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Preface

Quantitative portfolio optimization is a cornerstone of modern financial
management, providing a rigorous framework for balancing risk and

return in investment portfolios. This book, Quantitative Portfolio Optimiza-
tion: Advanced Techniques and Applications, aims to serve as both a com-
prehensive introduction for those new to the field and a deep dive into the
latest advancements for experienced practitioners and researchers.

The genesis of portfolio optimization can be traced back to Harry
Markowitz’s Modern Portfolio Theory (MPT) in the 1950s, which intro-
duced the now-fundamental concepts of diversification and mean-variance
optimization. Since then, the field has evolved significantly, integrating a
wide array of quantitative methods, including Bayesian statistics, machine
learning algorithms, and advanced optimization techniques. These methods
have transformed portfolio management from a discipline grounded in basic
statistical principles to one that leverages innovative computational tech-
niques to solve increasingly complex problems.

This book is structured to reflect this evolution, beginning with founda-
tional theories before progressing to advanced applications. We explore not
only traditional models such as the Capital Asset Pricing Model (CAPM) and
the Black-Litterman model but also the latest developments in areas such as
reinforcement learning, deep learning, and graph-based portfolio construc-
tion. Additionally, we cover emerging topics like quantum computing’s role
in portfolio optimization and the integration of partial differential equations
(PDEs) for modeling portfolio dynamics.

Each chapter is meticulously designed to bridge theory with practice,
offering detailed explanations of the mathematical underpinnings of each
technique, followed by practical applications using real-world data. The
mathematical rigor is complemented by code implementations and case stud-
ies that demonstrate the practical utility of the methods discussed.

Whether you are a professional, researcher, or student in the field of
finance, we hope this book enhances your understanding of quantitative
portfolio optimization and equips you with the knowledge to apply these
techniques effectively. As the financial markets continue to evolve, so must
the methods we use to manage them. We believe that the approaches detailed

xiii



xiv PREFACE

in this book will be instrumental in addressing the challenges and opportu-
nities of tomorrow’s financial world.

Finally, we extend our deepest gratitude to our colleagues, students, and
family members, whose support and encouragement have been invaluable
throughout the creation of this book. It is our sincere hope that this work
contributes meaningfully to the ongoing development of the field of quanti-
tative portfolio optimization.
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CHAPTER 1
Introduction

1.1 EVOLUTION OF PORTFOLIO OPTIMIZATION

Portfolio optimization has undergone significant transformation since its
inception. Initially, the focus was on maximizing returns without much
regard for risk. This changed with the introduction of Modern Portfolio The-
ory (MPT) by Harry Markowitz in the 1950s, which introduced the concept
of balancing risk and return. Markowitz’s mean-variance optimization laid
the groundwork for the systematic assessment of portfolio risk and diversi-
fication.

Over the years, portfolio optimization has evolved to incorporate vari-
ous advanced techniques and models. These include the Capital Asset Pricing
Model (CAPM), Arbitrage Pricing Theory (APT), and more sophisticated
approaches like the Black-Litterman model, risk parity, and hierarchical risk
parity. Recently, machine learning methods have also been integrated into
portfolio optimization, providing new ways to manage complex data and
uncover hidden patterns in financial markets. Moreover, the integration of
reinforcement learning, and graph-based methods has opened new avenues
for dynamic and complex portfolio strategies. Sensitivity-based portfolios,
which focus on the sensitivity of portfolio returns to changes in under-
lying factors, have also become an important aspect of modern portfolio
management.

1.2 ROLE OF QUANTITATIVE TECHNIQUES

Quantitative techniques play a crucial role in modern portfolio optimization.
These techniques allow for the systematic analysis and management of risk,
the development of models to predict asset returns, and the optimization of

1



2 INTRODUCTION

portfolios to achieve desired outcomes. Key quantitative methods used in
portfolio optimization include:

■ Mean-Variance Optimization: This foundational technique balances
expected return against risk, measured as the variance of returns. It
involves calculating the expected returns and covariances of all assets,
then solving for the weights that minimize portfolio variance subject
to a desired return. The efficient frontier is derived from this process,
representing the set of optimal portfolios.

■ FactorModels: These models, such as the CAPM and multifactor mod-
els, explain asset returns based on various macroeconomic factors or
firm-specific factors. The CAPM, for example, relates an asset’s return
to the return of the market portfolio, adjusted for the asset’s sensitivity
to market movements.

■ Bayesian Methods: Bayesian techniques incorporate prior beliefs and
observed data to update the estimation of expected returns and risks.
The Black-Litterman model is a popular application in portfolio opti-
mization, combining market equilibrium with investor views to pro-
duce more stable and diversified portfolios. Bayesian methods are
particularly useful for handling parameter uncertainty and incorporat-
ing subjective views.

■ Machine Learning: Machine learning algorithms are used to iden-
tify patterns in large datasets, making them valuable for predictive
modeling in portfolio optimization. Techniques like neural networks,
decision trees, and generative models can uncover complex relation-
ships between asset returns and various predictors. These methods can
enhance the forecasting of returns and risks as well as optimize trading
strategies.
■ Neural Networks: These are used to model nonlinear relationships

between inputs and outputs. In portfolio optimization, they can pre-
dict asset returns based on historical data and other variables.

■ Decision Trees: These algorithms split the data into subsets based
on feature values, creating a tree-like model of decisions. They are
useful for capturing the nonlinear relationships in financial data and
can be used to identify important variables influencing asset returns.

■ Generative Models: These models, such as Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs), are used to
generate new data samples that are like the training data. In portfo-
lio optimization, generative models can be used to simulate realistic
market scenarios and generate synthetic data for stress testing and
risk management.
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■ Reinforcement Learning (RL): RL involves training algorithms to make
sequences of decisions by rewarding desirable actions and penaliz-
ing undesirable ones. In portfolio optimization, RL can dynamically
adjust the asset allocation based on market conditions and investment
goals. An RL agent learns a policy that maximizes cumulative rewards,
which can correspond to returns in a portfolio context. Techniques like
Q-learning and policy gradients are commonly used in RL for portfo-
lio management.
■ Q-learning: This algorithm learns the value of actions in differ-

ent states and aims to maximize the expected reward over time. It
updates its estimates using the Bellman equation.

■ Policy Gradients: These methods optimize the policy directly by com-
puting gradients of the expected reward with respect to the policy
parameters.

■ Graph-based Methods: These methods use graph theory to represent
and analyze the relationships between assets. Graphs can model the
dependencies and correlations among assets, aiding in the construction
of diversified and robust portfolios.
■ Graph Theory: This involves studying graphs, which are mathemat-

ical structures used to model pairwise relations between objects. In
portfolio optimization, nodes can represent assets, and edges can
represent the correlations or co-movements between them.

■ Hierarchical Risk Parity (HRP): This approach uses clustering and
tree structures to construct portfolios. It aims to distribute risk more
evenly across different clusters of assets, improving diversification.

■ Sensitivity-based Portfolios: These portfolios focus on the sensitivity of
portfolio returns to changes in underlying factors, such as economic
variables or market indices. By analyzing how small changes in these
factors impact on the portfolio, managers can better understand and
manage risk.
■ Sensitivity Analysis: This involves examining how the variation in

the output of a model can be attributed to different variations in the
inputs. In portfolio optimization, sensitivity analysis helps in under-
standing the impact of changes in asset returns and other factors on
the portfolio performance.

■ Partial Differential Equations (PDEs): PDEs can be used to model
the dynamics of portfolio values over time, considering factors like
interest rates and asset prices. Solving these equations provides
insights into the optimal portfolio allocation under different market
conditions.

■ Risk Measures and Management: Techniques like Value-at-Risk (VaR)
and Conditional Value-at-Risk (CVaR) are used to quantify the risk
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of loss in a portfolio. These measures are essential for understanding
potential downside risks and making informed decisions about risk
mitigation strategies. Advanced risk measures also consider tail risks
and the distribution of returns.

■ Optimization Algorithms: Several optimization algorithms are
employed to solve portfolio optimization problems. These include:
■ Quadratic Programming: Used in mean-variance optimization to

find the optimal asset weights that minimize portfolio variance for a
given return.

■ Monte Carlo Simulation: Used to model the probability of different
outcomes in a process that cannot easily be predicted due to the inter-
vention of random variables. In portfolio optimization, it is used to
simulate the performance of different portfolio strategies under var-
ious market conditions.

■ Genetic Algorithms: These algorithms mimic natural selection pro-
cesses to generate high-quality solutions for optimization problems.
They are particularly useful in finding optimal portfolios in large,
complex investment universes.

■ Dynamic Programming: Applied in multi-period portfolio optimiza-
tion to make decisions that consider the evolution of the portfolio
over time.

1.3 ORGANIZATION OF THE BOOK

This book is structured to provide a comprehensive understanding of quan-
titative portfolio optimization techniques, from foundational theories to
advanced applications. The chapters are organized as the list describes:

■ Chapter 2: History of Portfolio Optimization: A review of the key
developments in portfolio optimization, from early theories to modern
advancements.

■ Chapter 3: Modern Portfolio Theory: A detailed study of mean-
variance analysis, the CAPM, and APT, including their applications
and limitations. We introduce a new framework Mean Variance with
CVAR constraints.

■ Chapter 4: Bayesian Methods in Portfolio Optimization: An explo-
ration of Bayesian techniques and their application to portfolio opti-
mization.

■ Chapter 5: Risk Models and Measures: A discussion on various risk
measures, including Value-at-Risk (VaR) and Conditional Value-at-
Risk (CVaR), and their estimation methods.
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■ Chapter 6: Factor Models and Factor Investing: Examination of single
and multifactor models, factor risk, and performance attribution.

■ Chapter 7: Market Impact, Transaction Costs, and Liquidity: Insights
into market impact, transaction costs, and liquidity considerations in
portfolio optimization.

■ Chapter 8: Optimal Control: Coverage of dynamic programming, opti-
mal control, and their applications in portfolio optimization.

■ Chapter 9: Markov Decision Processes: Discussion on fully observed
and partially observed MDPs, infinite and finite horizon problems, and
the Bellman equation.

■ Chapter 10: Reinforcement Learning: Examination of reinforcement
learning techniques and their applications in portfolio optimization.

■ Chapter 11: Deep Learning in Portfolio Management: Introduction to
deep learning methods and their integration into portfolio manage-
ment.

■ Chapter 12: Graph-based Portfolios: Exploration of graph theory-
based portfolios and their applications.

■ Chapter 13: Sensitivity-based Portfolios: Insights into modeling portfo-
lio dynamics with partial differential equations and sensitivity analysis.

■ Chapter 14: Backtesting in PortfolioManagement:Discussion on back-
testing methods, trading rules, and transaction costs.

■ Chapter 15: Scenario Generation: Techniques for generating scenarios
and their application in portfolio optimization.

This structure ensures a logical progression from basic concepts to
advanced techniques, providing readers with the tools and knowledge neces-
sary to optimize portfolios effectively in today’s complex financial markets.





CHAPTER 2
History of Portfolio Optimization

This chapter is dedicated to a non-exhaustive review of the main
contributions to portfolio optimization, from Markowitz’s precur-

sors to the modern machine learning methods, including Markowitz’s
mean-variance approach, the Black-Litterman model, Risk Parity, and
Hierarchical Risk Parity. Only the Black-Litterman model and the Risk Par-
ity approach will be addressed in depth. An alternative derivation of the
Black-Litterman model, based on Bayesian methods, will be presented in
Chapter 4. A more detailed treatment of the Markowitz model, the Hier-
archical Risk Parity algorithm and some machine learning methods will be
postponed to subsequent chapters.

2.1 EARLY BEGINNINGS

Harry Markowitz is unanimously recognized as the father of Modern Port-
folio Theory (MPT). His seminal works, Markowitz (1952, 1959), settled
the foundations of the mean-variance analysis upon which other aspects of
MPT were built.

The groundbreaking nature of Markowitz (1952) can be inferred from
its scarce set of references: Uspensky (1937), Williams (1938) and Hicks
(1939). The first one is a text on Mathematical Probability, to which the
reader was referred. Of the two remaining references, only Williams (1938)
played a role in the development of the 1952 paper, as we will see soon.
Therefore, it is not surprising that Mark Rubinstein stated the following:
“What has always impressed me most about Markowitz’s 1952 paper is that
it seemed to come out of nowhere” (Rubinstein, 2002). Nevertheless, the
key ideas of mean-variance analysis (i.e., diversification, mean returns, and
a risk measure as variables) were present in previous literature. The rest of
the section will be dedicated to analyzing some of these early contributions.

7
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According to Markowitz (1999), written references to the concept of
diversification can be traced back to Shakespeare’s The Merchant of Venice,
in which the following passage can be found (Act I, Scene I):

My ventures are not in one bottom trusted,
Nor to one place; nor is my whole state
Upon the fortune of this present year
Therefore my merchandise makes me no sad.

In the academic field, Daniel Bernouilli, in his 1738 paper on the Saint
Petersburg paradox (Bernouilli, 1954), offered this diversification advice for
risk-averse investors: “... it is advisable to divide goods which are exposed
to some small danger into several portions rather than to risk them all
together.” In the twentieth century, the first reference related to Portfolio
Theory appears in The Nature of Capital and Income (Fisher, 1906), in
which variance is suggested as a measure of economic risk. Hicks, in his
treatise Theory of Money (Hicks, 1935), introduces a qualitative analysis
regarding the probabilities associated with the risk of an investment, con-
cluding that they can be represented by a mean value and an appropriate
measure of risk (although he does not mention any specific measure).

Marschak (1938) takes a step forward specifying the nature of the
parameter measuring risk: “It is sufficiently realistic, however, to con-
fine ourselves, for each yield, to two parameters only: the mathemat-
ical expectation (‘lucrativity’) and the coefficient of variation (‘risk’).”
Although Marschak was the advisor of Markowitz’s thesis, we cannot state
(as Markowitz himself acknowledges) that Marschak had an influence on
Markowitz’s work. In fact, Marschak did not inform to Markowitz of the
existence of Marschak (1938).

The only previous work that had a clear impact on Markowitz is
Williams (1938). According to Markowitz (1991): “The basic principles
of portfolio theory came to me one day while I was reading John Burr
Williams The Theory of Investment Value. Williams was remarkably pre-
scient. He provided the first derivation of the ‘Gordon growth formula,’
the Modigliani-Miller Capital Structure Irrelevancy Theorem, and strongly
advocated the dividend discount model. But Williams had very little to say
about the effects of risk on valuation (pp. 67–70), because he believed that
all risk could be diversified away.” In the opinion of Mark Rubinstein:
“Markowitz had the brilliant insight that, while diversification would reduce
risk, it would not generally eliminate it” (Rubinstein, 2002).

We cannot conclude this section dedicated to the predecessors of MPT
without considering Roy (1952), of which Markowitz wrote the following:
“On the basis of Markowitz (1952), I am often called the father of modern
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portfolio theory (MPT), but Roy can claim an equal share of this honor”
(Markowitz, 1999). In fact, Roy (1952) presents an analysis very similar to
that of Markowitz (1952). Specifically, Roy includes correlations between
asset prices in the analysis and, like Markowitz, realizes that “the princi-
ple of maximising expected return does not explain the well-known phe-
nomenon of the diversification of resources among a wide range of assets.”
Moreover, Roy also considers the expected value of returns, m; and the stan-
dard deviation of returns, 𝜎, as the only parameters on which investment
decisions are based. However, instead of minimizing the standard deviation,
as Markowitz did, Roy maximizes (m − d) /𝜎, where d is a level of returns
that can be considered a disaster. This maximization procedure leads Roy
to obtain the efficient frontier as a hyperbola in the (𝜎,m) space. Accord-
ing to Markowitz (1999), the main differences between Roy’s paper and his
1952 paper are that Markowitz (1952) worked only with long positions
and allowed the investors to select one portfolio from the efficient frontier,
whereas Roy (1952) worked also with short positions and recommended
one specific portfolio.

Given that Roy arrived at the same results as Markowitz independently
and using similar methods, it is reasonable to wonder why Roy did not also
receive the Nobel Prize. Markowitz thought the reason was his greater vis-
ibility: Roy’s paper was his last (and only) publication in finance, whereas
Markowitz wrote two books and a collection of papers related to this sub-
ject (Markowitz, 1999).

2.2 HARRY MARKOWITZ’S MODERN PORTFOLIO
THEORY (1952)

Before delving into the analysis of Markowitz’s paper, we introduce some of
the definitions and the notation that we will use. We consider portfolios com-
posed of n risky assets, with returns r1,…, rn; which are random variables
with expectations Ri = E [ri] and covariances 𝜎ij = cov (ri, rj), i, j = 1,…,n.
We will usually work in matrix form, with the vector of expected returns

R = (R1,…,Rn)T
and the covariance matrix 𝚺 with (𝚺)ij = 𝜎ij. The vari-

ances of asset returns are given by the diagonal elements of 𝚺, 𝜎2
i = 𝜎ii.

As the assets in the portfolio are risky assets, we have 𝜎2
i > 0, i = 1,…,n,

and then, 𝚺 is a positive definite matrix, that is, xT𝚺x > 0 for any nonzero
n-vector x. In addition, we will assume that 𝚺 is nonsingular, |𝚺| ≠ 0, mean-
ing that none of the asset returns is perfectly correlated with the return of
the portfolio composed of the remaining assets.

Each portfolio is determined by a vector w = (w1,…,wn)T
in which

wi is the proportion of investor’s wealth allocated to the i-th asset. By this
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definition we have ∑n
i=1 wi = 1, or in matrix notation, wT1 = 1, where 1 is

the n-vector given by 1 = (1,…,1)T. The expected return of the portfolio is
given by Rp = wTR, and the variance of its return is 𝜎2

p = wT𝚺w.
In his 1952 paper, Markowitz begins by rejecting the maximization of

expected returns as a guiding principle for investment behavior. This decision
is rooted in the often-understated principle of diversification, a key aspect of
Markowitz’s work. In his own words: “[...] a rule of behavior which does not
imply the superiority of diversification must be rejected both as a hypothesis
and as a maxim.”

Diversification, as a rule leading to the reduction of the risk of a port-
folio, measured by the variance of its return, finds support in theoretical
arguments. As the following simple result shows, under certain assump-
tions, perfectly diversified portfolios become asymptotically risk-free. In
other words, the variance of the portfolio return diminishes as the number
of component assets increases.

Proposition 2.1 Consider an equally weighted portfolio whose asset
returns are independent random variables with the same variance 𝜎2. Then,
the variance of the portfolio return, 𝜎2

p, satisfies

lim
n→∞𝜎2

p = 0,

Proof. As the portfolio is equally weighted, we have w = 1

n
1, and by the

independence assumption, 𝚺 = 𝜎2I, where I is the identity matrix. Then, the
portfolio variance is

𝜎2
p = wT 𝚺w = 1

n2
𝜎21TI1 = 𝜎2

n
,

from where we obtain the desired result. ■

While the previous result is intellectually appealing, its assumptions are
hardly satisfied in actual markets. First, there is empirical evidence suggest-
ing that returns follow stable Paretian distributions, characterized by infinite
variances (Mandelbrot, 1963; Fama, 1965a).1 Second, it is difficult, if not
impossible, to find a substantial number of assets with totally independent
returns and equal variance. Therefore, as Markowitz himself pointed out:
“The returns from securities are too intercorrelated. Diversification cannot
eliminate all variance.”

1According to Fama (1965b), in the context of stable Paretian distributions, there is
a range of conditions under which diversification is a meaningful economic activity.


