QUANTUM COMPUTING MODELS for CYBERSECURITY and WIRELESS COMMUNICATIONS

Edited By Budati Anil Kumar, Singamaneni Kranthi Kumar and Li Xingwang

Quantum Computing Models for Cybersecurity and Wireless Communications

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Sustainable Computing and Optimization

Series Editors: Dr. Prasenjit Chatterjee (dr.prasenjitchatterjee6@gmail.com), Morteza Yazdani and Dilbagh Panchal

The objective of the series is to bring together global research scholars, experts, and scientists in the research areas of sustainable computing and optimization to share their knowledge and experiences on current research achievements in these fields. Since the series was launched in 2021, it has provided a golden opportunity for the research community to share their novel research results, findings, and innovations to a wide range of topics and applications. The series promotes sustainable computing and optimization methodologies to solve real-life problems mainly from engineering and management systems domains.

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Quantum Computing Models for Cybersecurity and Wireless Communications

Edited by

Budati Anil Kumar

Faculty of Electronics & Communication Engineering, Koneru Lakshmaiah Education Foundation (Deemed University), Aziz Nagar Campus, Hyderabad, Telangana, India

Singamaneni Kranthi Kumar

Faculty of Computer Engineering and Technology, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Telangana, India

and

Li Xingwang

School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, China

This edition first published 2025 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2025 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-27139-9

Front cover images courtesy of Wikimedia Commons Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pr	eface	e			XV
Ac	kno	wledg	ment		xvii
1	Perf Loo	formar p Simu	ice Evalu	ation of Avionics System Under Hardware ramework with Implementation of an AS9	-In- 100
	Qua	ality M	anageme	nt System	1
	Raj	esh Sha	ankar Ka	rvande and Tatineni Madhavi	
	1.1	Intro	duction		2
	1.2	HILS	Process a	and Quality Management System	4
	1.3	HILS	Testing F	Phase	7
	1.4	AS91	00 QMS 1	Integrated with HILS Process	8
	1.5	Conc	lusion an	d Suggestions	10
		Refer	ences		10
2	You	Tube (Comment	Summarizer and Time-Based Analysis	13
	Pre	eti Bail	ke. Rugv	ed Junghare, Praiakta Kumbhare,	
	Pra	tik Ma	ndalkar,	Pratik Mane and Netra Mohekar	
	2.1	Intro	duction		13
	2.2	Litera	ture Revi	ew	16
	2.3	Meth	odology		18
		2.3.1	YouTub	e Comments Data Collection	18
			2.3.1.1	YouTube Data API Integration	18
			2.3.1.2	get_video_comments Function	19
			2.3.1.3	Comment Processing	19
			2.3.1.4	Handling Pagination with get_all_video_	
				comments	20
			2.3.1.5	Excel File Creation with save_to_excel	20
		2.3.2	Dataset	S	20
		2.3.3	Extracti	ve Summarization	21
	2.4	Resul	t		30
	2.5	Perfo	rmance		30

vi Contents

	2.6	Conc	lusion	31
		Refer	ences	31
3	Enh	ancing	g Gait Recognition Using YOLOv8 and Robust	
	Vid	eo Mat	ting for Low-Light and Adverse Conditions	33
	Pre	manan	d Ghadekar, Aadesh Chawla, Sakshi Bodhe,	
	Sha	rvari B	Bawane and Dhruv Kshirsagar	
	3.1	Intro	duction	34
	3.2	Relate	ed Works	34
	3.3	Meth	odology	36
	3.4	Comj	parision with Existing Systems	41
	3.5	Futur	re Scope	48
	3.6	Conc	lusion	48
		Ackn	owledgment	49
		Refer	ences	49
4	An	Fnsem	hle-Based Machine Learning Framework	
•	for	Breast	Cancer Prediction	51
	Ran	nva Pa	laniappan Maha Lakshmi Namitha Nirmala Dev	; ;
	and	Naga	Phani	•
	4.1	Intro	duction	52
	4.2	Relate	ed Works	53
	4.3	Prope	osed Framework	56
		4.3.1	ML Models and Ablation Study	56
		4.3.2	Building Ensemble Model Using AdaBoost	57
	4.4	Expe	rimental Setup	58
		4.4.1	Dataset	58
		4.4.2	Data Visualization	59
		4.4.3	Data Pre-Processing Phase	60
		4.4.4	Proposed Methodology	61
		4.4.5	Performance Metrics	62
	4.5	Resul	ts and Discussion	63
		4.5.1	Comparison with Baseline Models	63
		4.5.2	Comparison with Existing Literature Works	66
	4.6	Existi	ing Works	67
	4.7	Conc	lusion and Future Work	69
		Datas	set	69
		Refer	ences	69

5	Pro	oactive Fault Detection in Weather Forecast Control	Systems
	Thr	rough Heartbeat Monitoring and Cloud-Based Anal	ytics 73
	She	elly Prakash and Vaibhav Vyas	
	5.1	Introduction	74
		5.1.1 Cloud Computing	75
		5.1.1.1 Fault, Error, Failure	75
	5.2	Related Work	77
	5.3	Proposed Proactive Fault Detection Architecture	81
	5.4	Conclusion	95
		References	95
6	Flo	wGuard: Efficient Traffic Monitoring System	99
	Var	rsha Dange, Atharva Bonde, Om Borse, Harshal Cha	udhari
	and	d Sanskar Chaudhari	
	6.1	Introduction	99
	6.2	Literature Review	100
	6.3	Methodology	113
		6.3.1 Theory	113
		6.3.2 Requirement	114
		6.3.2.1 Hardware Requirements	114
		6.3.2.2 Software Requirements	116
		6.3.5 WORKHOW	11/
	61	0.3.4 FlowCliart Desults and Discussions	118
	0.4 6 5	Conclusion	110
	6.6	Future Scope	121
	0.0	Acknowledgment	121
		References	122
		References for Pictures of Components Used	124
7	A S	Survey on Heart Disease Prediction Using Ensemble	
-	Tec	chniques in ML	125
	Sud	lhakar Vecha and M.V.P. Chandra Sekhara Rao	
	7.1	Introduction	125
	7.2	Literature Survey	127
	7.3	Datasets	128
	7.4	Ensemble Learning in Heart Disease	129
	7.5	Challenges and Limitations	134

	7.6 7.7	Futur Conc	e Directior lusion	15	134 135
		Refer	ences		135
8	A V	ideo Si	ırveillance	e: Crowd Anomaly Detection	
	and	Mana	gement Ale	ert System	139
	Ani	tha Por	ıraj, Umas	ree Mariappan, M. J. Sai Kiran,	
	<i>S. T</i>	ejeswai	[•] Reddy, N.	. Vinay and P. Bharath	
	8.1	Intro	luction		140
	8.2	Relate	ed Work		140
	8.3	Datas	et Descript	tion	143
	8.4	Probl	em Definit	ion	143
	8.5	Propo	osed Metho	odology and System	144
		8.5.1	Proposed	Methodology	144
		8.5.2	Proposed	System	146
	8.6	Resul	ts		148
	8.7	Conc	lusion and	Future Scope	150
		8.7.1	Conclusio	on	150
		8.7.2	Future Sc	ope	151
		Refer	ences		151
9	Rev	olutio	nizing Lear	rning with Qubits: A Review	
	of C)uantu	m Machin	e Learning Advances	153
	Sha	takshi	Bhusari, A	niket Badakh, Kalyani Daine,	
	Nik	ita Gag	are and Pi	rasad Raghunath Mutkule	
	9.1	Intro	luction		154
		9.1.1	Parallelis	m	154
		9.1.2	Quantum	Speedup	155
		9.1.3	Quantum	Entanglement	155
		9.1.4	Quantum	Fourier Transform	155
		9.1.5	Quantum	Machine Learning Algorithms	155
		9.1.6	Quantum	Data Representation	155
		9.1.7	Quantum	i Sampling	155
		9.1.8	Quantum	Annealing	156
		9.1.9	Hybrid Q	uantum-Classical Approaches	156
	9.2	Revie	w of Litera	ture	156
		9.2.1	Overview	of Key Quantum Computing Principles	156
			9.2.1.1	Qubits (Quantum Bits)	157
			9.2.1.2	Quantum Gates	157

		9.2.1.4 Quantum Measurement	157
		9.2.1.5 Quantum Fourier Transform	158
		9.2.1.6 Quantum Entanglement-Based Algorithms	158
9.3	Basic	Quantum Operations, Qubits, and Quantum Gates	158
	9.3.1	Basic Quantum Operations	158
	9.3.2	Quantum Bits (Qubits)	158
	9.3.3	Quantum Gates	159
9.4	Quan	tum Machine Learning Algorithms	159
	9.4.1	Quantum Support Vector Machines (QSVM)	161
	9.4.2	Quantum Neural Networks (QNN)	161
	9.4.3	Quantum Clustering Algorithms	161
	9.4.4	Quantum Principal Component Analysis (QPCA)	162
	9.4.5	Quantum Boltzmann Machines	162
	9.4.6	Quantum Support Vector Clustering (QSVC)	162
9.5	Quan	tum Hardware for Machine Learning	162
9.6	Challe	enges in Building Scalable and Error-Resistant	
	Quan	tum Hardware	163
	9.6.1	Decoherence and Quantum Error Correction	163
	9.6.2	Quantum Gate Fidelity	163
	9.6.3	Scalability	164
	9.6.4	Qubit Connectivity and Crosstalk	164
	9.6.5	Material Science and Qubit Implementation	164
	9.6.6	Quantum Interconnects	164
	9.6.7	Thermal Management	164
	9.6.8	Error Mitigation Strategies	164
9.7	Challe	enges and Limitations in Quantum Machine Learning	165
	9.7.1	Quantum Computational Overheads	165
	9.7.2	Hybrid Quantum-Classical System Integration	165
	9.7.3	Limited Quantum Expressibility	165
	9.7.4	Data Preprocessing Challenges	165
	9.7.5	Quantum Algorithm Verification	166
	9.7.6	Quantum Resource Requirements	166
	9.7.7	Adaptation to Quantum Hardware Constraints	166
	9.7.8	Limited Quantum Hardware Availability	166
	9.7.9	Algorithmic Complexity	166
	9.7.10	Quantum Model Interpretability	166
9.8	Futur	e Directions	167
9.9	Concl	usion	167
	Refere	ences	167

x Contents

10	Multi	-Band Self-Grounding Antenna for Wireless	
	Techı	nologies	169
	Ch. S	iva Rama Krishna, P. Livingston, S. Jaya Chandra,	
	J. Ha	ri Babu and K. Sai Babu	
	10.1	Introduction	170
		10.1.1 Literature Review	170
	10.2	Design of Antenna	174
		10.2.1 Design and Results at Primary Level of Antenna	175
		10.2.2 Design and Results at Secondary Level of Antenna	175
	10.3	Actual Design of Antenna	176
	10.4	Results of Antenna	176
		10.4.1 Mathematical Analysis	178
		10.4.2 3D Polar Plot	178
	10.5	Conclusions	179
		References	180
11	Navig	ating Network Security: A Study on Contemporary	
	Anon	naly Detection Technologies	183
	Sai R	amya, Smera C. and Sandeep J.	
	11.1	Introduction	184
	11.2	Related Work	186
	11.3	Methodology	194
	11.4	Conclusion	197
		References	197
12	File F	ragment Classification: A Comprehensive Survey	
	of Re	search Advances	201
	Teena	ı Mary and Sreeja C.S.	
	12.1	Introduction	201
	12.2	Methodology	203
		12.2.1 Selection Criteria	203
		12.2.2 Structure of the Paper	204
	12.3	Approaches for File Fragment Classification	204
		12.3.1 Signature-Based Approaches	204
		12.3.2 Content-Based Approaches	206
		12.3.3 Deep Learning-Based Approaches	207
		12.3.3.1 Convolutional Neural Networks (CNNs)	208
		12.3.3.2 Feed Forward Neural Networks (FFNNs)	209
		12.3.4 Hierarchical Classification Methods	209
	12.4	Survey Findings	210
	12.5	Challenges and Future Directions	214

	12.6	Conclusion References	215 216
13	Deep	fake Detection and Forensic Precision for Online	
	Hara	ssment	219
	K. Go	outhami, K. Sunitha, D.U. Durgarani and M. Prathvusha	
	13.1	Introduction	220
	13.2	Literature	221
	13.3	Theoretical Analysis and Software Simulation	222
		13.3.1 Theoretical Analysis	222
		13.3.2 Software Simulation	223
		13.3.3 Testing and Optimization	224
		References	225
14	Desig	gn of Automatic Seed Sowing Machine	227
	Chilu	ka Ramesh, K. Sarada, V. Ajay Shankar	
	and I	K. Ravi Kumar	
	14.1	Introduction	228
	14.2	Literature Survey	229
	14.3	Proposed System	232
	14.4	Conclusions	235
		References	235
15	In M	otion: Exploring Urban Rides Through Data Analytics	237
	Rajkı	ımar Sai Varun, Nimmagadda Narayana,	
	Duda	am Vipassana and Mohan Dholvan	
	15.1	Introduction	237
	15.2	Literature Survey	238
	15.3	Proposed Methodology	240
	15.4	Result Analysis	247
	15.5	Conclusion	248
		References	249
16	Desig	n of Novel Chatbot Using Generative Artificial Intelligence	251
	Sk. K	hader Zelani, Sk. Gousiya Begum, M. Chandana	
	and I	N. Lakshmi Tirupatamma	
	16.1	Introduction	252
	16.2	Conclusion and Future Scope	257
		References	257
17	The S	mart Nebulizer Cap for Enhanced Asthma Management	259
	Rossl	y Netala, Aadi Praharsha and Mohan Dholvan	
	17.1	Introduction	259

xii Contents

	17.2	Literature Survey	261
	17.3	Methodology	262
	17.4	Conclusions	265
		References	265
18	Desig	gn of a Digital VLSI Parallel Morphological Reconfigurable	
	Proce	essing Module for Binary and Grayscale Image Processing	267
	Y. Bh	askara Rao, K. Rajitha, D. Vijay Harsha Vardhan,	
	N. Na	aga Raja Kumari and D. Vijaya Saradhi	
	18.1	Introduction	268
	18.2	Literature Survey	269
	18.3	Design of a Digital VLSI Parallel Morphological	
		Reconfigurable Processing Module for Binary	
		and Grayscale Image Processing	271
	18.4	Result Analysis	274
	18.5	Conclusion	276
		References	277
19	Intru	sion Detection System Using Machine Learning	279
	Balli	kura Dhanunjay, Earla Sanjay, Aakaram Karthik Raj	
	and I	Mohan Dholvan	
	19.1	Introduction	280
	19.2	Literature Survey	280
	19.3	Methodology	281
	19.4	Algorithm	283
	19.5	Implementation	285
	19.6	Results and Outputs	289
		19.6.1 User Interface	289
	19.7	Conclusion and Future Scope	290
		References	291
20	Predi	iction of Arrival Delay Time in Freightage Rails	293
	Bobb	ala Shriya, Gudishetty Shrita, Vanga Pragnya Reddy	
	and I	Nanda Kumar M.	
	20.1	Introduction	294
	20.2	Literature Survey	295
	20.3	Methodology	297
	20.4	Experimental Results	302
	20.5	Conclusions	308
		References	309

21	Predi	cting Flight Delays with Error Calculation Using	
	Mach	ine Learned Classifiers	311
	L. Sa	i Nageswara Raju, T. Naman Krishn Raj,	
	Raip	ole Manihas Goud and Mohan Dholvan	
	21.1	Introduction	311
	21.2	Literature Survey	312
	21.3	Proposed Methodology	314
	21.4	Result Analysis	322
	21.5	Conclusion	322
		References	323
22	Desig	and Implementation of 8-Bit Ripple Carry Adder	
	and C	Carry Select Adder at 32-nm CNTFET Technology:	
	A Co	mparative Study	325
	Venk	ata Rao Tirumalasetty, K. Babulu and G. Appala Naidu	
	22.1	Introduction	326
	22.2	Implementation of RCA & CSA	328
	22.3	Simulation Results	333
	22.4	Conclusion	335
		References	335
23	XGB	oost Classifier Based Water Quality Classification Using	
	Mach	ine Learning	337
	Nagi	di Nikhitha, Sudini Poojitha, Vooturi Arjun,	
	K. Sa	teesh Kumar and D. Mohan	
	23.1	Introduction	338
	23.2	Related Work	338
	23.3	Proposed Methodology	339
	23.4	Results and Discussion	342
	23.5	Conclusion	345
		References	345
Inc	lex		347

Preface

Artificial intelligence, cybersecurity, and practical cryptography are just a few of the areas where quantum machine learning has the most potential. Advanced data encryption techniques are urgently needed as our growing reliance on the internet exposes us to threats brought on by cyber-attacks. Although many current encryption standards may not be breakable by current quantum-based machines, it is vital to keep ahead of the impending threats and prepare for sophisticated cyberattacks using quantum-proof solutions. The difficult issues that classical computers are unable to address, such as the techniques employed in data encryption, can be solved by quantum computers. Modern encryption techniques are based on mathematical formulas that would be impractically difficult for traditional computers to decrypt. Working tirelessly to create quantum-secure encryption techniques is the research goal. One possible method is for securely transferring a quantum key between two endpoints that makes use of the quantum physics qualities known as quantum key distribution (QKD). Before recent developments, this technique could only be used with fiber optic connections, but now quantum key transfer is also possible over the Internet. Although there are still many unsolved problems concerning quantum computing, it is evident that present methods of cybersecurity and encryption are at risk. We need to adapt the way we safeguard our data and take a defense-intensive strategy characterized by many layers of quantum-secure security to lessen the threat. To protect themselves from potential quantum threats, security-conscious organizations are actively looking for quantum-ready encryption solutions, including those provided by Quantum Exchange.

Future quantum machines will exponentially boost computing power, creating new opportunities for improving cybersecurity. Both classical and quantum-based cyberattacks can be proactively identified and stopped by quantum-based cybersecurity before they harm. Complex math-based problems that support several encryption standards could be quickly solved using quantum machine learning. The traditional cryptography standards

on classical computers, which rely on difficult mathematical calculations like prime factorization, would take millennia or more. However, these issues might be resolved by quantum machines in a manageable amount of time. Despite the lack of widespread commercial quantum devices, it is wise to plan for quantum-based cybersecurity difficulties and deal with present restrictions. The security and privacy of commercial organizations will greatly increase as a result of this preparation. For instance, today's adversaries could penetrate private networks. When large-scale quantum machines are made commercially available in the future, this enormous computational capacity could be used to undermine networks and infrastructures by decrypting critical data. Quantum machine learning-based cybersecurity, especially in the context of quantum computing and quantum chaotic characteristics, presents stronger and more exciting chances for protecting important and sensitive information by outpacing these possible attacks. Through book chapters, academics, researchers, and scientists have contributed their ideas, concepts, and use cases on cutting-edge technologies like blockchain, quantum machine learning, cybersecurity, IoT, and SDN. The main purpose of this book is to publish the latest research papers focusing on problems and challenges in the areas of data transmission technology, computer algorithms, artificial intelligence (AI) based devices, computer technology, and their solutions to motivate researchers.

This book serves as a ready reference for researchers and professionals working in the area of quantum computing models in communications, machine learning techniques, the healthcare industry, and IoT-enabled technologies.

Acknowledgment

We, the editors of the *Quantum Computing Models for Cybersecurity* & *Wireless Communications*, wish to acknowledge the hard work, commitment and dedication of the authors who have contributed their wonderful chapters to our edited volume in the stipulated time.

Further, we would like to convey our special gratitude to Dr Prasenjit Chatterjee, Dean (Research and Consultancy), MCKV Institute of Engineering, West Bengal, India for his consistent support and guidance at each stage of the book's development.

We wish to bestow our best regards to all referees for providing productive comments to the authors to improve their chapters to meet the required standard. A successful book publication is the integrated result of everyone's contribution and not just those named as editors or authors.

Finally, the editors acknowledge everyone who helped us directly and indirectly.

Budati Anil Kumar Singamaneni Kranthi Kumar Li Xingwang

Performance Evaluation of Avionics System Under Hardware-In-Loop Simulation Framework with Implementation of an AS9100 Quality Management System

Rajesh Shankar Karvande^{1*} and Tatineni Madhavi²

¹'F' RCI, DRDO, Hyderabad, TS, India ²EECE, GITAM, Hyderabad, TS, India

Abstract

Performance evaluation of avionics subsystem is mandatory before the deployment of the system. In the aerospace and defense industry it is critical to validate the embedded system software along with the flight subsystem in real time before real launch. The launch of the flight vehicle is single shot operation and involves so many factors. To avoid the catastrophic failures due to errors in algorithms, subsystems integrated working under real time, it is essential and mandatory to validate the software using Hardware-In-Loop Simulation (HILS) platform. This is unique platform that evaluate the performance of mission software i.e. control and guidance software using different criteria and conditions. This is cost effective tool to evaluate the performance for the expensive flight trial and using its rapid prototyping technique designer can validate their software in early stage of development. Development of AS9100 Quality Management System (QMS) in the HILS process is essential and inevitable part of avionics design to improve the process. This paper focus on the embedded system testing, validation, and certification area. The HILS test-bed designed as part of performance evaluation, different configuration of the HILS for centralized and distributed architecture, test plan for all software test cases with different perturbation cases. The lifecycle of the HILS process is explained in details with respect to AS9100 QMS requirements and implementation. Development of HILS test-bed for centralized and distributed

^{*}Corresponding author: rajeshkarvande@rediffmail.com

Budati Anil Kumar, Singamaneni Kranthi Kumar and Li Xingwang (eds.) Quantum Computing Models for Cybersecurity and Wireless Communications, (1–12) © 2025 Scrivener Publishing LLC

architecture configuration is explained in details. The results are discussed and the conclusion and suggestions for future improvement are discussed in last section.

Keywords: 6Dof plant model, hardware-in-loop simulation, inertial navigation system, on board computer, OBC-in-loop, quality management system

1.1 Introduction

Performance Evaluation of avionics system specially used in aerospace vehicle is essential and critical task that ensure the success rate of developmental flight trial. The evaluation of the On-Board Computer (OBC) mission software along with the integrated flight hardware is carried out using the unique Hardware In Loop Simulation Test-bed [1, 2]. There are number of steps involved in testing phase of HILS. Design of the test-bed, development of the simulation software, testing of the OBC software. All the errors or deficiency related with mission software has been validated in HILS with number of test cases. Unit level testing carried out by the developer is not sufficient to test system completely. This unit testing only verifies the system independently working as per design. The integrated level testing and user acceptance testing is performed at HILS as shown in Figure 1.1. This testing highlights the design issues like lags, communication delay, bandwidth etc. for the individual system when it is integrated with other sub-systems.

In the total product life cycle of software development HILS is important phase for the validation and testing of avionics system is shown in Figure 1.1. HILS consists of both Hardware and Software parts: Simulation computer based on the configuration of the avionics system that is helpful to select the I/O cards of the system like MIL-STD 1553 cards, ADC cards, DAC cards and RS-422 cards [7]. The second part is the 6Dof software development part based on the Real Time Operating Systems. The problem is that the HILS process has many branches and there is no process control. It has been experienced the delay and ineffectiveness in the early stages of the HILS. It was highly essential to establish a stepwise process with the effectiveness

Figure 1.1 Testing phases of software and the avionics product lifecycle.

and timely delivery of the product from HILS. So more focus and effort has been given to develop unified HILS process that will be stepwise process with the effectiveness of the Quality Management System for ensuring the timely completion of the process. The process of HILS is covered under the Aerospace Standard AS9100. The problem is to develop the methodology that defines the scope of the HILS process that is critical part of the project cycle to evaluate the performance of the software and flight hardware in integrated mode. This paper has given the detail explanation about the development of HILS process and the development of AS9100 QMS standard that is adopted for this process that has been bonded together first time to achieve the quality objective for the HILS as well as at the laboratory level to be recognized as global level. First the concept of the performance evaluation is explained with HILS Configuration, then the development of control i.e. Test plan, Test cases, Test results followed by induction of AS9100 quality absorption to HILS activities. The Key Performance Indicator (KPI) that shows the effectiveness of the concept of development of QMS at process level and the performance of the HILS according to that is discussed at the end with conclusion and suggestion at the end.

There are White Box Testing and Black Box Testing. White Box testing only verify the algorithm by visual inspection or flow chats. Performance evaluation is also called as the Black Box testing methodology that execute the algorithm and evaluate that the development is meeting the goals of design. This uses the input design specifications and parameters and measure output generated after execution of the software in real time. Hardware-In-Loop Simulation Framework is unique setup that is used for the performance evaluation of the Avionics system for both centralized architecture as well as distributed architecture.

Centralized Architecture

In this scheme all the algorithms are built using single processor with On Board Computer is shown in Figure 1.2. All the required interfaces are controlled by the processor. The sub systems are mainly electro mechanical that do not have any processing or computing unit inside the subsystem.

Figure 1.2 Centralized and distributed architecture of the avionics system.

4 QUANT. COMP. MODELS FOR CYBER & COMMUNICATIONS

Distributed Architecture

There is processor available in each subsystem and the data processed inside the subsystem itself is shown in Figure 1.2, e.g. in the case of Inertial Navigation System, the raw data gyros and accelerometers samples are processed inside the INS unit and the processed data i.e. positions, velocities, rates, accelerations, quaternions are posted to the OBC at regular interval. Similarly actuator setup has their own processor to process the deflection commands and send back the feedback information about the actuator at regular interval.

The challenge is to establish testing methodology for both architecture and the develop the uniform methodology in this area. The recent research paper has been studied for the development of the process effectiveness. Paper title "Development of Hardware-In-Loop Simulation Test-bed for testing of Navigation System-INS" by Rajesh K & B Ramesh Kumar explain the testing methodology for INS. It is limited for INS system only. Another paper titled "On joint hardware-in-the-loop simulation of aircraft control system and propulsion system" by Yao Zhao explains about the HILS system of the aircraft system. The development of the process for timely completion of the HILS activities and control for the effectiveness monitoring of the process paper is essential to help the researcher and engineers to have a layout of methodology for future experiments in this area.

1.2 HILS Process and Quality Management System

There are many AS9100 is Quality Management system for Aviation, Space and Defence industry released by International Aerospace Quality Group (IAQG). AS9100 Quality Management System goes hand to hand with each process of the Aerospace Research and Development Laboratory. After the Design and Development phase is finalized then the simulation and testing of the subsystem in integrated mode has been initiated. HILS process is the part of testing of the product and covered under QMS. Four Major processes has been defined and covered under QMS.

- HILS Planning and Configuration Management.
- Development of the HILS Setup
- OBC Software Validation
- Hardware In Loop Simulation.

A. HILS Planning and Configuration Management

Planning is crucial as all the schedule of the further testing and real launch depends on the HILS planning as shown in Figure 1.3. In parallel with the

Micro Level Planning for ABC Project: HILS Activity Plan

Figure 1.3 Planning of HILS activities of the project.

development cycle, development of HILS testbed, planning of test cases and HILS testing is established. Test-bed development focuses on the configuration, Timeline required and the HILS test cases for the mission software validation. Development of HILS testbed and development of simulation software mainly depend on the avionics configuration, Interface Control Document (ICD) of each sub-system and interface communication protocol of different sub-systems. This all together is covered under the HILS configuration and planning.

B. Development of HILS Test-Bed

Generally, the design and configuration of the HILS Setup is based on the avionics system used for the aerospace vehicle. The process block diagram is shown in Figure 1.4. The data acquisition system based on popular communication protocols, MIL-STD 1553, RS-422, ADC, DAC, and Digital Input/Output. These all the I/O systems are integrated with the HILS System for the configuration of Simulation System. Application layer of the simulation computer is plant model algorithms. Two different configurations have been designed and developed for Centralized architecture of avionics system and distributed architecture of the avionics system. The 6Dof equation that is part of simulation system is developed using the mathematical model [4] and under the real time operating system [7].

6 QUANT. COMP. MODELS FOR CYBER & COMMUNICATIONS

Figure 1.4 Development of HILS setup" HILS QMS process.

The other supporting modules like thrust, aero, interpolation computational algorithm has been developed using real time operating system and high-level software language. This integrated plant software is tested using the input data provided by the designer. The output data that is generated after execution of the HILS run that is controlled process. Mainly the 6Dof parameters i.e. three rates and accelerations are compared with the designer data. Here, the process coverage focuses on the coding standard, white box testing as a part of algorithm verification and the output parameters.

C. OBC Software Validation

The Second process is the OBC software validation. The Control and Guidance (C&G) algorithm are developed with On-Board Computer [8]. The execution time, lags, transportation delay issues get addressed in HILS by execution of OBC software [5]. The water fall methodology as per the software engineering is followed for the testing of the OBC software is shown in Figure 1.5. The iterative software is tested and the observation has been given to the developer to improve the code. This in the iterative

Figure 1.5 "OBC software validation" process flow.

process this testing has been carried out. Only OBC software and hardware is validated in OBC-In-Loop in initial phase of HILS process. Other flight subsystems i.e. INS and actuators are simulated in plat model. Plant model execute the INC and Actuator simulator based on mathematical model of the sensor and the actuator model. The HILS simulation is developed under Real Time Linux operating system [14].

1.3 HILS Testing Phase

Final phase of HILS testing is carried out in step-wise manner. After the validation of OBC-In-Loop, in stepwise manner flight hardware is introduced in HILS for their hardware and software validation [11].

- *Actuator-In-Loop (AIL)*: In the case real actuators are integrated and the performance of the actuator dynamics is validated [3]. The parameters like lags, bandwidth and the dead zone related with Actuator is validated and rectified in AIL [9, 10].
- *Full-Stimulation-In-Loop (FSIL)*: INS consists of two parts: sensors and Navigation algorithm. In FSIL only navigation algorithm of INS is validated. This is type of static test with bypassing the real sensor and only stimulated data is sent to INS to validate the navigation algorithm [6].
- Sensor-In-Loop (SIL): INS sensor performance is validated. The INS/IMU experience three directional rotation by the HILS Flight Motion Simulator (FMS). According to the trajectory dynamics, rotations by 6Dof plant model has been sent to FMS with the three directions simultaneously. This Gyros rotate and send the information to OBC for the validation of C&G algorithm [6].
- Sensor-Actuator-In-Loop (SAIL): This is the final stage of the HILS validation process. Flight hardware Actuators as well as INS are integrated in HILS as per the communication interfaces. Both subsystems are executing their algorithm simultaneously. The integrated performance in real time is validated [10].

Number of test cases has been generated to test the robustness of the software as well as system is tabulated as per Table 1.1. These test cases has been performed in different conditions and in different configurations.

	Non Real Time Runs (NRT)	OBC In Loop (OIL)	Full Stimulation In Loop (FSIL)	Sensor In Loop (SIL)	Sensor Actuator in Loop (SAIL)	
Case-1	ОК	ОК	ОК	ОК	ОК	(°/s)
Case-2	ок	ОК	ОК	ОК	ОК	
Case-3	ОК	ОК	ОК	ОК	ОК	
Case-4	ок	ОК	ОК	ОК	ОК	Fin-2
Case-5	ОК	ОК	ОК	ОК	ОК	(°/S)
						Time -

Table 1.1 Test cases of HILS for OBC software.

Input data like Thrust profile, stability related parameters changed to see the impact on the simulation. These cases are tabulated in Table 1.1. These perturbation cases are defined as Case-2 to Case-5 with variation in input conditions. Nominal case is as per design and called Case-1.

Embedded system testing has been performed under HILS platform to test the hardware and software. After the extensive testing the flight subsystem and final software integrated with the aerospace vehicle. Simulation runs generates the output data and that has to be validated with the designer parameters/results. This is required to confirm the proper execution and software of the control and guidance algorithm. The standard deviation from the design results should not be more than the tolerance limit with all the factors like delays, bandwidth, and bias taken into account

After the results found to be satisfactory, the software is integrated with flight vehicle and proceeded for the real test.

1.4 AS9100 QMS Integrated with HILS Process

HILS testing is final clearance after the software development phase. This is iterative process that means the software errors or improvements has been modified and in the next release version software treated as final one. For every software version, all the test cases are performed in HILS and the data is captured for the analysis.

During the total span of HILS testing, if there is no controlled procedure or layout with plan and configuration then there is huge impact on the further schedule. Hence development of stepwise HILS methodology with the development of AS9100 QMS procedures cover all the aspect of the HILS process. This enables the on time delivery of the tested mission software for deployment that is real launch for user acceptance.

At the AS9100 certified Research and Development Laboratory level, Apex manual is the reference for the QMS standard. At every process level, Function Manual is the main reference document that explains all the aspect of process. All the process, responsibilities for the process, input required for the process/activity, output of the process, KPI of every activity is covered in the systematic form in function manual. The calibration of the equipment used for measurement is required and done at regular interval. The major critical machinery and equipment installed in HILS have to be maintained with all the records and logbooks [12]. QMS with HILS process integrated with each step/activity in such a way that the effect of the implementation of QMS only resulted in better and timely output. Different records are maintained for the functionality and traceability of HILS process.

Version Control and change control Management: Software version control is mandatory. Software undergoes many changes based on the requirement of the configuration. Many times, software change has also been done due to HILS observations. The software version with check-sum and release date is maintained in HILS along with the change note. In the case of distributed architecture, version control is maintained for each and every subsystem and the HILS runs are carried out with final software version.

Configuration Management: Different configuration is used for HILS like OIL, AIL, FSIL, SIL, and SAIL etc. All the details are controlled under configuration Management [7, 6].

HILS planning, Reports, and Logbook: HILS planning document is available at the initial level of the project to brief about the configuration, planning, and test cases.

Key Performance Indicator and customer Feedback: KPI is defined milestone of each HILS process achieved during the total cycle of HILS testing of the project. The KPI in the below graph showing the data analysis

Figure 1.6 KPI and Customer satisfaction index for different projects.

of projects running in HILS based on the customer i.e. project and the KPI achieved during the process. It is shown in the Figure 1.6 that for every project almost HILS process performance is more than 85 % that shows the QMS importance and implementation level.

1.5 Conclusion and Suggestions

Embedded System testing, validation, and certification process has been carried out systematically in HILS and explained in detail in this paper. Performance evaluation in the real time is carried out using HILS in real time that is unique facility for aerospace applications. It is cost effective and rapid prototype test setup that is used to address any design issues before real launch and improve success rate of real launch. The significance of this paper is to explain about the Embedded system's testing, validation and QMS process developed during HILS as scope of the HILS is more border with software and hardware are involved in HILS process. The systematic approach after QMS has improved HILS process significantly and the HILS runs are done in short span of project time cycle. AS 9100 QMS development and implementation for aerospace industry goes hand to hand during project cycle for effective completion of the project. This paper focused on HILS process and the development and implementation of the AS9100 QMS for HILS. The paper covered all the HILS processes, development of HILS Test-bed to validation and testing of mission software and implementation of QMS to each of these sub process. The adoption of QMS in the HILS process improved the performance of the HILS process in recent years and the data shown in this paper shows that the objective of HILS process has been met by development of AS9100. In future the QMS standard specifically developed for HILS will be developed specifically focus on HILS for the significant improvement and global recognition of HILS Laboratory.

References

- Lauss, G. *et al.*, A Frame Work for Sensitivity Analysis of Real-Time Power Hardware In Loop Systems. *IEEE Access*, 10, 101305–101318, 2022, DOI: 10.1109/ACCESS.2022.3206780.
- 2. Xu, H. *et al.*, A General Platform of Hardware-In-Loop Simulation for Integrated Design. *Proceeding of the 40th Chinese Control Conferende*, pp. 6766–6771, July 2021.