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This book presents the state of the art, together with the most recent
research results, in the use of Quaternion Fourier Transforms (QFT) for
the processing of color images and complex valued signals. It is based
on the work of the authors in this area since the 1990s and presents the
mathematical concepts, computational issues and applications on
images and signals. The book, together with the MATLAB toolbox
developed by two of the authors (QTFM, http://qtfm.sourceforge.net/),
allows the reader to make use of the presented concepts and
experiment with them in practice through the examples provided in the
book.

Following the Introduction, Chapter 1 introduces the quaternion algebra
H and presents some properties which will be of use in the subsequent
chapters. Chapter 2 gives an overview of the geometric transformations
which can be represented using quaternions. Chapter 3 provides the
definition and properties of QFT. The signals and images considered are
those with vector-valued samples/pixels.

The fourth and final chapter is dedicated to the illustration of the use of
QFT to process color images and complex improper signals. The
concepts presented in this chapter are illustrated on simulated and real
images and signals.
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MATLAB® toolbox developed by the authors, [SAN 13b] allows the readers to
make use of the presented concepts and experiment with them in practice through the
examples provided.
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Introduction

This book covers a topic that combines two branches of mathematical theory to
provide practical tools for the analysis and processing of signals (or images) with
three- or four-dimensional samples (or pixels). The two branches of mathematics are
not recent developments, but their combination has occurred only within the last
25–30 years, and mostly since just before the millennium.

I.1. Fourier analysis

Fourier analysis was, in 1822, with Joseph Fourier’s development of techniques,
the first to analyze mathematical functions into sinusoidal components. In signal and
image processing, Fourier’s ideas underpin the two fundamental representations of a
signal: one in the time (or image) domain where the signal (or image) is represented
by samples (or pixels) with amplitudes and the other in the frequency domain where
the signal (or image) is represented by sinusoidal frequency components, each with
an amplitude and a phase. Mathematically, these concepts are not limited to time and
frequency: one can use Fourier analysis on a function of any variable, resulting in a
representation in terms of sinusoidal functions of that variable. However, this book is
concerned with signal and image processing, and we will therefore use the terms time
and frequency rather than more general concepts. It should be understood throughout
that when we talk of images, the concept of time is replaced by the two spatial
coordinates that define pixel position within an image.

Today, Fourier analysis is classically taught to mathematicians, scientists and
engineers in several related ways, each applicable to a specific subset of
mathematical functions or signals:

1) Fourier series analysis [SNE 61] in which continuous periodic functions of
time, with infinite duration, are represented as sums of cosine and sine functions,
each with infinite duration;
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– Fourier integrals or transforms [BRA 00, ROB 68] in which continuous
(but aperiodic) functions of time are represented as continuous functions of frequency
(or vice versa);

2) Discrete Fourier transforms in which signals defined at discrete intervals in time
are represented in the frequency domain by cosine and sine functions. This topic is
broken down into:

– discrete-time Fourier transforms, in which discrete-time signals of limited
duration are represented as continuous frequency-domain distributions;

– discrete Fourier transforms, in which discrete-time, discretized (that is
digital) signals of finite duration are represented by a finite-length array of digital
frequency coefficients. (These are usually computed numerically using the fast Fourier
transform (FFT)).

The key to all of the above ideas is the representation of a signal using complex
exponentials, often known as harmonic analysis, although this term has a somewhat
wider meaning in mathematics than its usage in signal and image processing. The
complex exponential with angular frequency ω and phase φ: f(t) = A exp(ωt +
φ) = A (cos(ωt+ φ) + I sin(ωt+ φ)) has cosine and sine components in its real
and imaginary parts, respectively. Since, in this book, we are concerned with signals
that have three- or four-dimensional samples, it is helpful to consider classical Fourier
analysis in terms of complex exponentials rather than in terms of separate cosines and
sines.

Figure I.1 shows a real-valued signal (on the left-hand side of the plot, with time
increasing away from the viewer). The signal is a sawtooth waveform reconstructed
from its first five non-zero harmonics, which are plotted in the center of the figure
as helices. (The horizontal spacing between the helices is introduced simply to make
them clearer: there is no mathematical significance to it). The five helices on the left
are the positive frequency complex exponentials and the five helices on the right are
the negative frequencies. Note that the positive and negative frequency exponentials
have opposite directions of rotation. The real parts of the harmonics are projected onto
the right-hand side of the figure (these sum to give the reconstructed waveform on the
left) and the imaginary parts of the harmonics are projected onto the base of the figure
(these cancel out because the exponentials occur in complex conjugate pairs at positive
and negative frequencies, a symmetry due to the original signal being real-valued).

In general, with a complex signal analyzed into complex exponentials in the same
way, there would be no symmetry between the positive and negative frequency
exponentials. This case is a useful model for what follows in this book, where we
consider signals and images with three- and four-dimensional samples. Figure I.2
shows a complex signal constructed by bandlimiting a random complex signal.


