				221
PF: Differentiation between completely and partially cured phenolic resins by TMA			•	•		•						•			222
PF: Softening behavior of resins		•		•			•			•	•		•		223
Two different filled MF/PF molding compounds			•	•							•				226
PF: Paper prepgs for plywood	•						•	•	•	•	•		•		228
PF: Condensation reaction investigated by TGA/SDTA	•						•			•	•				229
PF: Curing kinetics of resol resins	•						•	•	•	•					233
UF molding compounds: Influence of processing (molding)		•		•	•		•				•				234
UF: Curing kinetics of molding compounds	•	•					•	•	•	•					236
PF: Determination of thermal conductivity			•			•				•	•				238
Light curing of a dental composite	•	•					•			•	•				243
PUR: Two-component system with solvent	•	•			•		•				•				245
PUR: Polyaddition at different temperatures		•			•		•				•				246
Softening temperature of PUR lacquer coatings			•	•							•				247

Title	Topics								Methods			Page	
	Development of systems	Process optimization and control	Testing cured material	Glass transition, vitrification	Sample preparation	Physical properties (c_p, CTE, modulus)	Curing, postcuring	Composition degradation	Kinetic evaluation	Accessories (EGA, UV, Sorption)	DSC / ADSC / IsoStep / TOPEM	TGA	
PUR: Moisture curing of an adhesive by TMA	•						•			•		•	248
PUR: Decomposition by TGA-GC/MS		•					•			•		•	250
PUR casting compounds: Glass transition as a quality criterion	•			•						•			253
BMI-CF: Influence of storage temperature on tackiness of prepgs		•			•		•			•			257
Degradation of a polyimide coating by TGA-FTIR			•		•			•			•		258
Light curing of adhesives	•	•		•	•	•	•	•	•	•			260

PART 1

1 Introduction to Thermal Analysis

Thermal analysis is the name given to a group of techniques used to measure the physical and chemical properties of materials as a function of temperature. In all these methods, the sample is subjected to a heating, cooling or isothermal temperature program. According to ICTAC (International Confederation for Thermal Analysis and Calorimetry): "Thermal analysis is the study of the relationship between a sample property and its temperature as the sample is heated or cooled in a controlled manner."

The measurements can be performed in different atmospheres. Usually either an inert atmosphere (nitrogen, argon, helium) or an oxidative atmosphere (air, oxygen) is used. In some cases, the gases are switched from one atmosphere to another during the measurement. Another parameter sometimes selectively varied is the gas pressure.

DSC can also be used in combination with instruments that allow the sample to be simultaneously observed (DSC microscopy) or exposed to light of different wavelengths (photocalorimetry).

1.1 Differential thermal analysis (DTA, SDTA)

In differential thermal analysis (DTA), a sample and a reference material are heated in a furnace. According to ICTAC, DTA is defined as "a technique in which the difference in temperature between the sample and a reference material is monitored against time or temperature while the temperature of the sample, in a specified atmosphere, is programmed". The temperature difference between the sample and the reference material is measured using thermocouples. If a thermal event occurs in the sample (such as a phase transition or chemical reaction), the additional uptake or release of energy changes the heating rate of the sample. This results in a temperature difference between the sample and reference sides. For example, during an exothermic reaction, the temperature difference between the sample and reference is larger than before or after the reaction. Thermal effects are indicated by the presence of steps and peaks, in the same way as observed in a DSC measurement curve.

In SDTA (single DTA), no reference material is used. The reference temperature corresponds with the program temperature and the sample temperature only is measured. The SDTA technique enables the DTA signal to be simultaneously measured in TGA, TMA and DMA experiments. This often aids interpretation because it detects thermal events that are not accompanied by a change in mass or dimensions. For example, in TMA measurements, simultaneous SDTA can distinguish between exothermic and endothermic transitions, and also detect chemical reactions.

1.2 Differential scanning calorimetry (DSC)

In DSC, the heat flow to and from the sample is measured. DSC can be used to investigate thermal events such as physical transitions (the glass transition, crystallization, melting, and the vaporization of volatile compounds) and chemical reactions. The information obtained characterizes the sample with regard to its thermal behavior and composition. In addition, properties such as the heat capacity, glass transition temperature, melting temperature, heat and extent of reaction can also be determined.

1.2.1 Conventional DSC

Conventional DSC employs a linear temperature program. The sample and reference material (or just an empty crucible) are heated or cooled at a linear rate, or in some cases, held at a constant temperature (i.e. isothermally). Often several partial programs or so-called segments are joined together to form a complete temperature program. A typical DSC curve is shown schematically in Figure 1.1. The change in the curve at the beginning of the measurement is due to the initial "startup deflection" (1). In this transient region,

the conditions suddenly change from an isothermal mode to a linear heating mode. The magnitude of the startup deflection depends on the heat capacity of the sample and the heating rate. If volatile substances such as solvents are present in the sample, an endothermic peak (2) is observed due to the vaporization; the sample loses mass. Further information on such peaks can be obtained by weighing the sample before and after the measurement and by using different types of crucibles. In contrast to open crucibles, hermetically sealed crucibles prevent vaporization of the sample. At a glass transition (3), the heat capacity of the sample increases and therefore an endothermic step is observed. This is often accompanied by an enthalpy relaxation peak. Chemical reactions produce exothermic or endothermic effects (4) depending on the type of reaction involved. Finally, at higher temperatures, decomposition begins (5). The type of purge gas used in the experiment often has an influence on the reactions that occur, especially at high temperatures.

Transitions and reactions can be differentiated by cooling the sample and measuring it again – chemical reactions are irreversible whereas crystalline materials melt then crystallize again on cooling or on heating a second time. Glass transitions are also reversible but not the enthalpy relaxation often observed in the first heating measurement of a glass transition.

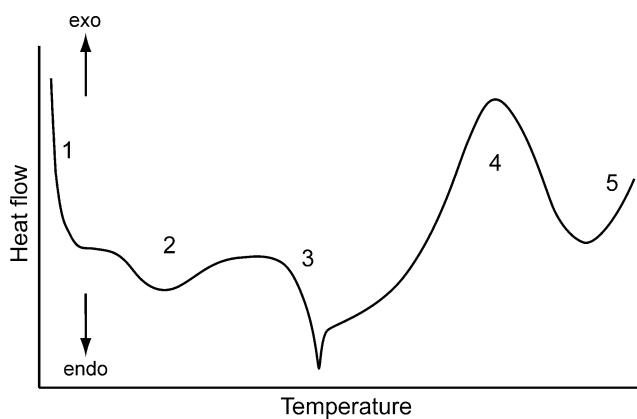


Figure 1.1: Schematic DSC curve: 1 initial startup deflection; 2 evaporation of moisture; 3 glass transition with relaxation peak; 4 reaction (e.g. curing); 5 beginning of decomposition.

1.2.2 Chip calorimetry

In recent decades, tremendous efforts have been made to increase the scan rate of conventional DSC for gaining additional insights into materials and their application possibilities. This gave rise to chip calorimetry, also known as fast-scanning DSC, which is capable of achieving extremely fast heating and cooling rates of up to 10,000 K/s (Figure 1.2). Chip calorimeters are conceptually similar to conventional DSCs and are principally used to investigate fast crystallization behaviors, the exploration of metastable states, and the analysis of extremely small sample quantities.

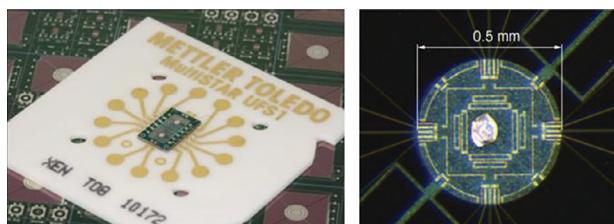


Figure 1.2: The revolutionary Flash DSC UFS 1 Sensor based on MEMS technology (left). The sample is positioned directly on the sample side of the UFS 1 sensor (right).

1.2.3 Temperature-modulated DSC

In temperature-modulated DSC (TMDSC), a periodic temperature modulation is superimposed on the constant heating or cooling rate of a conventional DSC measurement. METTLER TOLEDO offers three different techniques for performing temperature-modulated DSC measurements. They are known as ADSC, IsoStep and TOPEM. The following sections summarize their most important features.

1.2.3.1 ADSC

Alternating DSC (ADSC) is a particular type of temperature-modulated DSC. In contrast to conventional DSC, the linear temperature program is overlaid with a small periodic temperature change. The temperature program is characterized by the underlying heating rate, the temperature amplitude and the duration of the periodically changing temperature (Fig. 1.3). With quasi-isothermal measurements, the underlying heating rate β_u can also be zero.

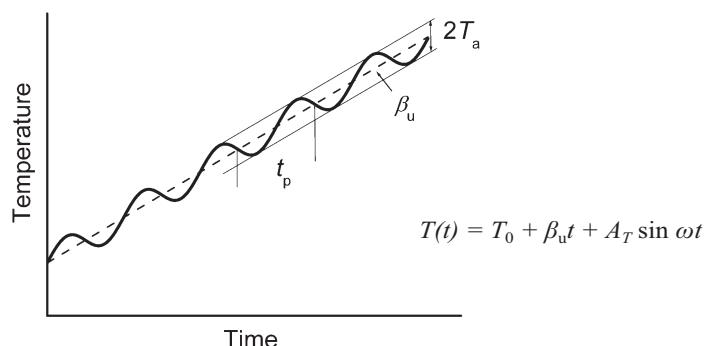


Figure 1.3: Typical ADSC temperature program: β_u is the underlying heating rate, A_T the temperature amplitude, t_p period. The angular frequency ω is defined as $2\pi/P$ where P denotes the period of the sine wave.

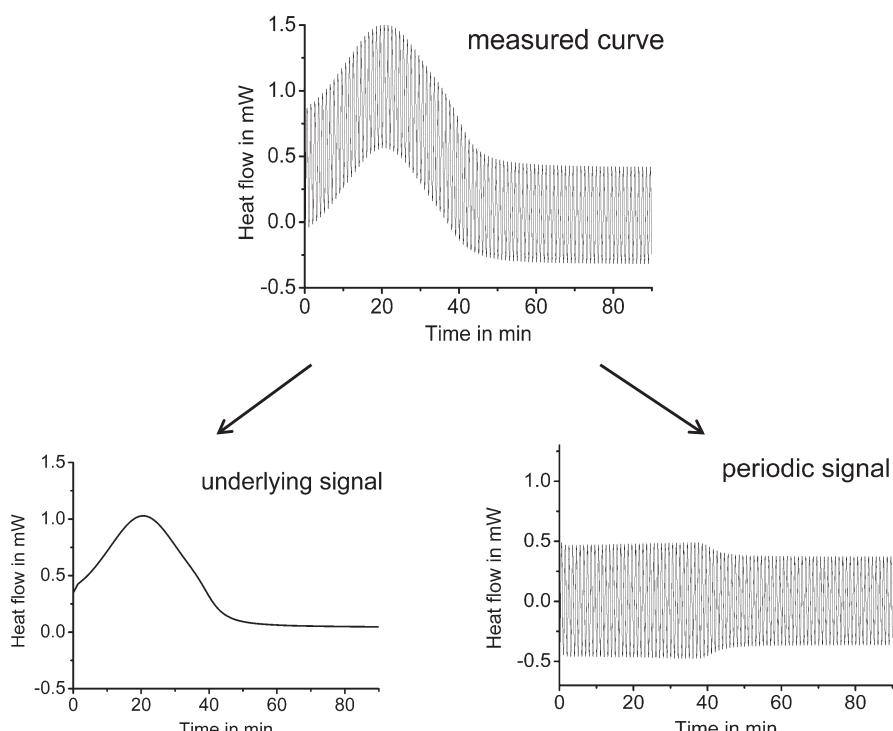


Figure 1.4: Separation of the measured ADSC curve into the underlying and the periodic signal components.

As a result of temperature modulation, the measured heat flow changes periodically. This can be separated into two parts as shown in Figure 1.4. Signal averaging yields the underlying signal (total heat flow), which

corresponds to the conventional DSC curve. As additional information, one also obtains the periodic signal component. The reversing heat flow corresponds to the heat flow component that is able to follow the heating rate change directly and is computed from the in-phase heat capacity. The difference between the total heat flow and the reversing heat flow yields the non-reversing heat flow. One advantage of this technique is that it allows processes that occur simultaneously to be separated. For example, the change in heat capacity during a chemical reaction can be measured directly.

The evaluation of the ADSC curves is based on Fourier analysis. The modulus of the complex heat capacity c_p^* is calculated using the equation

$$|c_p^*| = \frac{A_\phi}{A_\beta} \cdot \frac{1}{m}$$

where A_ϕ and A_β denote the amplitudes of the modulated heat flow and heating rate, and m the sample mass. The phase angle between the ADSC heat flow signal and the heating rate is used to calculate the in-phase c_p .

1.2.3.2 IsoStep

IsoStep is a special type of temperature-modulated DSC. In this method, the temperature program consists of a number of dynamic segments that begin and end with an isothermal segment (Fig. 1.5).

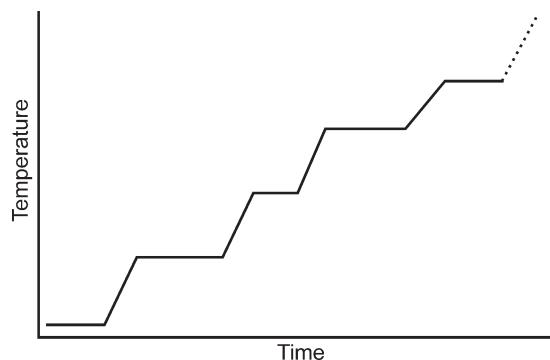


Figure 1.5: IsoStep temperature program consisting of different isothermal and dynamic segments.

The isothermal segments allow the isothermal drift of the dynamic segments to be corrected. This results in better heat capacity accuracy. The isothermal step may also contain kinetic information, for example of a chemical reaction. Heat capacity determinations can be made using a sapphire reference sample, and kinetic effects can be separated from changes in heat capacity.

1.2.3.3 TOPEM

TOPEM is an advanced temperature-modulated DSC technique that is based on the full mathematical analysis of the response of a DSC (both the apparatus and the sample) to a stochastically modulated underlying temperature program (Fig. 1.6). Due to the randomly distributed temperature pulses, the system is subjected to temperature oscillations over a wide frequency range and not just at one single frequency (ADSC). An analysis of the correlation of the oscillating input signal (heating rate) and the response signal (heat flow) provides much more information than can be obtained using conventional temperature-modulated DSC. Not only can reversing and non-reversing effects be separated, but the quasi-static heat capacity of the sample is also measured and frequency-dependent heat capacity values are determined. This can be