

Wei-Liang Jin Qian Ye Yong Bai

WILEY

Structural Reliability in Civil Engineering

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)

Structural Reliability in Civil Engineering

Wei-Liang Jin
Qian Ye
and
Yong Bai

WILEY

This edition first published 2025 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2025 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-41815-3

Front cover images supplied by Adobe Firefly Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

Contents

Li	st of	Figure	es	xiii
Li	st of	Tables	s	xix
Pı	efac	e		xxiii
A	ckno	wledg	ments	XXV
N	otati	ons		xxvii
1	Intr	oducti	ion	1
	1.1	An O	verview of the Development of Structural	
			bility Theory	3
			Method of the Degree of Reliability Calculated	3
		1.1.2	· · · · · · · · · · · · · · · · · · ·	10
		1.1.3	Load and Load Combination Method	10
		1.1.4	Engineering Applications	15
	1.2		Concepts	16
		1.2.1	Reliability and Degree of Reliability	16
		1.2.2	Uncertainty	17
		1.2.3	Random Variables, Random Functions	
			and Random Processes	18
		1.2.4	Functional Function and Limit State Equation	18
		1.2.5	Reliability Index and Failure Probability	19
		1.2.6	Member Reliability and System Reliability	20
		1.2.7	Time-Dependent Reliability and Time-Independent	
			Reliability	20
	1.3		ents of this Book	21
		Refer	ences	21
2			f Uncertainty Analysis	33
	2.1		ification of Uncertainty	34
			Classification on Uncertainty Type	34
		2.1.2	Classification on Uncertainty Characteristics	35

vi Contents

2.14 Classification on Uncertainty Attributes 2.2 Probability Analysis Methods 2.2.1 Classical Probability Analysis Method 2.2.2 Bayes Probability Method 2.3 Fuzzy Mathematical Analysis Method 2.3.1 Definition 2.3.2 Mode of Expression 2.4 Gray Theory Analysis Method 2.4.1 Basic Concept 2.4.2 Case Study 2.5 Relative Information Entropy Analysis Method 2.6.1 Neural Networks 2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.5 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation 3.3.3 P-H Method			2.1.3	Classification on Form of Manifestation	35
2.2.1 Classical Probability Method 2.2.2 Bayes Probability Method 2.3.3 Fuzzy Mathematical Analysis Method 2.3.1 Definition 2.3.2 Mode of Expression 2.4 Gray Theory Analysis Method 2.4.1 Basic Concept 2.4.2 Case Study 2.5 Relative Information Entropy Analysis Method 2.6.1 Neural Networks 2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation			2.1.4	Classification on Uncertainty Attributes	36
2.2.2 Bayes Probability Method 2.3 Fuzzy Mathematical Analysis Method 2.3.1 Definition 2.3.2 Mode of Expression 2.4 Gray Theory Analysis Method 2.4.1 Basic Concept 2.4.2 Case Study 2.5 Relative Information Entropy Analysis Method 2.6.1 Neural Networks 2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation		2.2	Proba	ability Analysis Methods	36
2.3 Fuzzy Mathematical Analysis Method 2.3.1 Definition 2.3.2 Mode of Expression 2.4 Gray Theory Analysis Method 2.4.1 Basic Concept 2.4.2 Case Study 2.5 Relative Information Entropy Analysis Method 2.6.1 Neural Networks 2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure Formwork Support 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation			2.2.1	Classical Probability Analysis Method	36
2.3.1 Definition 2.3.2 Mode of Expression 2.4 Gray Theory Analysis Method 2.4.1 Basic Concept 2.4.2 Case Study 2.5 Relative Information Entropy Analysis Method 2.6.1 Neural Networks 2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation			2.2.2	Bayes Probability Method	37
2.3.2 Mode of Expression 2.4 Gray Theory Analysis Method 2.4.1 Basic Concept 2.4.2 Case Study 2.5 Relative Information Entropy Analysis Method 2.6 Artificial Intelligence Analysis Method 2.6.1 Neural Networks 2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3.1 R-F Method 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation		2.3	Fuzzy	Mathematical Analysis Method	37
2.4 Gray Theory Analysis Method 2.4.1 Basic Concept 2.4.2 Case Study 2.5 Relative Information Entropy Analysis Method 2.6 Artificial Intelligence Analysis Method 2.6.1 Neural Networks 2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation			2.3.1	Definition	37
2.4.1 Basic Concept 2.4.2 Case Study 2.5 Relative Information Entropy Analysis Method 2.6 Artificial Intelligence Analysis Method 2.6.1 Neural Networks 2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation			2.3.2	Mode of Expression	39
2.4.2 Case Study 2.5 Relative Information Entropy Analysis Method 2.6 Artificial Intelligence Analysis Method 2.6.1 Neural Networks 2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation		2.4	Gray	Theory Analysis Method	40
 2.5 Relative Information Entropy Analysis Method 2.6 Artificial Intelligence Analysis Method 2.6.1 Neural Networks 2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1 Central Point Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation 			2.4.1	Basic Concept	40
2.6 Artificial Intelligence Analysis Method 2.6.1 Neural Networks 2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation			2.4.2	Case Study	41
2.6.1 Neural Networks 2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation		2.5	Relati	ive Information Entropy Analysis Method	43
2.6.2 Support Vector Machine 2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation		2.6	Artifi	,	45
2.7 Example: Risk Evaluation of Construction with Temporary Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation			2.6.1	Neural Networks	45
Structure Formwork Support 2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation			2.6.2	Support Vector Machine	47
2.7.1 Basic Information of the Formwork Support Structure 2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation		2.7	Exam	ple: Risk Evaluation of Construction with Temporary	
2.7.2 Establishment of Construction Risk Evaluation System 2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation					53
2.7.3 Index Weighting 2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation					53
2.7.4 Expert Scoring Results and Risk Evaluation Grades 2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation					54
2.7.5 Evaluation of a Fastener-Type Steel Pipe Scaffold 2.7.6 Discussion and Summary Analysis References 3 Reliability Analysis Method 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation					57
2.7.6 Discussion and Summary Analysis References Reliability Analysis Method 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation					59
References Reliability Analysis Method 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation				, , ,	61
3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation				, ,	65
 3.1 First-Order Second-Moment Method 3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation 			Refer	ences	65
3.1.1 Central Point Method 3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation	3	Reli	ability	Analysis Method	67
3.1.2 Checking Point Method 3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation		3.1	First-	Order Second-Moment Method	71
3.1.3 Evaluation 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation			3.1.1	Central Point Method	71
 3.2 Second-Order Second-Moment Method 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation 			3.1.2	Checking Point Method	74
 3.2.1 Breitung Method 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation 			3.1.3	Evaluation	78
 3.2.2 Laplace Asymptotic Method 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation 		3.2	Secon	nd-Order Second-Moment Method	79
 3.2.3 Maximum Entropy Method 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation 			3.2.1	Breitung Method	79
 3.2.4 Optimal Quadratic Approximation Method 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation 			3.2.2	Laplace Asymptotic Method	82
 3.3 Reliability Analysis of Random Variables Disobeying Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation 					85
Normal Distribution 3.3.1 R-F Method 3.3.2 Rosenblatt Transformation					90
3.3.1 R-F Method3.3.2 Rosenblatt Transformation		3.3			
3.3.2 Rosenblatt Transformation					92
					93
3.3.3 P-H Method					94
			3.3.3	P-H Method	97

	3.4	_	onding Surface Method	99
		3.4.1	Response Surface Methodology for Least Squares	
			Support Vector Machines (LS-SVM)	101
			Examples	105
		Refer	ences	113
4			Simulation for Reliability	115
	4.1		e-Carlo Method	116
			Generation of Random Numbers	118
			Test of Random Number Sequences	120
			Generation of Non-Uniform Random Numbers	120
	4.2		nce Reduction Techniques	121
			Dual Sampling Technique	122
			Conditional Expectation Sampling Technique	123
			Importance Sampling Technique	123
			Stratified Sampling Method	126
		4.2.5	Control Variates Method	127
		4.2.6	Correlated Sampling Method	128
	4.3		posite Important Sampling Method	129
		4.3.1	Basic Method	129
		4.3.2	Composite Important Sampling	132
		4.3.3	Calculation Steps	135
	4.4	Impo	rtance Sampling Method in V Space	136
		4.4.1	V Space	136
		4.4.2	Importance Sampling Area	138
		4.4.3	Importance Sampling Function	141
		4.4.4	Simulation Procedure	143
		4.4.5	Evaluation	143
	4.5	SVM	Importance Sampling Method	144
		Refer	ences	145
5	Reli	iability	of Structural Systems	147
	5.1		re Mode of Structural System	148
			Structural System Model	148
			Solution	152
		5.1.3	Idealization of Structural System Failure	155
		5.1.4	Practical Analysis of Structural System Failure	160
	5.2		ılation Methods for System Reliability	161
		5.2.1	System Reliability Boundary	161
		5.2.2	Implicit Limit State—Response Surface	169
		5.2.3	Complex Structural System	173
		5.2.4	Physically-Based Synthesis Method	180

viii Contents

	5.3	Exam	ple: Reliability of Offshore Fixed Platforms		181
		5.3.1	Overview		181
		5.3.2	Calculation Model and Single Pile Bearing Cap	acity	182
		5.3.3	Probability Analysis for the Bearing Capacity	•	
			of a Single Pile		187
		5.3.4	Bearing Capacity and Reliability of Offshore		
			Platform Structural Systems		191
	5.4	Analy	vsis on the Reliability of a Semi-Submersible		
		Platfo	orm System		197
		5.4.1	Overview		197
		5.4.2	Uncertainty Analysis		199
		5.4.3	Evaluation of System Reliability		200
			5.4.3.1 Analytical Process and Evaluation		200
			5.4.3.2 Reliability Calculation of Main Comp	onents	202
			5.4.3.3 Reliability Calculation for Local Node	S	204
			5.4.3.4 Calculation of Overall Platform Reliab	oility	206
		Refere	ences		207
6	Tim	e-Dep	endent Structural Reliability		211
-	6.1	_	Integral Method		 214
		6.1.1	Basic Concept		214
		6.1.2	Time-Dependent Reliability Transformation M		
	6.2		ete Method		218
		6.2.1	Known Number of Discrete Events		219
		6.2.2	Unknown Number of Discrete Events		221
		6.2.3	Return Period		222
		6.2.4	Risk Function		223
	6.3	Calcu	lation of Time-Dependent Reliability		225
			Introduction		225
		6.3.2	Sampling Methods for Unconditional		
			Failure Probability		227
		6.3.3	First-Order Second-Moment Method		229
	6.4	Struct	tural Dynamic Analysis		230
		6.4.1	Randomness of Structural Dynamics		230
		6.4.2	Some Problems Involving Stationary		
			Random Processes		231
		6.4.3	Random Response Spectrum		233
	6.5		ıe Analysis		234
		6.5.1	General Formulas		234
		6.5.2	S-N Model		235
		6.5.3	Fracture Mechanics Model		237

		6.5.4	Example	e: Fatigue Reliability of an Offshore	
			Jacket P	latform	238
		6.5.5	Example	e: Fatigue Reliability of a Submarine	
			Pipeline	and Analysis of its Parameters	249
			6.5.5.1	Introduction	249
			6.5.5.2	Analytical Process	249
			6.5.5.3	Finite Element Model	250
			6.5.5.4	Random Lift Model	250
			6.5.5.5	Structural Modal Analysis	253
			6.5.5.6	Random Vibration Response of Suspended Pipelines	254
			6.5.5.7	Random Fatigue Life and Fatigue Reliability	
				Analysis of a Suspended Pipeline	257
			6.5.5.8	Sensitivity Analysis of Random Vibration	
				Influencing Factors of a Suspended Pipeline	260
		6.5.6	Example	e: Fatigue Reliability of Deep-Water	
			Semi-Su	bmersible Platform Structures	267
			6.5.6.1	Analytical Process for Fatigue Reliability	267
			6.5.6.2	Fatigue Reliability Analysis of Key	
				Platform Joints	267
			6.5.6.3	Sensitivity Analysis of Fatigue Parameters	276
		Refere	ences		281
7	Loa	d Com	bination	on Reliability Theory	285
	7.1	_	Combina	·	286
		7.1.1	General	Form	286
		7.1.2		Random Process	289
		7.1.3		ed Method	292
	7.2			tion Factor	296
		7.2.1	Peak Su	perposition Method	297
		7.2.2	_	g Analysis Method	298
		7.2.3		ation Theory with Poisson Process	
				plified Model	300
		7.2.4		Root of the Sum of the Squares (SRSS)	302
		7.2.5	-	Combination of Local Extrema to Form	
			a Maxim	num Value	302
	7.3	Calcu	lation of l	Partial Coefficient of Structural Design	308
		7.3.1		on of Design Partial Coefficient	309
		7.3.2		nation of Partial Coefficient	
				tural Design	310

x Contents

		7.3.3	Determi	nation of Load/Resistance Partial Coefficient	311
	7.4	Deter	mination	of Load Combination Coefficient	
		and D	esign Exp	pression	314
		7.4.1	Design I	Expression Using Combined Value	
			Coefficie	ents	315
		7.4.2	No Redu	action Factor in the Design Expression	317
		7.4.3	Method	for Determining Load Combination	
			Coefficie	ent in Ocean Engineering	320
	7.5	Exam	ple: Path	Probability Model for the Durability	
		of a C	oncrete S	tructure	323
		7.5.1	Basic Co	oncept	323
		7.5.2	Multipat	th Probability Model	325
		7.5.3	Probabil	ity Prediction Model Featuring	
			Chloride	e Erosion	327
		7.5.4	Probabil	ity Prediction Model for Concrete	
			Carbona	ation	328
		7.5.5	Probabil	ity Prediction Model under the Combined	
			Action o	of Carbonation and Chloride Ions	331
		7.5.6	Corrosio	on Propagation in a Steel Bar	332
		7.5.7	Cracking	g of the Protective Layer and Determination	
			of Crack		334
		7.5.8	Bearing	Capacity of Corroded Concrete Components	
		7.5.9	Engineer	ring Example	337
			7.5.9.1	Corrosion of Steel Bars in a Chloride	
				Environment	337
			7.5.9.2	Corrosion of Steel Bar Under the Combined	
				Action of Carbonation and Chloride	
				Corrosion	342
		Refere	ences		348
8	App	licatio	n of Relia	ability Theory in Specifications	353
	8.1			of Structural Design Codes	356
		8.1.1		ments of Structural Design	356
		8.1.2	-	ation of Actions	357
		8.1.3	Target R	eliability	358
		8.1.4	_	ate of Structural Design	361
	8.2	Expre		tructural Reliability in Design Specifications	363
		8.2.1		Expression of Partial Coefficients	363
		8.2.2	_	Expression of Ultimate Limit State	365
		8.2.3	_	Expression of Serviceability Limit State	367
		8.2.4		Expression of Durability Limit State	368

C	
CONTENTS	V1

8.3	Exam	ple: Target Reliability and Calibration of Bridges	371
	8.3.1	Basic Issues	371
	8.3.2	Parameter Analysis	372
	8.3.3	Calibration Target Reliability	374
	8.3.4	Operating Conditions and Parameters	375
	8.3.5	Load Effect Ratio	375
	8.3.6	Reliability Calibration Process	378
	8.3.7	Results of Reliability Calibration Calculation	379
8.4	Relial	bility Analysis of Human Influence	381
	8.4.1	Parameters of Human Influence	381
	8.4.2	Influence of Human Error on Construction	383
	8.4.3	Human Error Rate, and Degree and Distribution	
		of Human Error Influence	384
	8.4.4	Simulation of Human Error in Construction	387
	8.4.5	Example: Support System for a Ten-Storey Beamless	
		Floor Structure	394
	8.4.6	Discussion	398
	Refer	ences	398
Index			403

List of Figures

Figure 2.1	Three types of transfer function.	46
Figure 2.2	Diagram of two-layer BP neural netbook structures.	46
Figure 2.3	Diagram of support vectors.	47
Figure 2.4	Diagram of regression support vector machine.	48
Figure 2.5	Fuzzineation of score values.	60
Figure 2.6	Membership function of the evaluation grade.	60
Figure 3.1	Diagram of structure failure probability.	69
Figure 3.2	Responding surface function.	99
Figure 3.3	Response surface method based on LS-SVM.	104
Figure 3.4	Number of FEM calculations.	106
Figure 3.5	Portal frame calculation diagram.	108
Figure 3.6	Calculation diagram for Example 4.	111
Figure 4.1	Probability density function with truncated	
	distribution.	133
Figure 4.2	Approximate parabolic surface of V space.	138
Figure 4.3	Important sampling area of V space.	139
Figure 4.4	Relationship between principal curvature k	
	and sampling elliptic parameters a , b and k	
	$(\beta=3, \Delta\beta=1.0, \delta_0=0.8).$	141
Figure 4.5	Influence of different confidence <i>a</i> on simulation	
	results.	142
Figure 5.1	Load-path relationship.	148
Figure 5.2	Different strength-deformation (R-A) relations.	150
Figure 5.3	Fault tree.	151
Figure 5.4	Event tree of structure.	152
Figure 5.5	Failure diagram of structure.	153
Figure 5.6	Series system.	155
Figure 5.7	Two-dimensional failure region for reliability	
	problem of structural system.	156
Figure 5.8	Two simple parallel systems.	158
Figure 5.9	Condition system.	160

xiv List of Figures

Figure 5.10	The impact of correlation on system security	
	indications.	169
Figure 5.11	Simple experimental design of two variables.	170
Figure 5.12	Systematic enumeration process.	174
Figure 5.13	t ~ z curve.	183
Figure 5.14	Q ~ Z curve.	184
Figure 5.15	P-y curve of soil.	185
Figure 5.16	p-y curve of sandy soil.	186
Figure 5.17	Calculation model of pile.	187
Figure 5.18	Load-bearing capacity under axial compression.	189
Figure 5.19	Load-bearing capacity under axial tension.	190
Figure 5.20	Lateral bearing capacity with different pile top	
	constraints.	191
Figure 5.21	Deterministic analysis of computational structure	
	model.	192
Figure 5.22	Shear and bending bearing capacity and structural	
	placement diagram.	193
Figure 5.23	Statistical results and probability analysis of bearing	
	capacity.	195
Figure 5.24	3D FEM model of a semi-submersible platform.	197
Figure 5.25	Analysis of structural reliability of a semi-	
	submersible platform.	201
Figure 5.26	Reliability evaluation procedure for a semi-	
	submersible platform.	202
Figure 6.1	Sample function of random process of load effect.	212
Figure 6.2	Sample function and failure time of safety limit state	
	process $Z(t)$.	213
Figure 6.3	Transcendence of random process vector $X(t)$.	214
Figure 6.4	Sample function of nonstationary load effect and	
	resistance.	214
Figure 6.5	Sample function of load effect and resistance	
	(when resistance is constant).	215
Figure 6.6	Typical risk function.	224
Figure 6.7	Variation trend of risk function in different	
	structural stage.	225
Figure 6.8	Sample functions of vector stochastic processes.	228
Figure 6.9	Sample function and spectral density of random	
	process.	232
Figure 6.10	Probability density function of Rayleigh distribution.	233

Figure 6.11	Analysis on the relationship between input and	
	output spectral density function of offshore platform	
	structure.	234
Figure 6.12	Coordinate system of a single point mooring	
	offshore jacket platform.	239
Figure 6.13	Structural model of a BZ28-1 SPM platform.	248
Figure 6.14	Prototype cross section of an oil pipeline.	250
Figure 6.15	Foree spectrum of pipeline nodes.	254
Figure 6.16	Power spectrum of pipeline midspan displacement	
	response.	255
Figure 6.17	Linear and nonlinear calculation of maximum stress	
	spectrum of midspan section of suspended pipeline	
	for various cases.	257
Figure 6.18	Vibration displacement response spectrum of	
	pipeline at different water depths.	262
Figure 6.19	Vibration stress response spectrum of	262
Figure 6.20	Pipeline reliability index and peak stress spectrum	
	at different water depths.	263
Figure 6.21	Vibration displacement response spectra of pipelines	
	with different diameters.	264
Figure 6.22	Vibration stress response spectrum of pipelines	
	with different diameters.	264
Figure 6.23	Reliability index and peak stress spectrum	
	of pipelines with different outer diameters.	264
Figure 6.24	Vibration displacement response spectrum	
	of pipeline at different residual stresses.	265
Figure 6.25	Vibration stress response spectrum of pipeline	
	at different residual stresses.	266
Figure 6.26	Pipeline reliability index and peak stress spectrum	
	at different residual stresses.	266
Figure 6.27	Fatigue reliability analysis process for deep-water	
	semi-submersible platform structure.	268
Figure 6.28	Fatigue reliability analysis for a deep-water semi-	
	submersible platform.	269
Figure 6.29	Schematic diagram of the connection between	
	the platform column and the transverse brace.	269
Figure 6.30	Comparison of calculated results for fatigue	
	reliability index.	278

xvi List of Figures

Figure 7.1	The combination of random process.	288
Figure 7.2	Typical sample function of mixed rectangular	
	update stochastic process with given probability	
	density function.	289
Figure 7.3	Borges process combination.	293
Figure 7.4	TR combination diagram of three load combinations.	303
Figure 7.5	Process combination of three rectangular wave.	304
Figure 7.6	Comparison of several combination rules.	308
Figure 7.7	Flow chart of specification method 1.	313
Figure 7.8	Flow chart of specification method 2.	313
Figure 7.9	Corrosion path model.	323
Figure 7.10	Corrosion multi-path model.	325
Figure 7.11	Carbonation diagram.	330
Figure 7.12	Curve of pH value and critical chloride concentration.	332
Figure 7.13	Simulated flow diagram.	336
Figure 7.14	Bridge structural status.	337
Figure 7.15	Number of cracks in piers.	338
Figure 7.16	PDF of main rebars.	339
Figure 7.17	CPDF of main rebars.	339
Figure 7.18	PDF of corrosion-induced crack width.	340
Figure 7.19	CPDF of corrosion-induced crack width.	340
Figure 7.20	Time-dependent CPDF of main rebar.	341
Figure 7.21	Time-dependent CPDF of corrosion-induced crack	
	width.	342
Figure 7.22	Structural damage to the bridge.	342
Figure 7.23	PDF of chloride threshold value.	344
Figure 7.24	PDF of time to corrosion initiation of main rebars.	345
Figure 7.25	PDF of time to crack initiation of concrete.	345
Figure 7.26	PDF of corrosion ratio of main rebars.	346
Figure 7.27	CPDF of corrosion ratio of main rebars.	346
Figure 7.28	PDF of corrosion-induced crack width.	347
Figure 7.29	CPDF of corrosion-induced crack width.	347
Figure 8.1	Limit state of structural design.	362
Figure 8.2	Wind speed span-time rate distribution curve	
	of a bridge.	373
Figure 8.3	Calibration process.	378
Figure 8.4	Human error event tree.	388
Figure 8.5	Block diagram of human error simulation program	
_	for E3 and E7.	389

List of Figures xvii

Figure 8.6	Block diagram of human error simulation programs	
	for E1(a), E1(b) and E2.	390
Figure 8.7	Human error simulation program block diagram	
	for E8 and E9.	393
Figure 8.8	Flow chart for structural system reliability calculation	
	in construction period under the influence of human	
	errors.	395
Figure 8.9	Influence of human error.	397

List of Tables

Table 2.1	Representation of membership function.	39
Table 2.2	Digital representation of gray scale.	41
Table 2.3	Indices and weights of a risk evaluation system	
	for fastener-type steel pipe formwork support	
	construction.	55
Table 2.3	Indices and weights of a risk evaluation system	
	for fastener-type steel pipe formwork support	
	construction.	56
Table 2.4	Rating scale table.	57
Table 2.5	Weighting of individual differences.	58
Table 2.6	Expert ratings.	59
Table 2.7	Correlation matrix for each index in the D-layer;	
	relative weight and correlation coefficient matrix	
	of fastener and pole index.	61
Table 2.8	Relative weighting and correlation coefficient matrix	
	of materials and erection indices.	62
Table 2.9	Relative weight and correlation matrix of index.	64
Table 3.1	Relationship between reliability index and failure	
	probability P_f .	73
Table 3.2	Comparison of results.	107
Table 3.3	Probabilistic characteristics of the random variables	
	in Example 3.	108
Table 3.4	LS-SVM learning results.	110
Table 3.5	Probabilistic characteristics of random variables	
	in Example 4.	111
Table 3.6	Effect of sample numbers on calculated results.	112
Table 4.1	Simulation results of σ_1 versus σ when $G(X)=3.0 - x$.	133
Table 4.2	Results of different sampling simulation methods.	134
Table 4.3	Relationship between area ratio of sampling ellipse	
	δ_0 and k_0 .	140
Table 5.1	Soil parameters.	188

XX LIST OF TABLES

Table 5.2	Uncertainty of soil parameters.	188
Table 5.3	Understanding the soil calculation model.	189
Table 5.4	Bearing capacity of a single pile.	190
Table 5.5	Bearing capacity under different supporting	
	boundary conditions.	194
Table 5.6	Statistical results for shear capacity and simulation	
	of the structure.	195
Table 5.7	Failure probability obtained by different reliability	
	calculation methods.	196
Table 5.8	Wave parameters for a 100-year-return period.	198
Table 5.9	Data on sectional force and bending moment of each	
	working condition.	198
Table 5.10	Data for limit state parameters in each working	
	condition.	199
Table 5.11	Calculated variable distribution types.	200
Table 5.12	Stochastic models of calculated variables.	203
Table 5.13	Reliability index and failure probability of a semi-	
	submersible platform.	203
Table 5.14	Calculated values for sectional force of semi-	
	submersible platform node.	204
Table 5.15	Resistance parameters for semi-submersible	
	structural joints.	205
Table 5.16	Reliability data for local nodes.	206
Table 5.17	Overall reliability of target platform.	206
Table 6.1	Statistical standard deviation of high frequency	
	mooring force range.	239
Table 6.2	Statistical standard deviation of low frequency	
	mooring force range.	240
Table 6.3	Mooring force discovery series under different	
	effective wave heights.	242
Table 6.3	Mooring force discovery series under different	
	effective wave heights.	243
Table 6.4	Wave ocean state distribution.	244
Table 6.5	Low-frequency moving force cycles.	245
Table 6.6	False damage and false life of the main pipe joints.	247
Table 6.7	Design parameters of a submarine pipeline.	251
Table 6.8	Calculated case.	253
Table 6.9	Structural modal analysis results.	253
Table 6.10	Fatigue life and failure probability of a suspended	
	pipeline in different cases.	260

Table 6.11	Fatigue life and failure probability of a pipeline	
	under different span lengths.	261
Table 6.12	Fatigue life and failure probability of a pipeline	
	at different wave heights.	261
Table 6.13	Fatigue life and failure probability of pipeline	
	at different water depths.	263
Table 6.14	Fatigue life and failure probability of pipelines	
	with different diameters.	265
Table 6.15	Fatigue life and failure probability of pipeline	
	at different residual stresses.	266
Table 6.16	Wave dispersion map of the South China Sea	
	$(\Sigma P=100)$.	270
Table 6.17	Fatigue reliability analysis parameters in the S-N	
	curve method.	272
Table 6.18	Fatigue reliability analysis parameters for fracture	
	mechanics.	272
Table 6.19	Fatigue reliability index and failure probability	
	of key nodes based on the <i>S-N</i> curve method.	276
Table 6.20	Fatigue reliability index and failure probability	
	of key nodes based on fracture mechanics.	277
Table 6.21	<i>S-N</i> curves in different environments.	278
Table 6.22	Fatigue reliability index of key nodes at the No. 1	
	connection for different <i>S-N</i> curves.	279
Table 7.1	Different state combinations that cause crossing.	290
Table 7.2	Parameters of various random loads.	307
Table 7.3	Concentration of chloride ion on a concrete surface.	328
Table 7.4	Distribution of the standard value of compressive	
	strength of a concrete cube.	329
Table 7.5	Calculation parameters and distribution types.	338
Table 7.6	Calculation parameters and distribution types.	343
Table 8.1	Target reliability index of current building structures	
	in China.	360
Table 8.2	Factor for importance of structure γ_0 .	365
Table 8.3	Load adjustment coefficient of service life for	
	structural design γ_L .	366
Table 8.4	Signs of durability limit state of various structures.	369
Table 8.5	Annual target reliability and failure probability	
	of bearing capacity limit state.	374
Table 8.6	Annual target reliability and failure probability	
	of the serviceability limit state	374

xxii List of Tables

Table 8.7	Calibration operating condition.	375
Table 8.8	Function distribution and parameters *.	376
Table 8.9	Load ratio.	377
Table 8.10	Recommended cost for reliability calibration.	380
Table 8.11	Statistical data for geometric parameter	
	uncertainty K_{A} .	382
Table 8.12	Geometric size distribution of components without	
	the influence of human factors.	383
Table 8.13	Standard deviation of concrete strength.	383
Table 8.14	Estimation criterion for error coefficient EF.	385
Table 8.15	Human error rate and distribution parameters	
	for degree of influence.	387
Table 8.16	Influence of different human errors on the buckling	
	strength of formwork support systems.	391
Table 8.17	Occurrence of human error.	391
Table 8.18	Distribution of tightening torque on bolts	
	in different parts.	391
Table 8.19	Occurrence of human error.	392
Table 8.20	Distribution of tightening torque on bolts in	
	different parts.	392
Table 8.21	Average value of skid resistance for fasteners under	
	different bolt tightening torques.	394
Table 8.22	Comparison of failure probability.	396

Engineering structural reliability refers to the ability of a structure to complete predetermined functions within a specified time and under specified conditions, while the degree of structural reliability is a mathematical measure of reliability. According to the definition, the reliability of engineering structures should include three aspects: the first is the part of the structure itself, including structural resistance, structural type, and structural reuse; the second is the external effects that the structure is subjected to, including direct, indirect, and combined effects on the structure; the third involves the basic methods of structural reliability, including the calculation method of reliability, analysis of system reliability, and calculation of dynamic reliability. Therefore, the reliability of engineering structures mainly involves the basic methods of reliability, which is also the main content of this book.

The theoretical research on structural reliability flourished in the 1970s with the transition of structural design codes from the allowable stress design method to the probability-based limit state design method, while the domestic research work was relatively synchronized with the foreign research. However, in terms of basic theoretical research on structural reliability, there is a significant gap between the domestic research and the foreign research, which is basically modified according to the foreign regulatory systems, which means it is in a "running" stage compared to similar international research. With the continuous deepening of understanding and research on structural reliability theory in the domestic academic and engineering communities, especially the great discussion on structural reliability in the 1990s, it is necessary to consider both the theoretical system of structural specifications based on reliability and the practical functional requirements of structures in the application of engineering structures. This is mainly reflected in the formulation of unified standards for structural design reliability in the early 20th century. Changing "the structural reliability" to "the degree of structural reliability" is the biggest highlight of the unified standard formulation, which means it is in the "parallel"

stage with similar international research. With the continuous progress of research on structural reliability theory by Chinese scientific and technological workers, and the deepening understanding of engineering structural reliability issues by engineering technicians, the establishment of China's regulatory system and the application of engineering structural reliability will be more perfect, and it is fully possible to achieve a "leading" stage compared to similar international research. This is also the purpose of writing this book.

This book consists of eight chapters, mainly introducing the development overview and basic concepts of the basic theory of reliability, uncertainty analysis methods, reliability calculation methods, simulation methods of reliability, system reliability analysis, time-varying structural reliability, load and load combination methods, the application of reliability in specifications, and the application of reliability theory in practical engineering.

This book can be used as a textbook and teaching reference for graduate and senior undergraduate students majoring in civil engineering, water conservancy, highway, railway, port, ship and ocean engineering in higher education institutions. It can also be a professional reference book for engineering technicians and scholars engaged in research and design in the fields of civil and industrial architecture, municipal facilities, bridges, roads (highways and railways), port and ocean engineering.

Acknowledgments

I would like to express my gratitude to Professor Guofan ZHAO of Dalian University of Technology in China for introducing me to the research field of structural reliability theory and application. In the future, he will continue to provide strong support and assistance in researching the reliability of marine structures, the durability of concrete structures, and other engineering structures, which I will never forget.

Thank you to Professor Eberhard LUZ from Stuttgart University in Germany for providing me with a relaxed and enjoyable working environment during my Humboldt research work from the autumn of 1991 to 1993, which enabled me to conduct research on uncertainty and numerical simulation of reliability in structural reliability.

Thank you to Professor Torgeir MOAN from Norwegian University of Science and Technology during my Norwegian Research Council's research work from 1994 to 1995. His extensive knowledge and working environment in marine engineering structures have enabled me to find new breakthroughs in the theory and application of structural reliability.

Thank you to colleagues from China National Offshore Oil Corporation (CNOOC) and the Engineering Reliability Committee of the Chinese Civil Engineering Society (CCES) for achieving reasonable application of structural reliability in structural design specifications, effectively promoting the development of structural reliability theory and application.

Since 1996, when I officially joined Zhejiang University, I have opened a research direction in structural reliability, established a new course called "Structural Reliability", and trained many doctoral and master's students. They all play important roles in their respective positions. This book also reflects their research achievements in the field of structural reliability. Here, I would like to express my heartfelt gratitude to them through this book.

I would like to express my special gratitude to Dr. Qian YE and Professor Yong BAI for their joint efforts and writing, which ultimately led to the formation of this manuscript.

xxvi Acknowledgments

The work of this book has received strong support from projects such as the National Natural Science Foundation of China (NSFC) and the Ministry of Science and Technology (MOST) of China; thank you to the teachers and graduate students of the research team on structural reliability at Zhejiang University, as well as to friends from all walks of life for their strong support and assistance in the publication of this book.

Dr. Wei-Liang JIN

Qiushi Distinguished Professor Zhejiang University, P.R. China

Notations

A Deflection of structural systems; Experience adjustment coefficient The limit on crack length under certain functions after a_{a} bearing secondary cyclic loads within its designed service life A_{eff} Effective sample area $A_{\it limit}$ Maximum deflection of structural system Initial crack length a_0 Gross area of pile tip Surface area of pile body A_{\cdot} $A_{\it whole}$ Sampling area Proposition supported by new experimental results Stress at any position in the structural system b(X) $B_{\rm O}$ Deviation coefficient of Q B_{SC} Deviation coefficient of SC CTest constants in Fracture Effect coefficient for converting load into effect The specified limits for the structure or component body to meet the requirements for normal use C_{kX} Kurtosis coefficient $C_{\scriptscriptstyle I}$ Lift coefficient of wave force $C_{\mathfrak{c}_X}$ Skewness coefficient Truncated values in truncated distribution functions d D Fatigue damage Outer diameter of pile Effects caused by dead load Effects caused by the average value of dead load \bar{D}

Current crack length in Fracture mechanics model

а

xxviii Notations

D_f	Structural damage area
d_{ij}	Fatigue damage due to wave, low or high frequency
	combination stress S _i under the sea case i and the
D	wave direction j
$D_{\mathcal{S}}$	Safety region of stochastic process in the whole life of structure
d^e	The displacement vector of all nodes in the element
E	Standard value effect of seismic loads
EF	Error factor
E_i	Subjective uncertainty
e_{jk}	Error term due to spatial averaging
E_k	Plastic failure of the first failure mode
f	Surface friction force per unit area
f(X)	Joint density function of variables $X(=(x_1,x_2,,x_n))$
$f_{Gray}(z)$	The built-in function of gray variable
f_{Hi}	Zero crossing rate of high-frequency mooring force
f_i	Average zero crossing rate
F_i	<i>i</i> th failure mode
f_k	Standard values of material properties
f_{Li}	Zero crossing rate of low-frequency mooring force
f_{wi}	Wave zero crossing rate
f_t	Concrete tensile strength
F_{ij}	i^{th} failed component in the j^{th} failure mode
$F_{max \ X}$	Cumulative distribution function of \mathbf{X} at maximum value
$F_{Mi}(x)$	Cumulative distribution function for maximum load effects of various combinations
$F_N(n)$	Cumulative distribution function in time integration method
$f_R()$	Probability density function for the whole structure
$f_R(t)$	Instantaneous probability density function of structural
-	time-varying resistance
$f_{Ri}()$	Probability density function of the strength of the \dot{t}^{th} link
$f_{rsf}(x)$	Response surface function