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Preface 

“Sound Beaming”, a unique skill in martial arts novels, refers to the loudspeaker 
being able to condense the sound into a line and directly deliver it to the listener’s 
ears, achieving directional sound propagation, while others cannot hear it. In real-
life applications, when a highly directional sound beam is required, the conventional 
approach is to employ loudspeaker arrays, but they suffer from poor low-frequency 
directivity, the presence of sidelobes, and large size, which limit their practical appli-
cations. The parametric array loudspeaker, as a new concept sound source, has the 
advantages of narrow beam, strong directivity, and very small sidelobes. Different 
from traditional loudspeakers, the sound production principle of the parametric array 
loudspeaker is based on the parametric array effect, modulating the audio signal with 
an ultrasonic carrier, and then amplifying it to obtain a modulated sound wave signal 
with a finite amplitude. After being emitted by the ultrasonic transducer, the modu-
lated audio signal can self-demodulate due to the nonlinearity in the air during the 
propagation process, thereby obtaining a highly directional audio frequency signal. 

Since the concept of the parametric array was proposed by Westervelt in 1963, 
it has received widespread attention and has continued to develop, from the initial 
underwater parametric array to the parametric array loudspeaker in the air. At present, 
the parametric array loudspeaker has become a research hotspot in the field of audio 
engineering and has received extensive research in both theory and application. Many 
domestic and international companies have also launched their own parametric array 
loudspeaker products, which have been increasingly used in exhibition halls, super-
markets, transportation, offices, and public places, bringing certain economic bene-
fits. At the same time, the rapid development and application of parametric array 
loudspeakers can provide ideas for solving social problems caused by noise pollution 
and have certain social benefits. 

The parametric array loudspeaker, as a typical application of nonlinear acoustics, 
involves a very wide range of knowledge, including modeling simulation, compu-
tational science, transducer technology, signal processing technology, and psychoa-
coustic technology, among many other disciplines. For newcomers, it is not easy 
to grasp so much relevant knowledge, and the existing related books are basically 
comprehensive books on nonlinear acoustics. There is currently no monograph on
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parametric array loudspeakers both domestic and international. This book focuses 
on parametric array loudspeakers, involves research in all major aspects, and details 
a large amount of related research content in basic theory, key technology devel-
opment, and system practicality. This book mainly includes theoretical calculations, 
measurements, signal processing, beamsteering methods, implementation, and appli-
cations, and can provide comprehensive and valuable insights for researchers in the 
field of acoustics. This book can assist acoustic researchers in swiftly delving into 
the research areas related to parametric array loudspeakers, and is an indispensable 
reference book in the research of parametric array loudspeakers and even nonlinear 
acoustics. 

This book is a summary and refinement of our research group’s many years of 
work on parametric array loudspeakers. We would like to thank our research collab-
orators, Profs. Meng Hwa Er, Woon-Seng Gan, Tomoo Kamakura, and our research 
group members, Profs. Jing Tian, Ming Wu, and Associate Professor Kan Sha for 
their guidance and assistance in the related research process of this book. We also 
appreciate the extensive work done by students Wei Liu, Chao Ye, Zheng Kuang, 
Shuaibing Wu, Yongsheng Mu, Chenxi Huang, Wei Zhang, Wei Ji, Dengyong Ma, 
Yew Hin Liew, Furi Andi Karnapi, Khim-Sia Tan, and Kelvin Chee-Mun Lee in 
data collection, modeling calculations, and implementation. We are grateful to Dr. 
Chuang Shi for his assistance in the publication process of this book. We thank the 
responsible editor of the Science Press for the extensive work done for this book. 
The writing and publication of this book have received the care and support of the 
leaders and researchers of the Key Laboratory of Noise and Vibration of the Chinese 
Academy of Sciences, and have also received the support and funding of the National 
Natural Science Foundation of China (Nos. 11004217, 11674348). Here, we express 
our heartfelt thanks. 

Due to the limitations of the authors’ expertise, the book may contain shortcom-
ings. We sincerely invite our colleagues to offer criticism and corrections. 

Beijing, China 
2021 

Jun Yang 
Peifeng Ji



Introduction 

The parametric array loudspeaker, which can achieve directional sound radiation, 
has received widespread attention from researchers due to its advantages of narrow 
beam, highly directivity, and very small sidelobes. It has developed rapidly in theory 
and practical applications, and has formed several commercial products. At present, 
the parametric array loudspeaker has become a research hotspot in the field of 
audio engineering. This book mainly introduces the current research status of para-
metric array loudspeakers, including modeling calculations, measurements, signal 
processing, beamsteering, implementation, and applications. The introduction of 
the above aspects helps to deeply understand the parametric array loudspeaker and 
the scientific problems involved, which is of great guiding significance for further 
research on parametric array loudspeakers and provides a reference for other acoustic 
research. 

This book can be used as a reference book for graduate students in acoustics and 
acoustic researchers. We hope this book can help readers in their scientific research 
work.
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Chapter 1 
Overview 

1.1 History and Current Status of Nonlinear Acoustics 
in Parametric Arrays 

1.1.1 History of Nonlinear Acoustics 

Acoustics mainly studies the emission, propagation, reception of sound, the prop-
erties of sound, and the interaction between sound and other substances. Acoustics 
is one of the oldest disciplines in natural science, with descriptions of acoustics 
dating back to ancient times. With the invention and application of radio technology, 
acoustics has moved from classical acoustics to the development period of modern 
acoustics. Modern acoustics has a strong permeability and intersects with many 
other disciplines, engineering technologies, and artistic fields. It plays an important 
and unique role in these fields, and further develops the corresponding theories and 
technologies, and gradually forms independent branches of acoustics, such as phys-
ical acoustics, nonlinear acoustics, quantum acoustics, molecular acoustics, ultra-
sonics, optoacoustics, electroacoustics, architectural acoustics, environmental acous-
tics, language acoustics, bioacoustics, underwater acoustics, atmospheric acous-
tics, geosonics, physiological acoustics, psychoacoustics, musical acoustics, and 
sonochemistry, etc. 

In early acoustic research, the motion equation of acoustics could satisfy people’s 
basic needs by solving it on a linear basis, thus ignoring the nonlinearity of motion 
and medium. Therefore, the assumption of linear acoustics is mainly based on small 
amplitude sound waves. In linear acoustics, two sound waves propagating at the same 
time will not interact with each other, and the vibration of the medium caused by 
them is equal to the linear superposition of the vibration of the medium caused by 
them when they exist separately, satisfying the superposition principle. However, if 
the acoustic equation retains nonlinear terms, the superposition principle is no longer

© Science Press 2025 
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2 1 Overview

applicable, and it no longer follows the rules of linear acoustics, thus giving rise to 
a new branch of discipline—nonlinear acoustics. 

Nonlinear acoustics is a science that studies intensive sound. In nonlinear acous-
tics, intensive sound is usually referred to as finite amplitude sound waves or large 
amplitude sound waves, which is a phenomenon between small amplitude sound 
waves and weak shock waves. The main research object of nonlinear acoustics is 
phenomena related to the propagation of finite amplitude sound waves, such as 
shock formation, harmonic distortion, non-constant propagation speed, etc. These 
phenomena cannot be explained by general linear acoustics. They are caused by the 
nonlinear effects of the medium on finite amplitude sound waves [1]. 

The field of nonlinear acoustics is a discipline with a long history, especially in the 
past sixty years, it has made great progress. Reference [2] gives a detailed introduction 
to the development of nonlinear theory before the 1930s. In 1755, Euler first gave 
the nonlinear wave equation describing finite amplitude acoustics, but did not give a 
strict solution to this equation. Soon after, Lagrange derived a general solution, but 
he believed that the changing sound wave speed would destroy the theory of sound 
propagation. In 1808, Poisson obtained the exact solution of the propagation of 
finite amplitude plane waves. Stokes [3] explained the meaning of the non-constant 
propagation speed that troubled Lagrange and Poisson, and he published the first 
explanation about waveform distortion in 1848. Stokes was also the first to give an 
analysis of shock waves, and proposed that viscosity and heat conduction are the 
inevitable loss causes of shock front. Two important papers published around 1860 
[2, 4] can be regarded as the beginning of nonlinear acoustic research, that is, the 
simple wave theory of Riemann-Earnshaw, which is the strict solution form of the 
nonlinear one-dimensional wave equation independently published by Riemann and 
Earnshaw. Beyer compiled some early papers into the famous collection of nonlinear 
acoustics [6]. 

In addition to the analysis of shock waves by Rankine [7], Hugoniot [1], Rayleigh 
[8] and Taylor [9], the publication of three papers in the 1930s marked a significant 
progress in the understanding of finite amplitude sound. One paper by Fubini [10] 
is applicable to waves in lossless fluids before shock formation, and another by Fay 
[11] provides an asymptotic solution for finite amplitude waves with viscous losses. 
These two papers first provided explicit models for harmonic generation in sound 
waves, and the third paper by Thuras et al. [12] first provided experimental research 
on this phenomenon. 

Eckart [13], Lighthill [14] and Mendousse [15] derived the wave equation around 
1950, marking the beginning of the modern era of nonlinear acoustics. The equations 
of Eckart and Lighthill allow the study of non-planar finite amplitude waves, while 
Mendousse proved that the Burgers equation can be used to simulate plane waves 
in viscous fluids. Khokhlov and his collaborators demonstrated that the generaliza-
tion of the Burgers equation can simulate cylindrical waves [16]. Blackstock [17] 
studied the detailed solution of the Burgers equation in detail, using the interme-
diate values of nonlinear wave solutions to smoothly connect the Fubini solution and 
the Fay solution, solving the problem of nonlinear propagation of single-frequency 
large amplitude waves. Fenlon [18] started from the lossless Burgers equation, using



1.1 History and Current Status of Nonlinear Acoustics in Parametric Arrays 3

Fourier expansion to represent the sound waves of each frequency component after 
interaction in the form of a spectrum. So far, in the most famous practical applica-
tions, the most noteworthy contribution is Westervelt’s work on sound of scattering by 
sound [19, 20], which eventually formed the theory of acoustic parametric arrays in 
the 1960s [21, 22]. In the parametric array, the nonlinear interaction of two high-
frequency sound beams produces a narrow low-frequency sound beam with almost 
no sidelobes. This process allows high directivity sound to be radiated from a rela-
tively small transducer, with the additional benefit of being able to transmit a wide 
frequency range of sound. The proposal of the acoustic parametric array has brought 
broad prospects for the application of nonlinear acoustics. At a conference of the 
Acoustical Society of America in 1962, papers following Westervelt reported the 
experimental verification of the parametric array by Bellin and Beyer [23]. 

The parametric array was first conceived and tested in the United States, followed 
by many related works in the UK and Norway. Berktay [24−26] studied various 
possible application examples of using the parametric array, but later found that 
some of his theoretical predictions [7, 27, 28] were somewhat overly optimistic. 
When it was discovered from Berktay’s work that the attractive features of the para-
metric array often exceeded the inherent low efficiency of the phenomenon, more 
related research work began to appear. By the early 1970s, the parametric array 
had been applied in civilian and military sonar systems, and the number of papers 
on the parametric array published at the Acoustical Society meetings and seminars 
each year had exceeded 100. The next turning point in the practical application of 
nonlinear effects in sound beams came from the theoretical work carried out inthe 
former Soviet Union around 1970 by Zabolotskaya and Khokhlov [29] and Kuznetsov 
[30]. Their research resulted in a parabolic nonlinear wave equation, known as the 
Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, which provides an excellent 
model for the combined effects of nonlinearity, diffraction, and dissipation in direc-
tional sound beams. Throughout the 1970s, numerous works based on the KZK equa-
tion appeared in the former Soviet Union, most of which were aimed at Gaussian 
beams. However, the most authoritative subsequent research on the nonlinear effects 
of sound beams was a series of important works published by Norwegian math-
ematicians Jacqueline Naze Tjøtta, Sigve Tjøtta and their collaborators [31−36], 
who explained the complex diffraction effects present in high-intensity sound fields 
radiated from circular sound sources, which characterize the geometric character-
istics of most ultrasonic transducers. The book written by Beyer [37] emphasizes 
many achievements in the field of nonlinear acoustics, including experimental work. 
Rudenko and Soluyan [38] reported the latest progress in the former Soviet Union. 
Hamilton and Blackstock’s [1] work on nonlinear acoustics is a good introductory 
textbook on nonlinear acoustic theory and applications. Qian systematically intro-
duced the propagation of finite amplitude sound waves in unbounded and bounded 
spaces [39], he carried out a lot of work in many areas such as broadband para-
metric array research, interaction between sound waves research [40−52], greatly 
promoting the development of nonlinear acoustics both domestic and international. 
Based on Fenlon theory, Du et al. [53] mainly conducted theoretical research on the 
interaction between finite amplitude sound waves and small amplitude plane sound
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waves and sound energy suppression, and conducted related experimental verifica-
tion in the sound wave tube. Based on the Burgers equation, Yang’s research group 
mainly used the spectral decomposition method to derive the mechanism of the 
interaction process between low-frequency signal waves and high-frequency pump 
waves, and studied the energy transfer problem after the nonlinear action of variable 
parameter sound waves [54−57]. 

In the past few decades, the development of high-power sound sources and the 
improvement of digital signal processing technology have increasing supported prac-
tical applications using high-power sound sources. Parametric arrays with unique 
technical advantages such as “wideband, high directivity, small size” have been 
widely used in the field of underwater acoustics engineering [28, 43, 58−63]. With 
the continuous progress of science and technology, the application fields and scope 
of parametric arrays are constantly expanding. 

1.1.2 Multi-Beam Sound Field Research 

From the perspective of nonlinear acoustics, when there is a sound wave propagating 
in space, the original medium in space is disturbed by this sound wave. If the medium 
was originally uniform, the result of the disturbance makes it non-uniform in space. 
If there is another sound wave in this disturbed medium, then it will be scattered 
by the non-uniform medium, or it can be said that one sound wave scatters another 
sound wave, this phenomenon is called sound of scattering by sound [64–70]. The 
sound field formed in this way is called a multi-beam sound field. All about the 
nonlinear interaction of two beams (i.e., the phenomenon of sound of scattering by 
sound) started with Lighthill’s theory [14, 71]. Lighthill gave the form of the wave 
equation 

∂p 

∂t 
+ 

∂
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ρuj
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where Tij is the stress tensor, ρ. is the fluid density, ∇2 is the Laplace operator. 
In 1956, Ingard and Pridmore-Brown [72] first proposed the concept of sound of 
scattering by sound. Ignoring viscosity, they derived the expression for the scattered 
pressure field based on Lighthill’s far-field expression. The result suggests that when 
two orthogonal quasi-straight beams interact, the scattered sound occurs outside the 
common region, and their experimental results also support their theoretical results. In 
1957, Westervelt [19] published two papers expressing different views on the results
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of Ingard et al. He argued that the first-order field in the above theory does not satisfy 
the homogeneous wave equation required by the Lighthill equation. He chose a plane 
wave as the first-order field, and derived from the Lighthill equation that there is no 
second-order scattered wave outside the common region of two non-parallel waves. 
In 1960, Bellin and Beyer [73] experimentally verified Westervelt’s theory. Dean 
[74] considered the interaction of two concentric cylindrical waves and spherical 
waves. Garrett et al. [34] used parabolic approximation to explain the interaction 
of two wave fields at small angles. Darvennes et al. [64] theoretically derived the 
interaction of two Gaussian beams at small angles. There are many related studies 
on this issue, and the books by Beyer [6] and Rudenko [38] specifically include a 
chapter on sound of scattering by sound. From the above literature, there is a dispute 
about whether there is scattered sound outside the common region. A new theory 
has been used to reinterpret the interaction of two beams, and a series of articles by 
Tjøtta et al. [75–80] have been published to derive the sound scattering in the case of 
arbitrary crossing angles, pointing out the reasons why related research may reach 
different conclusions. They illustrate this using the simplest model of rectangular 
sound source interaction. From the continuity equation and equation of state of a 
uniform non-viscous fluid, the equation for density ρ is obtained

�2 ρ =
(

∇2 − 
1 

c2 0 

∂2 

∂t2

)
ρ = −  

1 

c2 0

∑

i,j 

∂2Tij 
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(1.4) 

When the two interacting sound waves are plane waves, the above equation can 
be transformed into �2(ρ + f ) = 0 form, where f is the quadratic function of the 
primary wave field, �2 is the D’Alembert operator, that is, �2 = ∇2 − 1 

c2 0 

∂2 

∂t2 . For  
collimated beam plane waves, this formula is valid in the common region, with 
ρF = −f as a particular solution. Westervelt used this feature to believe that there is 
no scattered field outside the common region. However, ρF is not the general solution 
of the equation, because any ρH can always be added such that �2ρH = 0 holds. 
Thus, ρ = ρF +ρH provides another solution for the density equation in the common 
region. Outside the common region, the sound field must satisfy �2ρH = 0, which 
depends on the boundary conditions. If the solution in the common region is not 
uniquely determined, it is impossible to determine the boundary conditions of the 
collimated plane wave. Tjøtta et al. believed that the reason why Westervelt did not 
find scattered sound outside the common region is that he ignored the effect of diffrac-
tion and used the approximation of a narrow beam. They also considered the effects 
of boundary conditions and sound absorption on the results of multi-beam nonlinear 
effects. Tjøtta’s method can be seen as a generalization of small-angle multi-beam 
interaction. When in small-angle situations, this method is approximately consistent 
with the results obtained by Garrett et al. [34] Tjøtta’s method is a general solution 
of quasi-linear approximation, which is valid at any distance, crossing angle, and 
frequency ratio, but their results contain multiple integrals, which are not easy to 
solve. Although they provided an approximate solution in the derivation process, 
this solution is only applicable to the far field and contains two integrals, which
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takes a lot of time. Yang’s research group provided a fast algorithm for simplifying 
the calculation of the small-angle offset model using the Gaussian beam expan-
sion method [81–83], and studied the experimental phenomenon of the difference 
frequency sound generated by two ultrasonic beams in the presence of an artifi-
cial head [84]. Qian studied the interaction between plane waves and plane pulse 
waves in a non-dispersive medium, pointing out that only second-order scattered 
waves exist in the common region of the two parallel waves [47]. Garner [85] used 
cascaded second-order nonlinear effects to simulate the third-order nonlinear action 
of non-collimated ultrasonic beams produced by two displaced piston sound sources. 

1.1.3 Research on Parametric Arrays 

The basic principle of parametric array research is to modulate the audio frequency 
signal to be emitted with a high-frequency (ultrasonic frequency) carrier signal, and 
then emit it with ultrasonic transducers. Due to the nonlinear acoustic effect of the 
medium, the audio frequency signal in the sound wave will demodulate itself during 
propagation. Due to the super directivity of ultrasonic propagation, it is possible to 
achieve directional radiation of audio frequency signals, as shown in Fig. 1.1. 

Figure 1.2 describes the schematic diagram during propagation. In the figure, 
f1 and f2 are two ultrasonic signals with a small difference in frequency, called 
primary waves, assuming f1 > f2, f1 − f2 is the audio frequency signal. These two 
signals are emitted using the ultrasonic transducer. Due to the nonlinear effect of 
the medium, if only considering the second order, the difference frequency signal 
f1− f2, the sum frequency signal f1+ f2, plus the two primary signals and their second 
harmonic signals will be obtained. According to the principle of sound absorption 
in the medium, the absorption is roughly proportional to the square of the frequency 
value of the sound wave, so the sum frequency signal f1 + f2 and f1, f2 and their 
harmonic signals will decay quickly, leaving mainly the audio frequency signal f1−f2.

Generally speaking, parametric arrays are divided into three types of sound 
sources [62, 86, 87]: absorption-limited sound sources, diffraction-limited sound 
sources, and saturation-limited sound sources. The types of these sources are deter-
mined by three distances, namely the Rayleigh distance, the absorption distance, and

Fig. 1.1 Schematic diagram 
of directional sound source 
formation by parametric 
array 
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Fig. 1.2 Schematic diagram of propagation in medium

the saturation distance. The Rayleigh distance is defined as the distance from the 
transducer to the transition between the near-field region and the far-field region. 
Therefore, the wavefront of the primary wave is a plane wave within the Rayleigh 
distance, but when it propagates beyond the Rayleigh distance, it will propagate 
spherically. The absorption distance determines the length of the primary wave before 
it stops generating secondary waves. Therefore, the absorption distance represents 
the length of the virtual source array. The saturation distance represents the area of 
saturation effect. When the amplitude of the primary wave is high enough, saturation 
effects will occur. In this case, harmonics and shock formations are generated in the 
primary wave beam. 

When the absorption distance is shorter than the Rayleigh distance, it is a situation 
where absorption is limited, and the nonlinear effect terminates within the near field. 
In this case, the difference frequency sound is generated by the collimated beam of 
the primary wave. When the absorption distance is longer than the Rayleigh distance, 
the virtual source array extends to the far field, forming a diffraction-limited situation. 
In addition, if the absorption distance is much longer than the Rayleigh distance, the 
secondary waves generated in the near field can be ignored. Although the primary 
wave propagates spherically in the far field, as long as the primary wave beam is 
very narrow, the primary wave will still produce parametric array effect similar to 
the Westervelt equation. When the sound pressure level of the primary wave exceeds a 
certain limit, saturation effects occur within the near field of the source. This results 
in a saturation-limited situation, where the primary wave in the near field can be 
considered as a plane wave. 

The parametric array can be seen as a special case of a multi-beam sound field, that 
is, two sound sources emit in the same center and direction. The study of parametric 
arrays is a multidisciplinary subject, which not only involves mechanics, acoustics, 
psychology, but also includes knowledge of circuits and signal processing. Therefore, 
the research on parametric arrays has been greatly developed with the progress of 
various disciplines and technologies, and has gradually been widely used in different 
aspects. 

The initial understanding of the parametric array phenomenon was the Tartini 
tone discovered by Italian pianist Tartini in the mid-eighteenth century [88]. Since 
this is a form of beat, it was initially thought to be caused by the vibration of the 
human ear when perceiving sound. However, Helmholtz doubted it, and later he
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confirmed that this was caused by the nonlinear effect of air. He believed that this 
effect simultaneously produced the sum (sum frequency) and the absolute difference 
(difference frequency) of two frequency signals. But he did not give the theoretical 
analysis results. In the 1960s, Westervelt [21, 22], based on Lighthill’s theory [14, 
71], gave the relationship and specific theoretical derivation of the second-order field 
generated when two plane waves propagate in a non-uniform medium. 

In 1965, Berktay [24] proposed a more accurate and complete explanation of the 
parametric array. He did not limit the analysis to the primary wave being a form of 
two frequencies, but further used the concept of envelope in modulation. This is very 
practical, because parametric arrays usually do not just emit a single frequency. The 
final demodulated signal (the signal of interest) is determined by this envelope, that 
is, the signal after the parametric array is demodulated is proportional to the second 
derivative of the square of the envelope with respect to time, that is p2(t) ∝ ∂ 

∂t2 E
2(t), 

where p2 is the demodulated audio frequency signal, E(t) is any envelope function. 
Since Berktay assumed that this solution was obtained in the case of being far from the 
sound source, ignoring the influence of ultrasound, this solution is called “Berktay’s 
farfield solution”. Although the primary wave signal, the sum frequency signal and 
the demodulated difference frequency signal coexist in the near-field, this solution 
is also applicable. This is the basic expression of the output of the parametric array. 
This conclusion was quickly verified in underwater acoustics [89, 90]. In 1981, 
Qian believed that Berktay ignored the amplitude characteristics of the near-field 
source, re-established the theoretical model of the nonlinear sound field calculation 
of the parametric array, and conducted experimental verification [42]. In the same 
year, Qian proposed a new method for calculating Huygens’ integration, and used 
it to study the radiation field of the line source parametric array and the truncated 
parametric array [41]. In 2008, Zheng et al. improved the Berktay’s model, obtained 
the difference frequency sound field in the axial and off-axis directions, and obtained 
the distribution of the difference frequency sound field more accurately [91]. 

If the Berktay far-field solution is used to derive an output of a single-frequency 
double-sideband modulation method with an input of 2 kHz (assuming the modu-
lation index m is 1), two single-frequency signal outputs with the same ampli-
tude are obtained, which is equivalent to 100% total harmonic distortion (THD). 
This shows that the double-sideband modulation method cannot provide the desired 
single-frequency output, so it is necessary to preprocess the audio frequency signal 
[92]. 

The parametric array was first widely used in underwater acoustics. Because the 
absorption coefficient of air is large and its nonlinear parameter is small, it is relatively 
difficult to produce this nonlinear effect in the air. It was not until 1975 that Bennett 
and Blackstock [93] realized the parametric array in the air. 

Because the audio frequency obtained by the parametric array demodulation has 
very highly directivity, and this audio frequency decays much slower when propa-
gating in the air than the sound emitted by traditional loudspeakers, making the devel-
opment of directional sound sources possible. In recent years, with the development 
of parametric array technology research, the application of parametric arrays in the 
air, namely parametric array loudspeakers, is becoming more and more widespread.
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The earliest recorded was Yoneyama et al. in Japan [94]. They formed a hexagonal 
array with 547 ultrasonic transducers in 1983, with a center frequency of 40 kHz. To 
overcome the frequency response slope of 12dB/octave proposed by Berktay, they 
suggested the input signal should be preprocessed before double-sideband modu-
lation. In actual experiments, the audio frequency signal is simply processed with 
the transducer frequency response curve. They obtained a relatively flat frequency 
response between 1.5~7 kHz. At the International Nonlinear Acoustics Conference 
in 1984, an article on directional speakers [95] mentioned three issues: the optimal 
carrier frequency, distortion calibration, and the impact of ultrasound on listeners. 
Their view is that the smaller the carrier frequency, the better, but it cannot be 
too small, otherwise the beam will diverge, and a range of recommended carrier 
frequency values is given. They made an array with 581 ultrasonic transducers and 
found that the distortion was significantly improved after preprocessing. During this 
period, in-depth discussions were held on issues such as preprocessing methods, 
sound source shapes, conversion efficiency, etc. [96–102]. Steer’s research group 
[103, 104] also calculated the third-order nonlinear sound field, and it was simplified 
using the Gaussian beam expansion method. The issue of low conversion efficiency 
of the parametric array has also attracted the attention of scholars [105], who have 
conducted research from the perspective of transient signal technology [97, 106–110] 
or transducer technology [111–113], to some extent alleviating the problem. For this 
issue, some scholars have also tried to solve it by using multiple parametric array 
loudspeakers or combining various modulation methods [114–117]. 

Similar to the end-fire array effect [21, 118], the parametric array can be regarded 
as a virtual source array composed of countless virtual sources. The parametric array 
is a cumulative array, and it needs a certain propagation distance to fully form. It is 
the aforementioned absorption distance, which can be referred to as the array length 
[119], where the primary waves no longer interact with each other. For some reasons, 
if the observation point is less than the array length before the propagation has reached 
the array length, this situation is the truncation of the parametric array, and the formed 
part of the parametric array sound source is called the truncated parametric array [41, 
58, 59, 120]. This research is often used in practical applications in many fields such 
as detection and material acoustic properties. 

1.1.4 Research on Parametric Array Loudspeakers 

Since the 21st century, with the launch of commercial products and its emergence as 
a research focus in audio engineering, parametric array loudspeakers have achieved 
substantial academic progress in both foundational theories and key technologies 
[119, 121–129], mainly reflected in the following directions.
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1.1.4.1 Preprocessing Algorithms 

The parametric array loudspeaker involves nonlinear effects, so in order to achieve 
sound field reproduction, the input signal of the parametric array loudspeaker must 
be preprocessed to reduce harmonic distortion. Based on the Berktay far-field solu-
tion, various signal processing algorithms are applied to the parametric array loud-
speaker. Yoneyama et al. [94] used the ordinary double sideband amplitude modula-
tion (DSBAM) method to generate the envelope signal E(t) = 1+mg(t), where g(t) 
is the input audio signal, m is the modulation index. However, this simple processing 
method has caused significant harmonic distortion. In 1984, Kamakura et al. [95] 
proposed the square root double sideband modulation method (Square Root AM, 
SRAM), which generated the envelope signal E(t) = 

√
1 + mg(t). Compared with 

ordinary double sideband modulation, this method can effectively reduce harmonic 
distortion, but it requires an ultrasonic transducer with infinite bandwidth to generate 
harmonic signals formed by square root processing. Subsequently, they proposed the 
single-sideband amplitude modulation method (SSB-AM) [130], which only requires 
half the bandwidth compared to ordinary double sideband modulation. However, for 
complex input signals, single-sideband modulation is prone to errors. Therefore, 
Croft et al. [131, 132] proposed the recursive single-sideband modulation method 
(Recursive SSB-AM) to approximate the results of square root double sideband 
modulation, but this requires a high-speed processor to achieve real-time calculation. 
Wu et al. [133] adopted multi-rate processing technology and proposed an implemen-
tation method for recursive single-sideband modulation technology. Its feasibility 
was verified by experiments. Tan et al. [134] proposed adjustable single-sideband 
modulation (Modified AM, abbreviated as MAM) using the interaction of orthog-
onal signals, which can effectively reduce harmonic distortion and reduce computa-
tional complexity. Sakai and Kamakura [135] proposed a single-sideband modulation 
method with dynamic carrier (Dynamic SSB-AM), which dynamically adjusts the 
amplitude of the carrier signal according to the amplitude of the modulation signal 
to improve the linear relationship between the output signal and the modulation 
signal, thereby reducing harmonic distortion. Shi et al. [136] provided the experi-
mental results of four preprocessing methods: DSBAM, SRAM, Lower sideband-AM 
(LSB-AM) and Upper sideband-AM (USB-AM), and based on DSB-AM and SRAM, 
respectively, they proposed two new improved preprocessing methods. Ikefuji et al. 
[137] combined the DSB-AM and the SSB-AM methods, using different prepro-
cessing methods for different frequency bands, and proved the effectiveness of this 
method through subjective testing. Since the Berktay far-field solution is only an 
approximate solution of the parametric loudspeaker, it cannot truly reflect the actual 
situation of the sound field. Ji et al. [138] summarized various preprocessing algo-
rithms and compared the above DSB-AM, SSB-AM, and MAM preprocessing algo-
rithms based on the time-domain solutions of the KZK equation. All of the above are 
based on amplitude modulation, and frequency modulation methods have also been 
studied by scholars due to their low implementation costs [139, 140], some progress 
has been made, but the high harmonic distortion has not yet been well resolved [105], 
which is worth further in-depth study.
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Due to the limitations of the Berktay far-field solution, the preprocessing methods 
based on the Berktay far-field solution cannot completely eliminate the nonlinear 
distortion in the parametric array loudspeaker system, and in recent years, the prepro-
cessing method based on the Volterra filter has been introduced. In 2002, Lee et al. 
introduced the Volterra filter (VF) into the research of parametric array loudspeakers 
[141], based on the Berktay far-field solution model. They established a 2nd-order 
VF model, which simulated the nonlinearity of the parametric array loudspeaker 
well. Later, based on the KZK equation, Ji et al. obtained a more accurate 2nd-order 
VF model, and on the basis of the VF model, designed a 2nd-order inverse filter, 
which can effectively reduce the harmonic distortion of the parametric array loud-
speaker [142]. Yang’s research group introduced the diagonal Volterra filter with 
lower complexity into the research of parametric array loudspeakers, and theoreti-
cally demonstrated the feasibility of using a one-dimensional Volterra filter (ODVF) 
to compensate for the nonlinear distortion of the loudspeaker instead of the tradi-
tional VF. They proposed a solution based on ODVF to compensate for the harmonic 
and intermodulation distortion of the parametric array loudspeaker [143–146]. Shi 
et al. proposed an ultrasonic-ultrasonic VF [147], and applied the sparse normal-
ized least mean square algorithm to the identification of the first-order Volterra filter 
and acoustic delay [148]. For the parametric array loudspeaker system based on 
frequency modulation, Hatano et al. designed a parallel cascade structure of VF and 
its inverse system [140]. 

The above-mentioned preprocessing methods are mainly to solve the harmonic 
distortion problem generated in the parametric array loudspeaker system, and 
designers can therefore choose the appropriate preprocessing technology according 
to the specific system requirements, such as analog or digital implementation, avail-
able computing resources, bandwidth limitations of ultrasonic transmitters, etc. To 
solve the problem of poor low-frequency response of the parametric array loud-
speaker, Shi et al. [149] proposed the “missing fundamental” concept widely used 
in traditional speaker virtual bass enhancement to improve the bass quality of the 
parametric array loudspeaker. This psychoacoustic preprocessing technique splits the 
audio input with a low-pass and a high-pass filter under a cutoff frequency of 500 Hz. 
The high-pass audio content uses general preprocessing techniques, while the low-
pass bass is processed by the function F(x), which serves as the harmonic generator 
of the parametric array loudspeaker. Subjective tests showed that this preprocessing 
method can promote the enhancement of low volume while maintaining a good 
auditory experience. 

1.1.4.2 Beam Control 

Beam control, based on the principle of parametric array effect, the difference 
frequency sound of parametric array loudspeakers has high directivity. This high 
directivity can make the difference frequency sound only emitted to the target area, 
without polluting the sound environment outside the target area. However, to ensure 
that the beam of the difference frequency sound to follow the target area for mobile
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tracking, Woodward et al. [150] in 1994 applied phased array technology to under-
water parametric arrays for seabed mapping, which can meet the beamsteering 
requirements within±20°. In 2005, Olszewski et al. [151] used a mechanical motor to 
rotate each channel’s transducer, and then compensated the phase of each channel by 
delaying, eliminating the sound path difference caused by rotation, thereby achieving 
the purpose of beamsteering. However, this method has a slow beamsteering speed 
and requires motor assistance, which adds extra equipment. The use of digital signal 
processing to achieve beamsteering is low cost, energy saving, fast, and does not 
require additional auxiliary equipment, which is the trend of future development. 
The delay and sum algorithm is a common method for array beamforming. This 
method is simple and practical, and can conveniently and quickly realize the beam-
steering of the parametric array loudspeaker. In 2006, Yang et al. [152] proposed to 
use the zero-order Bessel function weighting method for parametric array difference 
frequency sound beamsteering. In addition, Yang et al. [153–155] used the delay and 
sum method, used the Chebyshev weighting method combined with SSB modula-
tion method, weighted the carrier and sideband frequencies separately, and obtained 
a sound beam with a constant beam width. In actual implementation, the angle of 
the parametric array beamsteering is limited by the sampling rate of the digital-to-
analog converter. In the case of low sampling rate, if integer sampling period delay is 
used, although the parametric array beam can be deflected, the beam has a minimum 
steering angle, and the steering angle of the beam is only distributed at a few discrete 
angles. In 2006, Gan et al. [156] pointed out that at a sampling rate of 192 kHz, the 
minimum steering angle is about 26 degrees. For this reason, Gan et al. achieved a very 
small steering angle with the smallest amount of calculation by delaying the carrier 
and sideband signals separately without increasing the sampling frequency, but this 
method requires the generation of an omnidirectional carrier beam, so the demodu-
lated difference frequency sound energy is severely reduced. In 2010, Takeoka et al. 
[157] first used � − � high-pass filter to upsample and then integer delay, and then 
replaced the power amplifier to drive the ultrasonic transducer to emit sound waves 
with an inverter. Although this method solves the problem of delay accuracy, the 
signal-to-noise ratio of this method depends heavily on the stability of the clock, 
and secondly, the output dynamic range is small, resulting in a small sound pressure 
level of the difference frequency sound. The research group led by Gan at Nanyang 
Technological University has done a lot of theoretical and experimental work in this 
area [158–163]. The research group led by Yang [164] applied the Farrow struc-
ture fractional delay algorithm to the parametric array loudspeaker, and designed a 
phased parametric array loudspeaker system to achieve arbitrary beamsteering with 
fixed filter coefficients. 

1.1.4.3 New Transducers 

The new transducer, the ultrasonic transducer, as the emission source of the para-
metric array loudspeaker, has a significant impact on its performance. Factors such as 
the frequency response, phase, and amplitude consistency of the transducer directly
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affect the radiation power, output sound pressure level, and distortion of the para-
metric array loudspeaker. Early parametric array loudspeakers used traditional piezo-
electric ceramic ultrasonic transducers (PZT), generally using a parallel method 
to form a transducer array sound source with multiple ultrasonic transducer units. 
This method is simple in structure and easy to implement. However, PZT has a 
large mechanical impedance, resulting in a small bandwidth and low radiation effi-
ciency [165]. Polyvinylidene Difluoride (PVDF), as a new type of piezoelectric high 
polymer material, has a high piezoelectric constant, light weight, good flexibility, 
can be bent into any shape, and has a flat frequency response in a wide frequency 
band. Toda conducted a detailed research on PVDF film, using various different 
structures (cylindrical, arc, and corrugated, etc.), and carried out a theoretical and 
experimental research on its resonance frequency, directivity, radiation sound pres-
sure, driving voltage, etc. [166–171], and used PVDF film to make a parametric 
array loudspeaker for actual measurement [172]. However, the dielectric constant 
of PVDF film is small, it is difficult to produce high-intensity ultrasonic signals, 
and it requires a high driving voltage, which puts higher requirements on the power 
amplifier. In recent years, with the development of MEMS technology, new types of 
ultrasonic transducers have appeared. Capacitive Micromachined Ultrasonic Trans-
ducers (CMUTs), fabricated utilizing CMOS technology, exhibit high sensitivity 
and a broad bandwidth. They are characterized by their compact form factor and low 
intrinsic noise. The compatibility of their manufacturing process with CMOS tech-
nology enables the integration of the pre-stage driving circuit, preamplifier, signal 
processing circuit onto a single silicon chip, thereby achieving electronic integration 
and minimizing parasitic effects. These attributes render CMUTs highly suitable 
for a range of applications, including ultrasonic non-destructive testing and medical 
imaging, etc. [173–177]. Wygant et al. [112] designed CMUT transducers with two 
different membrane thicknesses (40 and 60 µm), with resonant frequencies of 46 
kHz and 55 kHz, respectively. When supplied with a 200 VDC bias and 380 V 
and 350 VAC signals, the transducers were capable of generating 135 dB and 129 
dB ultrasonic signals at their surfaces. When used to produce a 5 kHz difference 
frequency signal, the sound pressure level measured at a distance of 3 m was 58 
dB, with a 6 dB bandwidth of 8.7°. Zhang et al. [178] designed and manufactured 
an air-coupled hexagonal CMUT array for the application of the parametric array 
loudspeaker. The piezoelectric Micro-machined Ultrasonic Transducer (pMUT) is 
composed of a vibrating membrane made of a certain material and a piezoelectric 
thin film with upper and lower electrodes. The mechanical vibration of the vibrating 
membrane and the piezoelectric effect of the piezoelectric thin film can interact to 
realize the mutual conversion of sound energy and electrical energy. Since the recep-
tion and transmission of silicon micro piezoelectric ultrasonic transducers are both 
in the bending vibration mode, their working frequency is mainly determined by the 
first-order vibration frequency of the bending vibration of the vibrating membrane. 
Therefore, the resonance frequency of the transducer can be changed by changing the 
thickness and area of its vibrating membrane. In addition, silicon micro piezoelec-
tric ultrasonic transducers also have the advantages of low power consumption, small
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volume, and easy integration [179–183]. Lee et al. [184] developed a pMUT trans-
ducer with a size of 35 × 33 mm2, with primary wave frequencies of 95 and 135 kHz, 
producing a difference frequency sound of 40 kHz. The experimental measurement 
at 0.8 m showed a 6 dB beam angle of 5° and a maximum axial sound pressure level 
of 85.4 dB. The development of new ultrasonic transducers has greatly promoted 
the development of parametric array loudspeakers. Je et al. [185] designed a more 
efficient (up to 70%) and wider bandwidth (15 kHz) pMUT array. Ahn et al. [186] 
used a pMUT array to design a compact parametric array loudspeaker. 

1.1.4.4 Measurement Issue 

Measurement problems arise because parametric array loudspeakers are different 
from ordinary loudspeakers, and ultrasonic primary waves coexist with the demodu-
lated audio frequency wave, which puts higher requirements on the accurate measure-
ment of parametric array loudspeakers. When two ultrasonic waves with frequencies 
f1 and f2 (f1 > f2) are emitted by the ultrasonic transducer, due to the nonlinear effect 
in the air, multiple different frequency sound waves can be reproduced, that is, the 
difference of these two frequencies (f1−f2) and the sum of the two frequencies (f1+f2), 
as well as higher-order harmonics. The sound wave attenuation coefficient is almost 
directly proportional to the square of the frequency, causing the high-frequency 
components to attenuate faster during propagation. Therefore, after a certain distance 
of propagation, only the difference frequency sound wave remains, forming the audio 
frequency. However, in the near-field of the parametric loudspeaker, there are both 
ultrasonic waves p1 and p2 and the audio frequency pd . Because the sound pressure 
level of the ultrasonic waves p1 and p2 is high, especially in the near field, it is 
generally above 120 dB, so when measuring directly with a loudspeaker in this area, 
spurious sound will be also generated. The spurious sound comes from two aspects, 
one is due to the nonlinear effect of the microphone pre-amplification circuit, and 
the other is due to the radiated sound pressure on the surface of the loudspeaker. The 
frequency values of the above spurious sound generated is the same as the demodu-
lated audio frequency wave. The amplitude of the spurious sound is proportional to 
the product of the amplitudes of the ultrasound waves p1 and p2, that is, pn ∝ p1p2. 
It is apparent that the spurious sound greatly interferes with the measurement of the 
actual demodulated audio frequency. Especially in the near field area, the spurious 
sound is significantly larger than the sound frequency generated by the parametric 
loudspeaker. Therefore, it is necessary to design a sound filter to filter out the spurious 
sound and obtain the amplitude of the actual demodulated audio frequency. 

In 1975, Bennett and Blackstock [93] first realized the experiment of a parametric 
loudspeaker in the air, using a hemispherical sound filter made of 0.06 mm thick 
plastic glass paper, placed at the front end of the measurement transducer, attenuating 
the difference frequency sound (5 kHz) by 3.5 dB, but attenuating the ultrasonic 
primary wave (18.6 and 23.5 kHz) by 20 dB, achieving low-pass characteristics, 
thus effectively reducing spurious sound. Moffett et al. [187] studied the nonlinear 
problem of measuring hydrophones in water in 1982. Toda [172] designed a tubular
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sound filter with a four-layer polymer film structure, where the spacing between 
the four films is half the carrier wavelength (carrier frequency is 34 kHz), and the 
maximum attenuation of the ultrasonic carrier is up to 30 dB. However, this sound 
filter structure is too complex and not conducive to practical application. Wygant 
et al. [112] used a layer of Celen synthetic fiber as a sound filter when using CMUT 
transducers as the emission source for parametric array loudspeakers, but did not 
provide a detailed description of the structure and performance of the filter. Kamakura 
et al. [188, 189] used two sets of primary waves with opposite phases as the driving 
signals for the parametric array loudspeaker to reduce the sound pressure level of the 
primary wave, and it has small effect on the generated difference frequency sound. 
This method can also be used to reduce spurious sound. Yang’s research group used 
this phase cancellation method to measure the sound pressure on the axis [190]. 
Cylindrical filters [191] and filters based on phononic crystals [192, 193] were used 
to reduce the impact of spurious sound on measurements. On this basis, the effects of 
four main parameters on spurious sound, namely the intensity of the primary wave, 
the difference frequency, the radius of the sound source, and the observation distance, 
were investigated [194]. 

1.1.4.5 Research on Applications 

As a new type of directional sound source, parametric array loudspeakers have a 
wide range of application prospects, and there are already many parametric array 
loudspeaker products and their related applications on the market. Nakashima et al. 
[195, 196] installed two small parametric array loudspeakers on a mobile phone to 
form a dual-channel system. The audio frequency at 50 cm reached 70 dB in experi-
mental measurements, and the sound pressure level difference at both ears was 15 dB 
using a head and torso simulator (HATS), indicating a good directivity. Nakadai and 
Tsujino [197] installed a parametric array loudspeaker in the mouth of a humanoid 
robot, achieving human–robot interactive voice communication. When a person and 
the humanoid robot speak at the same time, the robot can pick up voice signals 
through the loudspeaker without being disturbed by its own voice signals, realizing 
the function of “listening while speaking”. Johannes et al. [198] used a parametric 
array loudspeaker to achieve 3D sound reproduction, reducing interaural crosstalk. 
Phanomchoeng et al. used the high-directivity characteristics of the parametric array 
at low-frequency to warn specific lanes on highways without affecting the normal 
driving of vehicles in other directions, ensuring the smooth progress of construction 
on that lane [199]. Castagnede et al. [200,201] used a parametric array loudspeaker as 
a sound source to measure the absorption coefficient of materials using a single trans-
ducer pulse reflection method. Haupt and Rolt from the Lincoln Laboratory in the 
United States [202] used a parametric array loudspeaker from Holosonics to detect 
landmines buried at different depths below the ground, and discussed the indicators 
that a parametric array loudspeaker suitable for landmine detection should have from 
aspects such as power, frequency, and volume. Calicchia et al. [203] used a parametric 
array loudspeaker to achieve non-destructive testing of Italian Renaissance murals.
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Gibson et al. [204] designed and built a parametric array loudspeaker consisting of 
an ultrasonic transducer array, forming a high-intensity, collimated low-frequency 
sound to achieve sound penetration of small areas/small targets and induce their 
vibration. Achanta et al. [205] and Kaduchak et al. [206] used a parametric array 
loudspeaker to achieve long-distance portable hidden weapon detection. Sayin et al. 
took a different approach and explored the feasibility of using a parametric array 
loudspeaker with 750 ultrasonic transducer units to construct an omnidirectional 
sound source [207]. They found that its performance at high frequencies is better 
than traditional dodecahedron sound sources, and it is smaller and lighter. Arnela 
et al. further improved the omnidirectional parametric array loudspeaker based on 
the theoretical model, making it easier to manufacture and install [208]. 

Compared to foreign countries, domestic research on parametric array loud-
speakers started relatively late, and is mostly focused on the development and exper-
imental research of parametric array loudspeakers [110, 209–219], with relatively 
fewer reports on application research [220–222]. The research group led by Yang at 
Institute of Acoustics, Chinese Academy of Sciences, has done a lot of research work 
on the theoretical foundation, measurement, engineering development, and applica-
tion research of parametric array loudspeakers, and has achieved fruitful results. In 
theoretical research, a new calculation method of Gaussian beam expansion coeffi-
cients was proposed [223], and the sound field of multiple beams crossing at small 
angles was calculated using the Gaussian beam expansion method [82, 83], and 
various preprocessing algorithms for parametric array loudspeakers were discussed 
in detail [133, 138, 143–146, 224, 225]. In terms of measurement, several methods 
to remove or reduce spurious sound were proposed [190–192], and the parameters 
affecting spurious sound were systematically studied [194]. In terms of engineering 
development, research was conducted on the new ultrasonic transducer PVDF film 
[226], multi-path parametric array loudspeakers [227], and impedance matching of 
transducer arrays [228, 229], and several prototypes were successively introduced. 
In terms of application research, field measurement research on the sound absorp-
tion coefficient of materials [230] and active noise reduction control research [231, 
232] were conducted using parametric array loudspeakers. The research group led 
by Xu at the University of Electronic Science and Technology conducted research on 
parametric array loudspeakers from the aspects of preprocessing algorithms [233], 
ultrasonic transducers [234], and hardware implementation [235, 236]. In addition, 
the research group led by Zhao at Shandong University of Science and Technology 
provided a design scheme for implementing parametric array loudspeakers using 
DSP [237, 238]. Yi et al. at the Jiaxing Engineering Center of Institute of Acoustics, 
Chinese Academy of Sciences [239] also conducted system design and testing of 
parametric array loudspeakers.
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1.2 Fundamentals of Nonlinear Acoustics 

The basics of nonlinear acoustics will be discussed in the following sections, focusing 
on the equations used in nonlinear acoustics. The review will start with the prop-
agation of acoustic waves in lossless fluids, which provides the basic principles of 
nonlinear acoustics. 

1.2.1 Propagation of Finite Amplitude Waves 
in Non-Attenuating Fluids 

This section first introduces the basic part of nonlinear acoustics, that is, the 
propagation of finite amplitude waves in non-attenuating fluids. 

Currently, there are four main equations used to describe the general motion 
of viscous heat-conducting fluids: ➀ mass conservation equation, ➁ momentum 
conservation equation, ➂ entropy balance equation, and ➃ thermodynamic state 
equation. To derive the wave equation for sound propagation in fluids, it is assumed 
that the fluid is homogeneous and the effects of viscous and thermal conductivity 
coefficients caused by sound wave disturbances are ignored. 

The mass conservation equation is as follows 

Dρ 
Dt 

+ ρ∇ ·  u = 0 (1.5) 

where ρ is the medium density, u is the fluid velocity vector, ∇ is the gradient 
operator, and D/Dt = ∂/∂t + u · ∇. 

The momentum conservation equation can be written as 

ρ 
Du 

Dt 
+ ∇P = μ∇2 u +

(
uB + 

1 

3 
μ

)
∇(∇ ·  u) (1.6) 

where P is the thermodynamic pressure, μ is the shear viscosity coefficient, ∇2 is the 
Laplace operator, uB is the bulk viscosity coefficient. The shear viscosity coefficient 
refers to the momentum diffusion between adjacent fluid elements with different 
speeds. The bulk viscosity coefficient provides an effective approximation at low 
frequencies, that is, the imbalance deviation between the actual local pressure and 
the thermodynamic pressure. Here, for convenience, it is assumed that all relaxation 
times are much smaller than the time scale of sound disturbances. 

The entropy equation can be expressed as 

ρT 
Ds 

Dt 
= κ∇2 T + μB(∇ ·  u)2 + 
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2 
μ
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∂ui 
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+ 
∂uj 
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− 
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2 
δij 

∂uk 
∂xk

)2 

(1.7)
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where T is the absolute time, s is the specific entropy, κ is the thermal conductivity, 
δij is the Kronecker delta function, that is, when i = j, it is 1, and 0 in all other cases. 

The equation of state is 

P = P(ρ,  s) (1.8) 

For an ideal gas, P/ρT and the heat capacity ratio are constants, the above equation 
can be written as 

P 

P0 
=

(
ρ 
ρ0

)γ 
exp

(
s − s0 
cv

)
(1.9) 

where P0, ρ0 and s0 are the corresponding equilibrium values, γ is the ratio of 
specific heat at constant pressure cp to that at constant volume cv. To derive the 
sound propagation formula, the above equation uses the Taylor formula to expand at 
the point (ρ0, s0). 

If the fluid under consideration is lossless, μ, μB and κ are all zero. This allows 
us to obtain the exact solutions of the above formulas, which are applicable to the 
propagation of plane waves in lossless fluids. Specifically, for the problem of plane 
wave propagation in an ideal isentropic gas, a simple formula can be derived as 
follows 

∂u 

∂t 
+ (c0 + βu) 

∂u 

∂x 
= 0 (1.10) 

where u(x, t) is the velocity of the gas, x is the spatial variable, t is the time, c0 = 
(γ P0/ρ)1/2 is the speed of small signal sound, β is a nonlinear coefficient. 

To obtain the sound field under a specific excitation at the sound source u = f (x), 
that is, the signal at the origin is 

u(0, t) = f (t) (1.11) 

The implicit solution satisfying the above equation is obtained by Poisson as 
follows 

u = f (t − x/(c0 + βu)) (1.12) 

The above equation is known as the Poisson solution. Another implicit solution 
is obtained by Earnshaw. Assume that the sound wave is excited by a piston with 
the finite amplitude. If the piston displacement is specified as X (t), the sound source 
condition is: when x = X (t), u = Ẋ (t), where Ẋ (t) = dX dt . At the moment φ, the  
piston is at x = X (φ), and the speed is Ẋ (φ). This speed is applied to the fluid 
causing disturbance, that is, the fluid particle speed at this wave point is u = Ẋ (φ). 
Thus, the Earnshaw solution is obtained



1.2 Fundamentals of Nonlinear Acoustics 19

u = Ẋ (φ), φ  = t − 
x − X (φ) 

c0 + β Ẋ (φ) 
(1.13) 

For example, let the sound source excitation be a sine wave, i.e., u0sinωt, where u0 
is the amplitude, ω is the angular frequency. If a sinusoidal excitation is applied at 
the origin, u(0, t) = u0sinωt, then the Poisson solution is 

u = u0sinω
(
t − x 

c0 + βu

)
(1.14) 

When the sound source is a vibrating piston, the boundary condition is: u = u0, 
at x = u0 

ω (1 − cos ωt) 
As solved by Earnshaw 

u = u0sinωφ, φ = t − 
x − u0/[ω(1 − cosωφ)] 

c0 + βu0sinωφ 
(1.15) 

Once the particle velocity is obtained, the sound pressure p can be calculated 
using the characteristic impedance relationship as follows 

dP 

du 
= 

dp 

du 
= ρc (1.16) 

where P is the total pressure of the fluid. For small signal waves, the right side of 
the above equation has a constant value ρ0c0, and p = ρ0c0u is obtained. For finite 
amplitude waves, the relationship is not simple. For adiabatic gas, after integration 
and a series expansion, the following equation can be obtained 

p = ρ0c
2 
0

[
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c0 
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β 
2

(
u 

c0

)2 

+ 
β 
6

(
u 

c0

)3 

+ ...

]

(1.17) 

1.2.2 Approximation of Thermoviscous Fluids 

1.2.2.1 Second-Order Approximation Theory 

The second-order approximation theory of the thermal viscous fluid approximation 
finite amplitude is affected by two different nonlinear effects: cumulative and local 
effects. In the case of traveling waves, the cumulative effect is generally dominant, 
that is, it accumulates with the increase of propagation distance, leading to the steep-
ening of the waveform. The distortion that occurs at a location is based on all previous 
distortions and continues to expand. The local nonlinear effect, on the other hand, 
produces distortion that does not increase with the propagation distance. An example
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of the latter is the nonlinearity of the characteristic impedance relationship. If the 
particle velocity waveform has been calculated, the pressure waveform is obtained 
by Eq. (1.17). The linear term in the formula can obtain a pressure waveform with the 
same cumulative distortion as the particle velocity waveform. Since the remaining 
terms in Eq. (1.17) are at least smaller than the linear term by O(ε) (when a term is 
determined to be O(εn) or smaller to εn, for very small ε, its size is αεn, where α 
is a finite positive number), so the additional distortion it introduces is very small. 
Moreover, since the additional distortion only depends on the local waveform, it often 
remains unchanged and does not increase with the increase of propagation distance. 
Therefore, the only place where local distortion dominates is near the sound source, 
where the cumulative distortion is still very small. 

Local effects make the analysis of traveling wave propagation more complex, 
but their impact on the solution is generally negligible because the distortion they 
cause is usually much smaller than the distortion resulting from cumulative effects. 
Therefore, many simplifications can be achieved at a small cost by ignoring local 
effects. When dissipation must be considered, a certain small value of the second-
order approximation is usually introduced to obtain simplified wave equations and 
solutions. Two small order parameters are usually used in the approximation. One is 
the acoustic Mach number ε = u0/c0 (where u0 is the typical sound speed amplitude). 
This value is 154 dB in the air (reference value 2 × 10−5 Pa), and 264 dB in water 
(reference value 1×10−6 Pa). The other small parameter is η = μω/ρ0c2 0. In physics,  
η is an important measure of the significance of viscous stress in plane traveling sound 
waves, relative to the fluctuating pressure. Under standard conditions, η = 10−6 for 
1 kHz in the air and 1 MHz in water can be obtained. 

In the analysis of the second-order approximation, expand Eqs. (1.5) to (1.8), and 
discard all O

(
η2ε

)
, O

(
ηε2

)
and O

(
ε3

)
terms. The resulting model retains the order 

of ε, ηε and ε2 terms, describing the small signal sound as the leading order of η. 
More importantly, it is expected to explain the combined effects of nonlinearity and 
dissipation on weak nonlinear three-dimensional sound waves. 

The basis of the second-order approximation theory is two assumptions. First, 
the intensity of the wave is not large, that is, |u| � c0 (or ε � 1). On this basis, 
although the O

(
ε2

)
term must be retained, the O

(
ε3

)
term can be discarded. Secondly, 

distortion is mainly cumulative. That is to say, the observation point is not close to 
the sound source. For periodic waves, “not close to the source” means x � λ/(2πβ), 
where λ is the wavelength of the fundamental frequency component. For most fluids, 
this means that x is greater than about one wavelength. The direct consequences of 
these two assumptions are as follows. 

The relationship of linear characteristic impedance can be used. The finite 
displacement of the source from its rest position may be ignored, that is, for a sinu-
soidal source, the equation is sufficient to describe the sound source conditions. The 
difference between material characterization (Lagrangian) and spatial characteriza-
tion (Eulerian) can be ignored. O

(
ε2

)
term and O(ε) factors can be replaced by 

equivalent traveling waves O(ε), which will introduce error term O
(
ε3

)
. Substitute 

ρ = ρ0 + ρ ′ into Eq. (1.5), move O(ε) term to the left side of the equation, and move 
O

(
ε2

)
term to the right side of the equation, the equation can be rewritten as


