
ADVANCES IN CYBER SECURITY

Ι

LEY

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Advances in Cyber Security

Series Editors: Rashmi Agrawal and D. Ganesh Gopal

Scope: The purpose of this book series is to present books that are specifically designed to address the critical security challenges in today's computing world including cloud and mobile environments and to discuss mechanisms for defending against those attacks by using classical and modern approaches of cryptography, blockchain and other defense mechanisms. The book series presents some of the state-of-the-art research work in the field of blockchain, cryptography and security in computing and communications. It is a valuable source of knowledge for researchers, engineers, practitioners, graduates, and doctoral students who are working in the field of blockchain, cryptography, network security, and security and privacy issues in the Internet of Things (IoT). It will also be useful for faculty members of graduate schools and universities. The book series provides a comprehensive look at the various facets of cloud security: infrastructure, network, services, compliance and users. It will provide real-world case studies to articulate the real and perceived risks and challenges in deploying and managing services in a cloud infrastructure from a security perspective. The book series will serve as a platform for books dealing with security concerns of decentralized applications (DApps) and smart contracts that operate on an open blockchain. The book series will be a comprehensive and up-to-date reference on information security and assurance. Bringing together the knowledge, skills, techniques, and tools required of IT security professionals, it facilitates the up-to-date understanding required to stay one step ahead of evolving threats, standards, and regulations.

> Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Threats and Advanced Techniques in Security and Forensics

Edited by Kavita Sharma Vishnu Sharma Parma Nand Anil Kumar Sagar and

Gulshan Shrivastava

This edition first published 2025 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2025 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-26888-7

Front cover images supplied by Adobe Firefly Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pr	eface	e		:	xix
1	Peg	asus—.	A Menace	e to Privacy and Security	1
	Rau	inaq Kl	hurana ar	1d Shilpa Mahajan	
	1.1	Intro	duction	X Y	1
	1.2	Work	ing of Peg	gasus	4
				Attacking iOS	8
			•	Impacting Android	9
		1.2.3	•	tiating Android and iOS Pegasus	10
	1.3	Litera	ture Revi	6	10
	1.4	Meth	odologies		12
	1.5		•	ntation Techniques	12
	1.6	-	ation Mea	-	13
	1.7	Conc			14
		Refer	ences		14
2	Dat	a Priva	cy and C	ompliance in Information Security	17
			•	shankar Ghugar, Praveen Gupta,	
			-	d Nishu Gupta	
	2.1		duction	1	18
	2.2	Discu	ssion on I	Risks, Consequences, and Security Measures	
			ata Privac	1 7	19
				Around the Compliance Landscape	
			-	nation Security	22
		2.2.2		ameworks: Protecting Privacy Rights, CCPA,	
			and GD	e , e	23
			2.2.2.1	General Data Protection Regulation (GDPR)	23
			2.2.2.2		24
		2 2 2			
		2.2.3	Challens	ges in Achieving Compliance and the	

vi Contents

	2.2.4 Principles to Follow to Ensure Data Privacy	
	-	26
	2.2.5 Integrated Approach: Audits, Access Controls,	
	0 11	27
2.3		
		28
2.4	0 0	
		31
2.5	Conclusion	32
	References	33
Unv	eiling Cyber Threats and Digital Forensics	35
and		
3.1	,	36
	3.1.1 Issues and Challenges	36
	3.1.2 Digital Forensics	37
3.2	•	39
	• =	39
	6	40
		41
		42
		43
3.3		44
		45
	3.3.2 Threat Modeling	46
		48
		50
		52
3.4	č	53
3.5		54
	References	54
	•	
		59
Ma	e ,	
4.1		59
	4.1.1 Role of CPS	60
	4.1.2 Privacy Preservation in CPS	61
	4.1.3 Motivation for CPS Privacy	62
	 2.4 2.5 Unv Nid and 3.1 3.2 3.3 3.4 3.5 A C for Man 	and Compliance 2.2.5 Integrated Approach: Audits, Access Controls, Encryption, and Privacy Awareness 2.3 Data Privacy and Compliance in Information Security: The Changing Nature 2.4 Continuous Learning and Adaptation: Keeping Pace with Emerging Technologies and Regulations 2.5 Conclusion References Unveiling Cyber Threats and Digital Forensics Nidhi Gupta, Arpita Trivedi, Parveen P. Terang and Hasmat Malik 3.1 Information Security 3.1.1 Issues and Challenges 3.1.2 Digital Forensics 3.2 Cyberattacks 3.2.1 System Exploitation 3.2.2 Phishing 3.2.3 Man in the Middle Attack 3.2.4 Denial of Service 3.2.5 Ransomware 3.3 Protection Techniques 3.3.1 Firewalls 3.3.2 Threat Modeling 3.3.3 Penetration Testing 3.3.4 Encryption 3.3.5 Access Control 3.4 Internet of Medical Things 3.5 Conclusion References A Customised Privacy Preservation Mechanism for Cyber-Physical Systems Manas Kumar Yogi and A.S.N. Chakravarthy 4.1 Introduction 4.1.1 Role of CPS

	4.2	Backg	ground	64
		4.2.1	Current Trends in CPS Privacy	64
		4.2.2	Trade-Off Between Privacy and Data Utility	65
			Challenges in Variable Differential Privacy	
			Implementation	66
	4.3	Motiv	1	73
			Variants of Differential Privacy	73
			Impact of Noise Addition in Variants of Differential	
			Privacy	74
	4.4	Prope	osed Mechanism	76
		4.4.1	Algorithm: Customized Differential Privacy	78
		4.4.2		
			Privacy	80
	4.5	Expe	rimental Results	81
		4.5.1	Interpretations of the Results	82
		4.5.2	The Advantages of Using Customized Privacy	
		1.0.1	Budgets are Evident in the Following Ways	84
	4.6	Futur	e Directions	84
	4.7		lusion	88
	,	Refer		88
5	Sec	uring t	he Future: Emerging Threats and Countermeasures	
		•	graphy	91
			Ghosh, Kishore Ghosh, Chandrima Chakraborty,	
			ta and Somsubhra Gupta	
			duction	92
	5.2	Ouan	tum Computing and Post-Quantum Cryptography	92
	5.3	-	tanalysis: Cracking the Code	93
	5.4	/1	Channel Attacks: Stealthy and Insidious	95
	5.5		Attacks: Exploiting Implementation Weaknesses	96
			Permanent Fault Attacks	97
			Transient Fault Attacks	97
	5.6		ware Security Modules (HSMS)	97
	010	5.6.1	•	
			a Critical Component of Modern Information	
			Security Systems	98
		5.6.2		20
			and Scenarios	99
	5.7	Secur	e Implementations: From Theory to Reality	99

	5.8	A Ho	listic Approach to Cryptography	99
	5.9		tum Key Distribution (QKD)	100
			net of Things in Cryptography	102
			cial Intelligence in Cryptography	103
			tarithmetic	104
	5.13	The R	Road Ahead: Future Trends and Prospects	105
		Conc		106
		Biblic	ography	106
6	Cyb	er Thr	eats and Its Impact on Electronic Transactions	109
	Ran	ialinga	am Dharmalingam and Vaishnavi Dharmalingam	
	6.1		duction	109
	6.2	Digita	al Transformation and Cybersecurity	111
	6.3	Evolu	tion of Cyber Threats	112
		6.3.1	Telephone Hacks in the 1950s	113
		6.3.2	Introduction of Computer Virus in the 1970s	
			and 1980s	113
			Widespread Malware Attacks in the 1990s	114
			The Turn of the Century	114
			Threat to the Connected "Things" in the 2020s	115
	6.4		ging Cyber Threats	115
			Malware Delivery	116
			Fileless Malware	119
			Legitimate Service Abuse	119
			Botnet Renovations	119
		6.4.5	0 1	
			Advertising	120
			Security Tools as a Malware	120
			Web Shells Deep Dive	121
			Domain-Generating Algorithms	121
		6.4.9		121
	6.5	-	cts of Data Breaches in the Financial Sector	121
	6.6	•	rsecurity Standards, Frameworks, and Benchmarks	124
	6.7		vative Approaches to Cyber-Incident Management	127
		6.7.1	International and Multistakeholder Collaboration	127
		6.7.2	Cognitive Analytics in Cybersecurity Management	128
	6.0	6.7.3	Security Automation for Combating Cyberattacks	128
	6.8		lusion	129
		Refer	ences	129

7	A Re	obust Model for Enabling Insider Threat Detection	
	and	Prevention: Techniques, Tools, and Applications	133
		heik Abdullah, Shivansh Dhiman and Arif Ansari	
	7.1	Introduction	134
	7.2	Structure	135
	7.3	Impact of Insider Threats on Modern Organizations	137
		7.3.1 Types of Insider Threats	137
		7.3.2 Importance of Understanding the Impact of Insider	
		Threats	139
		7.3.3 The Magnitude of the Threat	140
		7.3.4 Why are Insider Threats so Dangerous?	141
	7.5	Challenges in Insider Threat Detection	142
	7.6	Techniques for Insider Threat Detection	144
	7.7	Robust Model	146
		7.7.1 Shortcomings in Current Insider Threat Detection	
		Models	147
		7.7.2 Required Algorithms and Tools for Robust Model	148
		7.7.2.1 Supervised Learning Model	149
		7.7.2.2 Complex Event Processing	150
		7.7.3 Integration Model	152
		7.7.4 Pseudocode	154
	7.8	Application and Case Studies	156
		7.8.1 Introduction	156
		7.8.2 How the Integration Works	156
		7.8.3 Case Studies	157
	7.9		158
	7.10	Ethical Considerations	160
		Future Trends	163
	7.12	Conclusion	165
		References	166
		Authored Book	167
		References	167
8	Digi	ital Vulnerabilities Unveiled: A Multidisciplinary	
		loration of Emerging Threats to Security and Privacy	
		he Age of Networked Communication	169
		va Sachdeva and Archan Mitra	
	8.1	Introduction	170
		8.1.1 Objectives	171
	8.2	Theoretical Foundation	172

		8.2.1	Conceptual Foundations	172
		8.2.2	The Literary Nexus	173
	8.3	Metho	odological Framework	174
		8.3.1	Data Collection	174
		8.3.2	Data Analysis	175
		8.3.3	Integration of Multidisciplinary Perspectives	175
		8.3.4	Ethical Considerations	175
	8.4	Emerg	gent Themes	176
		8.4.1	Misinformation and Fake News	176
		8.4.2	Data Breaches Put Personal Information at Risk	176
		8.4.3	The Role of Humans in Phishing and other Forms	
			of Social Engineering	177
	8.5	Interc	lisciplinary Insights	178
		8.5.1	Connecting Threads	178
		8.5.2	Dialogue Across Disciplines	178
	8.6	Pedag	ogical Implications	179
		8.6.1	The Development of Curriculum	179
		8.6.2	Education that Promotes Ethical and Effective	
			Communication	180
	8.7		ngs and Discussion	181
			Survey Findings	181
			Findings from the Interview	181
			Discussion	182
	8.8	0	ration and Synthesis	185
		8.8.1	Bringing Together Multidisciplinary Perspectives	185
		8.8.2	Policy and Practice Recommendations	186
	8.9	Concl		187
		Refere		188
		Apper	ndix A: Survey Instrument	190
9	Too	ls of Er	nancipation as Global Web and its Digital	
			: Steering IoT Landscape, Cloud Computing	
	Unr	avel Sa	fe Spaces Lensing New Cyber Risks	
	and	Emerg	ting Threats	197
	Bhu	pinder	Singh and Christian Kaunert	
	9.1	Introd	luction	198
		9.1.1	Background of Study	199
		9.1.2	Objectives	200
		9.1.3	Scope of the Study	200
		9.1.4	Structure of the Chapter	201

	9.2	Tools of Emancipation on the World Wide Web:	
		Conceptual Framework and Definition	202
		9.2.1 Historical Evolution	202
		9.2.2 Contemporary Significance	203
	9.3	IoT Landscape and Its Overview: Opportunities	
		and Challenges	203
	9.4	Cloud Computing: Pillar for Safe Spaces Protection	204
		9.4.1 Fundamental Concepts of Cloud Computing	205
		9.4.2 Security Aspects of Cloud Services	206
		9.4.3 Cloud-Based Solutions for Safe Spaces	206
	9.5	Cyber Risks and Emerging Threats—Current Landscape	
		of Cyber Threats	206
	9.6	Tools of Emancipation: Digital Tools for Positive Purposes	
		and Potential for Using Technology	207
	9.7	Assimilating Tools of Emancipation, Cloud Computing,	
		and IoT	208
	9.8	Embryonic Updated Technologies and Future Tendencies	209
	9.9	New Cyber Risks and Emerging Threats	210
		9.9.1 Policy Implications, Societal and Ethical	
		Considerations Concerning Safe Spaces Lensing	
		New Cyber Risks and Emerging Threats	211
	9.10	Conclusion and Future Scope	212
		References	213
10	IoT	and Smart Device Security: Emerging Threats	
		Countermeasures	217
	Geo	Francis E., S. Sheeja, Antony John E.F. and Jismy Joseph	
	10.1		217
		10.1.1 Definition and Scope	220
		10.1.2 Growth and Importance of IoT	221
		10.1.3 Smart Device Landscape	222
	10.2	Vulnerabilities in IoT Devices	223
		10.2.1 Insecure Device Design and Configuration	224
		10.2.2 Weak Authentication and Authorization	224
		10.2.3 Lack of Device Updates and Patch Management	225
	10.3	Emerging Threats in IoT Security	226
		10.3.1 Botnets and DDoS Attacks	226
		10.3.2 Data Breaches and Privacy Risks	226
		10.3.3 Physical Damage and Safety Concerns	227
	10.4	Attack Vectors in IoT	228

		10.4.1	Network	Exploitation	228	
		10.4.2	Firmware	e and Software Exploits	229	
		10.4.3	Social En	gineering and Phishing	229	
	10.5	· · · ·			230	
		10.5.1	Secure D	evice Design Principles	230	
		10.5.2	Authenti	cation and Encryption	231	
		10.5.3	Network	Segmentation and Monitoring	231	
		10.5.4	Security	Updates and Patch Management	232	
	10.6			oT Security	232	
				oT Security Incidents	233	
				Il IoT Security Implementations	234	
	10.7			d Challenges in IoT Security	236	
		10.7.1		Intelligence and Machine Learning		
			in IoT Se	•	236	
		10.7.2	•	ry and Legal Considerations	236	
		10.7.3	e	Emerging IoT Technologies	237	
	10.8	Conclu			238	
		10.8.1		Key Points	238	
		10.8.2	-	nce of IoT Security Implementation	239	
		10.8.3		utlook for IoT Security	239	
		Referen	nces		240	
11	Secu	red IoT	with LWC	and Blockchain	243	
	Srish	ti Priya	riya Chaturvedi, Ajay Yadav, Santosh Kumar			
	and I	Rahul M	lukherjee			
	11.1	Introdu	uction		244	
		1111	T (T) A 1	•• •		
		11.1.1	IoT Arch	itecture	247	
		11.1.1		Three-Layered IoT Architecture	247 247	
		11.1.1		Three-Layered IoT Architecture Five-Layered IoT Architecture		
		11.1.1	11.1.1.1	Three-Layered IoT Architecture Five-Layered IoT Architecture Cloud and Fog/Edge-Based IoT	247 248	
			11.1.1.1 11.1.1.2 11.1.1.3	Three-Layered IoT Architecture Five-Layered IoT Architecture Cloud and Fog/Edge-Based IoT Architecture	247 248 249	
	11.2	Applica	11.1.1.1 11.1.1.2 11.1.1.3 ations of Ic	Three-Layered IoT Architecture Five-Layered IoT Architecture Cloud and Fog/Edge-Based IoT Architecture	247 248 249 251	
	11.2	Applica 11.2.1	11.1.1.1 11.1.1.2 11.1.1.3 ations of Ic Smart Ho	Three-Layered IoT Architecture Five-Layered IoT Architecture Cloud and Fog/Edge-Based IoT Architecture DT	247 248 249 251 251	
	11.2	Applica 11.2.1 11.2.2	11.1.1.1 11.1.1.2 11.1.1.3 ations of Ic Smart Ho Smart Ho	Three-Layered IoT Architecture Five-Layered IoT Architecture Cloud and Fog/Edge-Based IoT Architecture ome ealthcare	247 248 249 251 251 252	
	11.2	Applica 11.2.1 11.2.2 11.2.3	11.1.1.1 11.1.1.2 11.1.1.3 ations of Ic Smart Ho Smart Ho Industria	Three-Layered IoT Architecture Five-Layered IoT Architecture Cloud and Fog/Edge-Based IoT Architecture oT ome ealthcare I IoT	247 248 249 251 251 252 252	
	11.2	Applic: 11.2.1 11.2.2 11.2.3 11.2.4	11.1.1.1 11.1.1.2 11.1.1.3 ations of Ic Smart He Smart He Industria Smart Ag	Three-Layered IoT Architecture Five-Layered IoT Architecture Cloud and Fog/Edge-Based IoT Architecture oT ome ealthcare I IoT griculture	247 248 249 251 251 252 252 252	
	11.2	Applica 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5	11.1.1.1 11.1.1.2 11.1.1.3 ations of Ic Smart He Industria Smart Ag Smart Me	Three-Layered IoT Architecture Five-Layered IoT Architecture Cloud and Fog/Edge-Based IoT Architecture oT ome ealthcare I IoT griculture obility	247 248 249 251 251 252 252 252 252 252	
	11.2	Applica 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6	11.1.1.1 11.1.1.2 11.1.1.3 ations of Ic Smart He Industria Smart Ag Smart Me Smart Gr	Three-Layered IoT Architecture Five-Layered IoT Architecture Cloud and Fog/Edge-Based IoT Architecture T ome ealthcare l IoT griculture obility rid	247 248 249 251 251 252 252 252 252 252 253	
	11.2	Applica 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7	11.1.1.1 11.1.1.2 11.1.1.3 ations of Ic Smart He Industria Smart Ag Smart Me Smart Gr Environn	Three-Layered IoT Architecture Five-Layered IoT Architecture Cloud and Fog/Edge-Based IoT Architecture oT ome ealthcare I IoT griculture obility	247 248 249 251 251 252 252 252 252 252	

		11.3.1	Active At	ttack	254
			11.3.1.1	Security Attacks on Perception/	
				Physical Layer	255
			11.3.1.2		256
			11.3.1.3	Security Attacks on Processing Layer	257
			11.3.1.4		257
			11.3.1.5	Security Attacks on Business Layer	258
		11.3.2	Passive A	ttack	259
			11.3.2.1	Eavesdropping	259
			11.3.2.2	Traffic Analysis	259
	11.4	Solutio	n to IoT Se	ecurity Attacks	259
		11.4.1	IoT Secu	rity Using Blockchain Technology	259
			11.4.1.1	Network Layer	260
			11.4.1.2	Consensus Layer	260
			11.4.1.3	Data Layer	260
			11.4.1.4	Execution Layer	261
			11.4.1.5	11 /	261
		11.4.2	Blockcha	in-Based IoT Applications	261
			11.4.2.1	Cyber-Physical Systems	262
			11.4.2.2		262
			11.4.2.3	Smart City	262
			11.4.2.4	Supply Chain Management	262
			11.4.2.5	Underwater Things	262
		11.4.3	IoT Secu	rity Using Lightweight Cryptography	262
			11.4.3.1	Lightweight Cryptography	264
	11.5	Conclu			265
		Referer	nces		266
12	Socia	l Engine	eering Atta	acks: Detection and Prevention	269
		-	-	Soni and Animaw Kerie	
	12.1	Introdu	/		269
		12.1.1	Strong A	ffect	270
		12.1.2	0		271
		12.1.3		6	271
			-	e Relationship	271
		12.1.5		of Moral Duty and Responsibility	271
		12.1.6			271
		12.1.7	•	ncy and Commitment	272
	12.2	Life Cy	cle of Soci	al Engineering	272

	12.2.1	Selection of Target and Reconnaissance	272
	12.2.2	Planning and Preparation	273
	12.2.3	Initiation of Contact	273
	12.2.4	Fostering Trust and Manipulation	273
	12.2.5	Elicitation and Exploitation	273
	12.2.6	Launch of Attack	273
	12.2.7	Maintaining the Access	274
	12.2.8	Covering the Trails	274
12.3	Types o	f Social Engineering	274
	12.3.1	Phishing	275
	12.3.2	Vishing	275
	12.3.3	0	275
	12.3.4	Identity Theft	275
	12.3.5	Quid Pro Quo Attacks	276
		Dumpster Diving Attacks	276
		Diversion Theft Attacks	276
	12.3.8	Tailgating	276
	12.3.9	File Masquerade	277
		Water-Holing	277
12.4		Engineering Attacks Using Advanced Techniques	277
12.5		Engineering Attack Detection Models	278
		SEADM	278
		SEADMv2	279
		SEADer	280
		SEADer++ V2	281
		on of Social Engineering Links	281
12.7		ive Approaches	282
	12.7.1		282
		Next-Gen Cloud-Based WAF	283
		"Human-as-a-Security-Sensor Framework"	283
		Awareness Programs	284
		Prevention Protocols	284
12.8		ive Measures Against Social Engineering Attacks	285
	12.8.1	U	285
		Use Multi-Factor Authentication	286
	12.8.3	Verify Email Sender's Identity	286
	12.8.4	Check for SSL Certificate	286
	12.8.5	Check for Updates	286
	12.8.6	Pay Attention to Your Digital Footprint	286
12.9	Conclu		286
	Referen	ices	287

13	Mult	ilayer Pe	erceptron of Occlusion and Pose-Sensitive Ear	
	Attri	butes for	r Social Engineering Attack Mitigation	291
	O . Ta	iwo Ola	leye, Oluwasefunmi Arogundade,	
	Adeb	ayo Aba	yomi-Alli, Wilson Ahiara, Temitope Ogunbiyi,	
	Segui	n Akintu	inde, Segun Dada and Olalekan Okewale	
	13.1	Introdu	uction	292
		13.1.1	Biometric Authentication and Social	
			Engineering Attacks	293
			13.1.1.1 Strengths of Biometric Authentication	293
			13.1.1.2 Weaknesses of Biometric Authentication	293
	13.2	Literat	ure Review	295
		13.2.1	Black Ear Inclusivity in Biometric	
			Authentication Systems	296
	13.3	Materia	als and Methods	299
			Data Acquisition	299
		13.3.2	Feature Extraction	299
			13.3.2.1 Color Layout Filter	299
			13.3.2.2 Edge Histogram Filter	300
		13.3.3	e	301
			Predictive Analytics by the Perceptron	303
		13.3.5	1	303
	13.4		and Discussion	305
		13.4.1	Performance Metrics of MLP on Occlusion	
			and Pose Sensitive Ear Facial Dataset	305
		13.4.2		
			and Pose Sensitive Ear Facial Dataset After	
			One-Hot Encoding	306
		13.4.3	Performance Metrics of MLP on Occlusion	
			and Pose Sensitive Ear Facial Dataset	
			with Parameter Optimization	307
		13.4.4	Performance Metrics of MLP on Occlusion	
			and Pose Sensitive Ear Facial Dataset After	
			One-Hot Encoding with Parameter Optimization	308
		13.4.5	1	
			Measures	309
	13.5	Conclu		311
		Referei	nces	312

14	•		nalysis of Cyberbullying Message Detection on Using Machine Learning Techniques	315
	S. Sha	anmuga	m, S. Gunasekaran and N. Anusha	
		Introdu		316
	14.2	Literati	ure Survey	318
		14.2.1	•	
			Analysis	318
		14.2.2	Cyber Bullying Detection on Social Media Using	
			Machine Learning	318
		14.2.3	Cyberbullying in Schools: A Research	
			of Gender Differences	319
		14.2.4	Automated Detection of Cyberbullying Using	
			Machine Learning	319
	14.3	Implen	nentation of Cyberbullying Model	320
		14.3.1	Dataset Description	320
		14.3.2	Architecture and Functionalities of the Proposed	
			System	321
			14.3.2.1 NLP Toolkit for Implementation	322
		14.3.3	Performance Evaluation Measures	324
	14.4	Evaluat	tion and Comparison of Machine Learning	
		Techni	ques for Cyber Bullying	325
	14.5	Conclu	ision	329
		Referen	nces	329
15			tions in Digital Forensics and Cybersecurity	333
	-		nd Priyanka Singh	
	15.1		ew of Digital Forensics and Cyber Forensics	333
	15.2			335
		15.2.1	1 0	337
		15.2.2	An Ever-Changing Threat Landscape	337
	15.3		ologies and Their Impact	337
			Balancing Opportunity and Threat	337
	15.4	-	of Emerging Technologies on Digital Forensics	
		and Cy	bersecurity	338
		15.4.1	Artificial Intelligence (AI) and Machine	
			Learning (ML)	338
		15.4.2	Quantum Computing	340
		15.4.3	5G Technology	340
		15.4.4	Blockchain Technology	340
		15.4.5	Biometric Technologies	340
		15.4.6	Cloud Computing	341

	15.4.7	IoT (Internet of Things)	341		
	15.4.8	Automated Threats and Botnets	342		
	15.4.9	Augmented Reality (AR) Virtual Reality (VR)			
		and Autonomous Systems and AI-Driven Attacks	342		
15.5	Cybersecurity and Digital Forensics: Threats				
	and Op	portunities	342		
	15.5.1	Threats	343		
	15.5.2	Opportunities	344		
15.6	Future of Digital Forensics				
	15.6.1	Emerging Trends and Future Directions			
		in Digital Forensics	347		
	15.6.2	Potential Benefits and Challenges of These			
		Emerging Trends of Digital Forensics	348		
	15.6.3	Significant Challenges in Modern Digital			
		Forensics, Both from an Ethical			
		and Technological Perspective	349		
15.7	The Fut	cure of Cybersecurity	350		
	15.7.1	Overview of Future Directions and Emerging			
		Trends in Cybersecurity	350		
	15.7.2	Emerging Trends and Potential Benefits Include	351		
	15.7.3	Challenges in Cybersecurity	352		
15.8	Collaboration and Interdisciplinary Approaches				
	15.8.1	Ways in Which Digital Forensics and Cyber			
		Security Might Collaborate	353		
15.9	Ethics and Human Factors in Future Digital Forensics				
	and Cybersecurity				
	15.9.1	Why Do we Need Ethics in Technology?	356		
	15.9.2	What Does Ethics Have to Do with Cybersecurity			
		and Digital Forensics?	357		
	15.9.3	Potential Benefits	358		
15.10	Challenges and Opportunities of Digital				
	•	ber-Forensics	359		
		Challenges	359		
		Opportunities	360 360		
15.11	Conclusion				
		Summary of Key Points	361		
		Discussion of Importance	361		
	15.11.3	Conclusion and Implications for Future Research			
		and Practice	362		
	Referen	ices	363		

16	Tomo	Tomorrow's Shields: Exploring Future Trends in Cyber					
	Security and Forensics Mridu Sharma, Ravshish Kaur Kohli and Kunal Sharma						
	16.1	Introduction		368			
	16.2	Recent Digital Forensic Trends		369			
		16.2.1	Cloud Forensics	369			
		16.2.2	Social Media Forensics	370			
		16.2.3	IoT Forensics	372			
	16.3	Threats Faced by Digital Forensics		374			
		16.3.1	Technical Challenges	374			
		16.3.2	Operational Challenges	375			
		16.3.3	Personnel-Related Challenges	376			
	16.4	6		378			
		16.4.1	USB Forensics	378			
		16.4.2	Intrusion Detection	379			
		16.4.3	Artificial Intelligence	380			
	16.5	Conclu	sion	382			
	References		nces	382			
Inc	dex			387			

Preface

Welcome to Securing the Digital Frontier: Threats and Advanced Techniques in Security and Forensics. In today's interconnected world, where our lives are increasingly intertwined with technology, safeguarding our digital information cannot be overstated. This book is a comprehensive exploration of the evolving landscape of cybersecurity, offering insights into the latest threats, innovative techniques, and proactive measures employed to protect our digital assets.

Chapter 1, "Pegasus - A Menace to Privacy and Security," sheds light on the Pegasus spyware developed by the Israeli-based cyber group NSO. Authors Raunaq Khurana and Shilpa Mahajan examine the workings of this advanced spyware, which exploits zero-day vulnerabilities to access and collect data from target systems without user consent. Through detailed analysis and case studies, the chapter highlights Pegasus's challenges. It encourages using advanced technologies such as AI and ML/DL to develop effective countermeasures.

In Chapter 2, "Data Privacy and Compliance in Information Security," authors Rakesh Nayak, Umashankar Ghugar, Praveen Gupta, Satyabrata Dash, and Nishu Gupta explore the sophisticated relationship between data privacy and compliance in information security. They discuss the challenges, regulations, and best practices in protecting sensitive data in today's digital age, emphasizing the importance of implementing robust security measures and fostering privacy awareness within organizations.

Chapter 3, "Unveiling Cyber Threats: Exploring Crime, Security Techniques, and Digital Forensics," authored by Nidhi Gupta, Arpita Trivedi, Parveen P Terang, and Hasmat Malik, delves into the escalating landscape of cybercrimes and the various advanced techniques used to protect devices from cyberattacks. The chapter also highlights the importance of digital forensics in investigating cybercrimes and identifying perpetrators. In Chapter 4, "A Customised Privacy Preservation Mechanism for Cyber-Physical Systems," authors Manas Kumar Yogi and A.S.N. Chakravarthy advocate for a novel privacy approach for cyber-physical systems, allowing users to customize their privacy settings based on their usage. The chapter explores the trade-off between privacy and utility in CPS entities and presents a provisional privacy-preserving method designed to enhance data utility while maintaining user privacy.

Chapter 5, "Securing the Future: Emerging Threats and Countermeasures in Cryptography," authored by Debosree Ghosh, Kishore Ghosh, Chandrima Chakraborty, Atanu Datta, and Somsubhra Gupta, focuses on emerging threats to cryptographic systems and innovative countermeasures. The chapter highlights the importance of post-quantum cryptography and secure implementation practices in safeguarding data security in an evolving digital landscape.

In Chapter 6, "Cyber Threats and its Impact on Electronic Transactions," authors Ramalingam Dharmalingam and Vaishnavi Dharmalingam explore the impact of cyber threats on electronic transactions, particularly during the COVID-19 pandemic. The chapter discusses the growth of digital transformation, current cyberattacks, and frameworks for combating cyber threats, emphasizing the need for collaborative efforts to secure future transactions.

Chapter 7, "A Robust Model for Enabling Insider Threat Detection and Prevention: Techniques, Tools, and Applications," authored by A Sheik Abdullah, Shivansh Dhiman, and Arif Ansari, addresses the growing threat of insider threats in organizations. The chapter explores techniques and tools for accurately detecting and mitigating insider threats, leveraging machine learning, artificial intelligence, and behavioral analytics.

In Chapter 8, "Digital Vulnerabilities Unveiled: A Multidisciplinary Exploration of Emerging Threats to Security and Privacy in the Age of Networked Communication," authors Priya Sachdeva and Archan Mitra offer a multidisciplinary analysis of digital vulnerabilities, highlighting the interplay between socio-technical factors underlying security issues. The chapter emphasizes the value of interdisciplinary approaches in comprehending and solving complex security challenges.

Chapter 9, "Tools of Emancipation as Global Web and its Digital Ecosystem: Steering IoT Landscape, Cloud Computing Unravel Safe Spaces Lensing New Cyber Risks and Emerging Threats," authored by Bhupinder Singh and Christian Kaunert, explores the symbiosis of tools of emancipation, the global web, and the digital ecosystem in navigating cybersecurity challenges. The chapter discusses the role of IoT and cloud computing in mitigating cyber risks and proposes strategies for fortifying safe spaces in the digital realm.

Chapter 10, "IoT and Smart Device Security: Emerging Threats and Countermeasures," authored by Geo Francis E, S. Sheeja, Anotony Johen E.F., and Jismy Joseph, delves into the security challenges posed by IoT devices and explores emerging threats and countermeasures. The chapter emphasizes the importance of addressing IoT vulnerabilities and implementing robust security measures to safeguard data privacy and integrity.

In Chapter 11, "Secured IoT with LWC and Blockchain," authors Srishti Priya Chaturvedi, Ajay Yadav, Santosh Kumar, and Rahul Mukherjee discuss lightweight encryption and blockchain solutions for securing the Internet of Things. The chapter explores using lightweight cryptographic algorithms and decentralized blockchain structures to protect IoT ecosystems from cyber threats.

Chapter 12, "Social Engineering Attacks: Detection and Prevention," authored by Rajat Singh, Priyanka Soni, and Animaw Kerie, focuses on social engineering attacks and proposes detection and prevention techniques. The chapter discusses various social engineering attack models and preventive measures, including security information and event management (SIEM) systems and human-as-a-security-sensor frameworks.

In Chapter 13, "Multilayer Perceptron of Occlusion and Pose-Sensitive Ear Attributes for Social Engineering Attack Mitigation," authors O. Taiwo Olaleye, Oluwasefunmi Arogundade, Adebayo Abayomi-Alli, Wilson Ahiara, Temitope Ogunbiyi, Segun Akintunde, Segun Dada, and Olalekan Okewale explore the use of multilayer perceptron for detecting social engineering attacks. The chapter investigates the effectiveness of MLP in handling occlusion and pose variations, offering insights into its potential applications in digital forensics.

Chapter 14, "Study and Analysis of Cyberbullying Message Detection and Prevention Using Machine Learning Techniques," authored by Dr. S. Gunasekaran, Dr. S. Shanmugam, and Dr. N. Anusha, focuses on detecting and preventing cyberbullying using machine learning techniques. The chapter compares different machine-learning approaches for cyberbullying detection and proposes future research directions for improving detection accuracy.

Chapter 15, "Future Directions in Digital Forensics and Cybersecurity," authored by Elipe Arjun and Priyanka Singh, offers insights into the future trends and challenges in digital forensics and cybersecurity. The chapter explores the potential impact of emerging technologies like quantum computing and AI on cybersecurity practices, emphasizing the need for inter-disciplinary collaboration and ethical considerations.

In Chapter 16, "Tomorrow's Shields: Exploring Future Trends in Cyber Security and Forensics," authors M. Sharma, R.K. Kohli, and K. Sharma provide a holistic perspective on future trends in security and forensics. The chapter discusses emerging technologies, regulatory frameworks, and industry trends shaping the future of cybersecurity, highlighting the importance of proactive measures and continuous learning in combating evolving threats.

We extend our sincere gratitude to all the authors who contributed their expertise & insights to this book. Their dedication and passion for advancing cybersecurity knowledge have made this book a valuable resource for researchers, practitioners, and students alike.

We hope that Securing the Digital Frontier: Threats and Advanced Techniques in Security and Forensics catalyzes ongoing discussions & collaborative efforts to fortify our digital defenses and navigate the everchanging cybersecurity landscape.

Dr. Kavita Sharma

Galgotias College of Engineering & Technology, Greater Noida, India Dr. Vishnu Sharma ITS Engineering College, Greater Noida, India Dr. Parma Nand Sharda University, Greater Noida, India Dr. Anil Kumar Sagar Sharda University, Greater Noida, India Dr. Gulshan Shrivastava Bennett University, Greater Noida, India

Pegasus—A Menace to Privacy and Security

Raunaq Khurana* and Shilpa Mahajan

Department of Computer Science, The NorthCap University, Gurugram, Haryana, India

Abstract

The Israeli-based cyber group NSO developed Pegasus, a spyware that can access and collect data from a target system without the user's consent. Pegasus commonly exploits zero-day vulnerabilities, which are system weaknesses that the manufacturer has not addressed or is unaware of. This chapter thoroughly examines the Pegasus spyware, highlighting its unique features that pose significant challenges in its detection as compared to other malicious software. It presents an extensive analysis of Pegasus on both iOS and Android operating systems, with the intention of educating readers about its capabilities and advocating for the use of advanced technologies such as AI, ML/DL to develop effective countermeasures against spyware, malware, and adware. The chapter also includes various case studies that illustrate the transformation of Pegasus over time and the measures taken to prevent its infiltration into user devices. To facilitate reader's understanding, the chapter provides essential security checklists that help identify Pegasus's monitoring mechanisms.

Keywords: Malware/spyware, encryption, vulnerability, vishing

1.1 Introduction

Spyware is harmful software made with the intention of stealing data from a system and sharing it with unidentified outside third parties. Pegasus is a sophisticated programme that can break into mobile devices like smartphones and tablets and eventually go over security precautions like internal

^{*}Corresponding author: raunaq.khurana18@gmail.com

Kavita Sharma, Vishnu Sharma, Parma Nand, Anil Kumar Sagar and Gulshan Shrivastava (eds.) Securing the Digital Frontier: Threats and Advanced Techniques in Security and Forensics, (1–16) © 2025 Scrivener Publishing LLC

encryption and two-factor authentication to allow hackers complete access to the targeted device once it is plugged in. If that is the case, Pegasus can control all communication between devices, including calls, messages, emails, microphone and camera providers, location data, contacts and calendars [1]. The memory consumption can be discovered using covert methods, CPU cycles, and network traffic monitoring, despite the fact that the Pegasus file store was initially intended to target officials, politicians, journalists, and influencers.

Pegasus tool is produced by the Israeli company NSO Group. This surveillance tool is designed purposely to monitor specific individuals for national security. Although this tool is developed to be used by the government agencies but it has been a subject of significant controversies. These controversies arises as they are considered to be threat to human privacy, an abuse to human rights and potential misuse of surveillance technologies.

The allegation involves that government is spying on its officials and political opponents and even individuals or not even legitimate targets for surveillance. NSO group gave his assurance that their tool is used for legitimate purposes like for frightening crimes and terrorism. However, number of evidences and investigations have suggested that Pegasus has been used for questionable purposes by some people.

The way that this tool operates is by taking advantage of flaws in mobile devices, especially smartphones, to access personal data, including calls, texts, emails, and other communications. It may also be used to activate the camera and microphone, monitor the device's position, and do a variety of other things, thereby transforming it into a robust surveillance tool.

The properties of Pegasus are thoroughly covered in this chapter, with special emphasis placed on those aspects that set it isolated from different spyware and malware in terms of difficulty in detection [2]. It also explains how Pegasus operates on both iOS and Android operating systems and suggests using advanced technologies like machine learning and AI to develop systems that can identify and prevent Pegasus, safeguarding devices from adware, malware, or spyware. Additionally, the chapter presents case studies demonstrating Pegasus's evolution over time and proposes methods to prevent spyware from infiltrating and spreading on user devices. By following the practical safety guidelines outlined in this chapter, readers can learn how to protect themselves from Pegasus's surveillance tool.

- Investigating the market origins and distribution of Pegasus.
- Examining how Pegasus operates and its ability to turn smartphones into listening devices by exploiting multiple vulnerabilities.

- Proposing various techniques to detect potential Pegasus attacks.
- Sharing advice on how to recognize the presence of Pegasus spyware on a device.
- Suggesting the utilization of command-line or terminal utilities to lower the likelihood of being affected by the Pegasus spyware.
- Providing practical recommendations to enhance awareness and protect devices from Pegasus spyware.

Spyware attacks have become increasingly sophisticated in recent years. In the past, malicious software could be installed by opening a suspicious email as early as a decade ago [3]. However, Pegasus spyware has now adopted a "mobile first" strategy, whereby it impersonates its users by sending links in text messages that appear to be from trusted sources. Clicking on these links gives Pegasus access to sensitive information, such as location data and financial information. From 2016 to 2021, Pegasus has become even more advanced and now uses "zero-click" technology, which relies on zero-day threats that are unknown to the user and remain unpatched [4]. To limit the success of Pegasus on user devices, the research paper titled "Pegasus: A Privacy Killer" recommends adopting basic precautions, like avoid unknown links, categorization of devices, and using reliable VPNs for all devices [5, 6]. Pegasus uses complex zero-day infection vectors to infiltrate devices. Once installed, try different ways to get access to victim's data and transmits it to the server [7]. The way how Pegasus can attack and exploit your phone can be seen in Figure 1.1.

- 1) It uses GPS information to identify and differentiate targets and obtain precise information
- 2) The Pegasus spyware does not require coordination with local Mobile Network Operators (MNOs), making it independent of service providers.
- It control both the content and devices it infects by utilizing proprietary protocols and SSL, commonly used in complex communications, which allows it to surpass encrypted information.
- 4) The surveillance includes monitoring various applications, such as Instagram, Twitter, WhatsApp, Skype, Viber etc.
- 5) Monitor VoIP and voice calls in real time (call interception).
- 6) Pegasus can recognize operational identities without the need for regularly switching virtual identities or while continuously surveilling/observing the device.

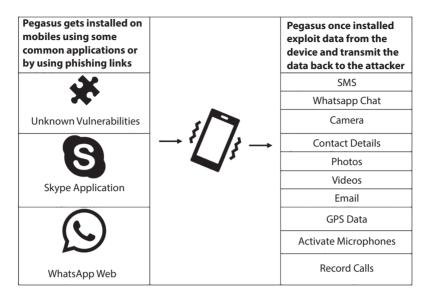


Figure 1.1 Pegasus impact.

1.2 Working of Pegasus

This spyware name Pegasus is a highly advance and dangerous tool that exploits "Zero-day Vulnerability," a security weakness for which no patch or update is available or known by the manufacturer. Pegasus can silently infiltrate various Android and iOS devices and covertly monitor all device activities. By exploiting vulnerabilities in third-party spyware, Pegasus can take complete control of the device, allowing the attacker to perform various actions. To protect against such attacks, users must take proactive measures, such as installing antivirus software, regularly updating device firmware, and being vigilant when clicking on links from unknown sources.

Pegasus can access data like access your messages, location tracking, content surfing, can make calls from compromised phones, call logs can be accessed, access to photo, camera and Microphone can be accessed and an delete data and even retrieve the deleted files from the mobiles. Pegasus spyware directly transmit the data obtained from target's phone straight to the data server of NSO group [8].

Pegasus spyware is a highly advanced malware that can be installed easily through physical contact, text or email and through calls and messages. It exploits vulnerabilities that have not been updated with a patch or are not known to the relevant parties. It can infiltrate a device through a missed call on WhatsApp or an iMessage on iPhones [9]. The Pegasus spyware utilizes a zero-click method that does not require any user interaction, making it challenging to detect. Even if a user tries to delete a suspicious message, the spyware can persist on the device and infect it [10].

Pegasus spyware is a highly sophisticated tool that can decrypt end-toend encrypted messages and files, making it a potent weapon in espionage [11, 12]. Recent findings indicate that the latest versions of Pegasus can infiltrate devices through missed calls and delete the call logs to cover up the attack, making it harder to detect and track its actions. This poses a significant challenge for users who may not even be aware that their devices have been compromised [13].

A diagram depicting the general workflow of Pegasus can be seen in Figure 1.2.

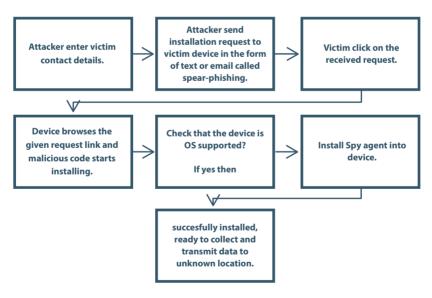
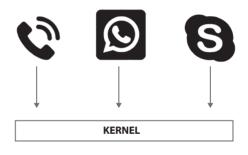



Figure 1.2 Pegasus workflow.

The workflow of Pegasus on a normal device vs. an infected device can be seen in Figure 1.3. It is interesting to find how an infected device behave differently from the normal device. In normal device, the common phasis include

Device Setup	The user purchases a new mobile device and goes through the initial setup process, which typically includes connecting to Wi-Fi, signing in with their Apple ID or Google Account, and configuring settings.
App Installation	Users can install applications from authorized application marketplaces such as the Apple App Store or Google Play Store. These apps undergo a vetting process to ensure they do not contain malicious code.
Regular Usage	The individual utilizes the device for a multitude of functions, including placing calls, sending messages, surfing the web, and accessing applications. The device operates normally without any unexpected behavior.

Conversation on a normal device

Conversation on an infected device

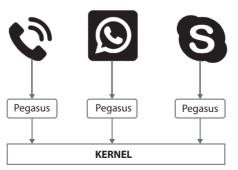


Figure 1.3 Work-flow of normal device vs infected device.