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Nomenclature



NOTE.– The complex root of –1 which is usually denoted i, or,

in engineering texts j, is denoted throughout this book by a

capital letter I, in order to avoid any confusion with the first

of the three quaternion roots of –1, all three of which are

denoted throughout in bold font like this: i, j, k.



Preface

This book aims to present the state of the art, together with

the most recent research results in the use of quaternion

Fourier transforms (QFTs) for the processing of color images

and complex-valued signals. It is based on the work of the

authors in this area since the 1990s and presents the

mathematical concepts, computational issues and some

applications to signals and images. The book, together with

the MATLAB® toolbox developed by the authors, [SAN 13b]

allows the readers to make use of the presented concepts

and experiment with them in practice through the examples

provided.

Todd A. ELL

Minneapolis, MN, USA

Nicolas le BIHAN

Melbourne, Australia

Stephen J. SANGWINE

Colchester, UK

April 2014



Introduction

This book covers a topic that combines two branches of

mathematical theory to provide practical tools for the

analysis and processing of signals (or images) with three- or

four-dimensional samples (or pixels). The two branches of

mathematics are not recent developments, but their

combination has occurred only within the last 25–30 years,

and mostly since just before the millennium.

I.1. Fourier analysis
Fourier analysis was, in 1822, with Joseph Fourier’s

development of techniques, the first to analyze

mathematical functions into sinusoidal components. In

signal and image processing, Fourier’s ideas underpin the

two fundamental representations of a signal: one in the time

(or image) domain where the signal (or image) is

represented by samples (or pixels) with amplitudes and the

other in the frequency domain where the signal (or image)

is represented by sinusoidal frequency components, each

with an amplitude and a phase. Mathematically, these

concepts are not limited to time and frequency: one can use

Fourier analysis on a function of any variable, resulting in a

representation in terms of sinusoidal functions of that

variable. However, this book is concerned with signal and

image processing, and we will therefore use the terms time

and frequency rather than more general concepts. It should

be understood throughout that when we talk of images, the

concept of time is replaced by the two spatial coordinates

that define pixel position within an image.

Today, Fourier analysis is classically taught to

mathematicians, scientists and engineers in several related



ways, each applicable to a specific subset of mathematical

functions or signals:

1) Fourier series analysis [SNE 61] in which continuous

periodic functions of time, with infinite duration, are

represented as sums of cosine and sine functions, each

with infinite duration;

– Fourier integrals or transforms [BRA 00, ROB 68] in

which continuous (but aperiodic) functions of time are

represented as continuous functions of frequency (or

vice versa);

2) Discrete Fourier transforms in which signals defined at

discrete intervals in time are represented in the

frequency domain by cosine and sine functions. This

topic is broken down into:

– discrete-time Fourier transforms, in which discrete-

time signals of limited duration are represented as

continuous frequency-domain distributions;

– discrete Fourier transforms, in which discrete-time,

discretized (that is digital) signals of finite duration are

represented by a finite-length array of digital

frequency coefficients. (These are usually computed

numerically using the fast Fourier transform (FFT)).

The key to all of the above ideas is the representation of a

signal using complex exponentials, often known as harmonic

analysis, although this term has a somewhat wider meaning

in mathematics than its usage in signal and image

processing. The complex exponential with angular

frequency ω and phase ϕ: f (t) = A exp(ωt + ϕ) = A (cos(ωt

+ ϕ) + I sin(ωt + ϕ)) has cosine and sine components in its

real and imaginary parts, respectively. Since, in this book,

we are concerned with signals that have three- or four-

dimensional samples, it is helpful to consider classical

Fourier analysis in terms of complex exponentials rather

than in terms of separate cosines and sines.



Figure I.1 shows a real-valued signal (on the left-hand side

of the plot, with time increasing away from the viewer). The

signal is a sawtooth waveform reconstructed from its first

five non-zero harmonics, which are plotted in the center of

the figure as helices. (The horizontal spacing between the

helices is introduced simply to make them clearer: there is

no mathematical significance to it). The five helices on the

left are the positive frequency complex exponentials and the

five helices on the right are the negative frequencies. Note

that the positive and negative frequency exponentials have

opposite directions of rotation. The real parts of the

harmonics are projected onto the right-hand side of the

figure (these sum to give the reconstructed waveform on

the left) and the imaginary parts of the harmonics are

projected onto the base of the figure (these cancel out

because the exponentials occur in complex conjugate pairs

at positive and negative frequencies, a symmetry due to the

original signal being real-valued).

In general, with a complex signal analyzed into complex

exponentials in the same way, there would be no symmetry

between the positive and negative frequency exponentials.

This case is a useful model for what follows in this book,

where we consider signals and images with three- and four-

dimensional samples. Figure I.2 shows a complex signal

constructed by bandlimiting a random complex signal.

Time is plotted on the right, increasing to the right, and at

each time instant the signal has a complex value. The signal

evolution over time traces out a path in the complex plane,

and the figure renders this path as a three-dimensional view

by plotting the signal values, in effect, on a stack of 2,000

transparent complex planes perpendicular to the time axis.

The real and imaginary parts of the signal are also plotted

on the base of the axes, and on the rear plane of the axes.

Analysis of a complex signal into positive and negative

frequency complex exponentials is not conceptually



different from the real case depicted in Figure I.1: each

complex exponential will have an amplitude and phase, and

their sum will reconstruct the original signal.

 

Figure I.1. Analysis of a real signal into complex

exponential harmonics

The time and frequency domain representations of a signal

are not mutually exclusive: the field of time-frequency

analysis [FLA 98] is concerned with intermediate

representations that combine aspects of time and

frequency. The need for intermediate representations arises

due to the variation of frequency content in a signal over

time. This is not an easy concept to understand, but it

follows from the uncertainty principle or Gabor limit: a signal

cannot be bandlimited (i.e. with frequency content limited to



a finite range of frequencies) and simultaneously be of

limited time duration. A pure sinusoidal signal with unlimited

duration (infinite extent) can be represented in the

frequency domain as an impulse (that is a function with zero

value everywhere except at one frequency point).

Conversely, an impulse in the time domain has infinite

bandwidth. However, a signal that contains a specific

frequency for a limited time requires a time-frequency

representation. Examples of such signals occur widely in the

real world: speech and music contain frequencies that are

present for a short time (one note played on a musical

instrument, for example, which lasts for the duration of the

note, plus some reverberation time afterward). An in-depth

discussion of these ideas is outside the scope of this book,

but is assumed to be understood; although much of the

contents of the book relates to Fourier transforms, the

quaternion approach can easily be applied to time-

frequency concepts, such as fractional and short-time

Fourier transforms, by combining quaternion transform

formulations with existing knowledge from classical signal

processing.

Figure I.2. A bandlimited complex signal showing real and

imaginary parts projected onto the base and rear of the grid

box



I.2. Quaternions
In this book, we are concerned with signals and images that

have vector-valued samples (that is samples with three or

more components), and their processing using Fourier

transforms based on four-dimensional hypercomplex

numbers (quaternions). In Chapter 4 (section 4.3), we show

that quaternion Fourier transforms also have applications for

the processing of complex signals, exploiting the symmetry

properties of a quaternion Fourier transform that are

missing from a complex Fourier transform.

A vector-valued signal (in three dimensions, for example)

evolves over time and traces out a path in three-

dimensional space. To render a plot of such a signal requires

four dimensions, and therefore we cannot produce a



graphical representation like the one in Figure I.2.

Decomposition of a vector-valued signal into harmonic

components requires a Fourier transform in an algebra with

dimension higher than 2, and this is the motivation for the

use of quaternions, which, as we will see, are the next

available higher-dimensional algebra after the complex

numbers.

Quaternions followed the work of Fourier just over 20

years later, Sir William Rowan Hamilton in 1843 to

generalize the complex numbers to three dimensions, was

forced to resort to four dimensions in order to obtain what

we now call a normed division algebra, that is, an algebra

where the norm of a product equals the product of the

norms, and where every element of the algebra (except

zero) has a multiplicative inverse [WAR 97]. Hamilton

opened a door in mathematics to hypercomplex algebras in

general [STI 10, Chapter 20], [KAN 89], leading to the

octonions [CON 03, BAE 02] in less than a year, and the

Clifford algebras about 30 years later [LOU 01, POR 95].

I.3. Quaternion Fourier

transforms
Quaternion Fourier transforms, the subject of this book, are

a generalization of the classical Fourier transform to process

signals or images with three- or four-dimensional samples.

Such signals arise very naturally in the physical world from

the three dimensions of physical space. Quite

independently, for very different (physiological) reasons

connected with the trichromatic nature of human color

vision [MCI 98], color images have three components per

pixel. The fourth dimension of the quaternions plays a role

in at least two ways: the frequency-domain representation

of a signal with three-dimensional samples requires four



dimensions (just as in the complex case, two dimensions are

required in the frequency domain, even if the original signal

has one-dimensional samples). But more generally, the four

dimensions of the quaternions can be used to represent a

most general set of geometric operations in three

dimensions using homogeneous coordinates, which are

explored in a later chapter (see section 2.3) and in [SAN

13a]. Of course, generalizations to higher dimensions are

possible, and there is a wide range of work on Clifford

Fourier transforms, which is outside the scope of this book

(we refer the readers to a recent volume for further details

[HIT 13], and in particular the historical introduction

contained within [BRA 13]).

I.4. Signal and image

processing
Fourier transforms are a fundamental tool in signal and

image processing. They convert a signal or image from a

representation based on sample or pixel amplitudes into a

representation based on the amplitudes and phases of

sinusoids. The latter representation is said to be in the

frequency domain, and the original signal is said to be in the

time domain for a signal which is a time series, or in the

image domain for an image captured with a camera or

scanner. Of course, signals may be encountered that are not

time series, for example, measurements of some physical

quantity made at (regular) intervals in space; in this book,

we will use the terminology of time series for simplicity,

since the processing of other signals is mathematically no

different.

The Fourier transformation is invertible, which means that

the original signal or image may be recovered from the

frequency domain representation. More interestingly, the



frequency domain representation may be modified before

inversion of the transform, so that the recovered signal or

image is a modified version of the original, for example, with

some frequencies or bands of frequencies suppressed,

attenuated or amplified. In some applications, inversion of

the transform is not needed: the processing performed in

the frequency domain directly yields information that can be

immediately utilized. An example is computer vision, where

a decision based on analysis of an image may result in an

action without any need to construct an image from the

processed frequency domain representation. At a more

detailed level, another example includes correlation, where

the signal or image is processed in the frequency domain to

yield information about the location of a known object within

an image (the same applies in signal processing to find a

known signal occurring within a longer, noisy signal).

The classical Fourier transform is inherently based on

complex numbers. This is obvious from the fact that the

frequency domain representation must represent both the

amplitude and the phase of each frequency present in the

signal or image. The symmetry of the transform means that

the signal may be complex without any modification of the

transform. (There are some specialized variants of the

Fourier transform that handle only real signals, for example

the Hartley transform [BRA 86]). Given a signal with three

components (representing, for example, acceleration in

three mutually perpendicular directions), how can a

frequency domain representation be calculated? The

question is very similar if one considers a color image: is it

possible to construct a holistic frequency-domain

representation of the entire image? Obviously one can

compute separate classical (i.e. complex) Fourier transforms

of the three components in both of these cases, but one

then has three separate frequency-domain representations,

each representing one aspect of the original image (the



frequency content of one of the color or

luminance/chrominance channels). Processing of separate

representations is sometimes known as marginal

processing, for reasons connected with techniques in the

hand computation of marginal distributions in statistics [TRU

53, section 1.22]. It is axiomatic in this book that marginal

processing is not the best way to handle signals and images

with more than two components per sample, but we will

attempt to justify this belief throughout the book, by

showing how holistic approaches with quaternions yield

better results.

There is another reason for using a quaternion Fourier

transform in some applications, and it provided the

motivation for the earliest published work on quaternion

Fourier transforms (in the field of nuclear magnetic

resonance (NMR)). When a two-dimensional signal is

captured (that is samples are measured over a two-

dimensional grid, like an image), it is sometimes necessary

to regard the two dimensions of the sampling grid as

independent time-like axes. Processing such a signal with a

classical two-dimensional complex transform mixes the two

dimensions, whereas a suitably formulated quaternion

transform does not. This is because it is possible to

associate each of the time-like dimensions with a different

dimension of the four-dimensional quaternion space, thus

keeping the frequency-domain representations of the first

and second time-like axes apart. There were two

independent (as far as we are aware) early formulations of

quaternion Fourier transforms, by Ernst [ERN 87, section

6.4.2] and Delsuc [DEL 88, equation 20], which are almost

equivalent (they differ in the relative placement of the

exponentials and the signal, and in the signs, inside the

exponentials):

[I.1] 


