

NATURAL LANGUAGE PROCESSING FOR SOFTWARE ENGINEERING

Edited By

Rajesh Kumar Chakrawarti, Ranjana Sikarwar,
Sanjaya Kumar Sarangi, Samson Arun Raj Albert Raj, Shweta Gupta,
Krishnan Sakthidasan Sankaran and Romil Rawat

Natural Language Processing for Software Engineering

Scrivener Publishing
100 Cummings Center, Suite 541J
Beverly, MA 01915-6106

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)

Natural Language Processing for Software Engineering

Edited by

Rajesh Kumar Chakrawarti

Ranjana Sikarwar

Sanjaya Kumar Sarangi

Samson Arun Raj Albert Raj

Shweta Gupta

Krishnan Sakthidasan Sankaran

and

Romil Rawat

WILEY

This edition first published 2025 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA
© 2025 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 9781394272433

Front cover images supplied by Adobe Firefly
Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Preface	xvii	
1	Machine Learning and Artificial Intelligence for Detecting Cyber Security Threats in IoT Environment	1
	<i>Ravindra Bhardwaj, Sreenivasulu Gogula, Bidisha Bhabani, K. Kanagalakshmi, Aparajita Mukherjee and D. Vettrithangam</i>	
1.1	Introduction	2
1.2	Need of Vulnerability Identification	4
1.3	Vulnerabilities in IoT Web Applications	5
1.4	Intrusion Detection System	7
1.5	Machine Learning in Intrusion Detection System	10
1.6	Conclusion	12
	References	12
2	Frequent Pattern Mining Using Artificial Intelligence and Machine Learning	15
	<i>R. Deepika, Sreenivasulu Gogula, K. Kanagalakshmi, Anshu Mehta, S. J. Vivekanandan and D. Vettrithangam</i>	
2.1	Introduction	16
2.2	Data Mining Functions	17
2.3	Related Work	19
2.4	Machine Learning for Frequent Pattern Mining	24
2.5	Conclusion	26
	References	26
3	Classification and Detection of Prostate Cancer Using Machine Learning Techniques	29
	<i>D. Vettrithangam, Pramod Kumar, Shaik Munawar, Rituparna Biswas, Deependra Pandey and Amar Choudhary</i>	
3.1	Introduction	30
3.2	Literature Survey	32

3.3	Machine Learning for Prostate Cancer Classification and Detection	35
3.4	Conclusion	37
	References	38
4	NLP-Based Spellchecker and Grammar Checker for Indic Languages	43
	<i>Brijesh Kumar Y. Panchal and Apurva Shah</i>	
4.1	Introduction	44
4.2	NLP-Based Techniques of Spellcheckers and Grammar Checkers	44
4.2.1	Syntax-Based	44
4.2.2	Statistics-Based	45
4.2.3	Rule-Based	45
4.2.4	Deep Learning-Based	45
4.2.5	Machine Learning-Based	46
4.2.6	Reinforcement Learning-Based	46
4.3	Grammar Checker Related Work	47
4.4	Spellchecker Related Work	58
4.5	Conclusion	66
	References	67
5	Identification of Gujarati Ghazal Chanda with Cross-Platform Application	71
	<i>Brijeshkumar Y. Panchal</i>	
	Abbreviations	72
5.1	Introduction	72
5.1.1	The Gujarati Language	72
5.2	Ghazal	75
5.3	History and Grammar of Ghazal	77
5.4	Literature Review	78
5.5	Proposed System	85
5.6	Conclusion	92
	References	92
6	Cancer Classification and Detection Using Machine Learning Techniques	95
	<i>Syed Jahangir Badashah, Afaque Alam, Malik Jawarneh, Tejashtree Tejpal Moharekar, Venkatesan Hariram, Galiveeti Poornima and Ashish Jain</i>	
6.1	Introduction	96
6.2	Machine Learning Techniques	97

6.3	Review of Machine Learning for Cancer Detection	101
6.4	Methods	103
6.5	Result Analysis	106
6.6	Conclusion	107
	References	108
7	Text Mining Techniques and Natural Language Processing	113
	<i>Tzu-Chia Chen</i>	
7.1	Introduction	113
7.2	Text Classification and Text Clustering	115
7.3	Related Work	116
7.4	Methodology	121
7.5	Conclusion	123
	References	123
8	An Investigation of Techniques to Encounter Security Issues Related to Mobile Applications	127
	<i>Devabalan Pounraj, Pankaj Goel, Meenakshi, Domenic T. Sanchez, Parashuram Shankar Vadar, Rafael D. Sanchez and Malik Jawarneh</i>	
8.1	Introduction	128
8.2	Literature Review	130
8.3	Results and Discussions	137
8.4	Conclusion	138
	References	139
9	Machine Learning for Sentiment Analysis Using Social Media Scrapped Data	143
	<i>Galiveeti Poornima, Meenakshi, Malik Jawarneh, A. Shobana, K.P. Yuvaraj, Urmila R. Pol and Tejashree Tejpal Moharekar</i>	
9.1	Introduction	144
9.2	Twitter Sentiment Analysis	146
9.3	Sentiment Analysis Using Machine Learning Techniques	149
9.4	Conclusion	152
	References	152
10	Opinion Mining Using Classification Techniques on Electronic Media Data	155
	<i>Meenakshi</i>	
10.1	Introduction	156
10.2	Opinion Mining	158
10.3	Related Work	159

10.4	Opinion Mining Techniques	161
10.4.1	Naïve Bayes	162
10.4.2	Support Vector Machine	162
10.4.3	Decision Tree	163
10.4.4	Multiple Linear Regression	163
10.4.5	Multilayer Perceptron	164
10.4.6	Convolutional Neural Network	164
10.4.7	Long Short-Term Memory	165
10.5	Conclusion	166
	References	166
11	Spam Content Filtering in Online Social Networks	169
	<i>Meenakshi</i>	
11.1	Introduction	169
11.1.1	E-Mail Spam	170
11.2	E-Mail Spam Identification Methods	171
11.2.1	Content-Based Spam Identification Method	171
11.2.2	Identity-Based Spam Identification Method	172
11.3	Online Social Network Spam	172
11.4	Related Work	173
11.5	Challenges in the Spam Message Identification	177
11.6	Spam Classification with SVM Filter	178
11.7	Conclusion	179
	References	180
12	An Investigation of Various Techniques to Improve Cyber Security	183
	<i>Shoaib Mohammad, Ramendra Pratap Singh, Rajiv Kumar, Kshitij Kumar Rai, Arti Sharma and Saloni Rathore</i>	
12.1	Introduction	184
12.2	Various Attacks	185
12.3	Methods	189
12.4	Conclusion	190
	References	191
13	Brain Tumor Classification and Detection Using Machine Learning by Analyzing MRI Images	193
	<i>Chandrima Sinha Roy, K. Parvathavarthini, M. Gomathi, Mrunal Pravinkumar Fatangare, D. Kishore and Anilkumar Suthar</i>	
13.1	Introduction	194
13.2	Literature Survey	197

13.3	Methods	200
13.4	Result Analysis	202
13.5	Conclusion	203
	References	203
14	Optimized Machine Learning Techniques for Software Fault Prediction	207
	<i>Chetan Shelke, Ashwini Mandale (Jadhav), Shaik Anjimoon, Asha V, Ginni Nijhawan and Joshuva Arockia Dhanraj</i>	
14.1	Introduction	208
14.2	Literature Survey	211
14.3	Methods	214
14.4	Result Analysis	216
14.5	Conclusion	216
	References	217
15	Pancreatic Cancer Detection Using Machine Learning and Image Processing	221
	<i>Shashidhar Sonnad, Rejwan Bin Sulaiman, Amer Kareem, S. Shalini, D. Kishore and Jayasankar Narayanan</i>	
15.1	Introduction	222
15.2	Literature Survey	225
15.3	Methodology	227
15.4	Result Analysis	228
15.5	Conclusion	228
	References	229
16	An Investigation of Various Text Mining Techniques	233
	<i>Rajashree Gadhav, Anita Chaudhari, B. Ramesh, Vijilius Helena Raj, H. Pal Thethi and A. Ravitheja</i>	
16.1	Introduction	234
16.2	Related Work	236
16.3	Classification Techniques for Text Mining	240
16.3.1	Machine Learning Based Text Classification	240
16.3.2	Ontology-Based Text Classification	241
16.3.3	Hybrid Approaches	241
16.4	Conclusion	241
	References	241

17 Automated Query Processing Using Natural Language Processing	245
<i>Divyanshu Sinha, G. Ravivarman, B. Rajalakshmi, V. Alekhy, Rajeev Sobti and R. Udhayakumar</i>	
17.1 Introduction	246
17.1.1 Natural Language Processing	246
17.2 The Challenges of NLP	248
17.3 Related Work	249
17.4 Natural Language Interfaces Systems	253
17.5 Conclusion	255
References	256
18 Data Mining Techniques for Web Usage Mining	259
<i>Navdeep Kumar Chopra, Chinnem Rama Mohan, Snehal Dipak Chaudhary, Manisha Kasar, Trupti Suryawanshi and Shikha Dubey</i>	
18.1 Introduction	260
18.1.1 Web Usage Mining	260
18.2 Web Mining	263
18.2.1 Web Content Mining	264
18.2.2 Web Structure Mining	264
18.2.3 Web Usage Mining	265
18.2.3.1 Preprocessing	265
18.2.3.2 Pattern Discovery	265
18.2.3.3 Pattern Analysis	266
18.3 Web Usage Data Mining Techniques	266
18.4 Conclusion	268
References	269
19 Natural Language Processing Using Soft Computing	271
<i>M. Rajkumar, Viswanathasarma Ch, Anandhi R. J., D. Anandhasilambarasan, Om Prakash Yadav and Joshuva Arockia Dhanraj</i>	
19.1 Introduction	272
19.2 Related Work	273
19.3 NLP Soft Computing Approaches	276
19.4 Conclusion	279
References	279

20 Sentiment Analysis Using Natural Language Processing	283
<i>Brijesh Goswami, Nidhi Bhavsar, Soleman Awad Alzobidy, B. Lavanya, R. Udhayakumar and Rajapandian K.</i>	
20.1 Introduction	284
20.2 Sentiment Analysis Levels	285
20.2.1 Document Level	285
20.2.2 Sentence Level	285
20.2.3 Aspect Level	286
20.3 Challenges in Sentiment Analysis	286
20.4 Related Work	288
20.5 Machine Learning Techniques for Sentiment Analysis	290
20.6 Conclusion	292
References	292
21 Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data	295
<i>C. V. Guru Rao, Nagendra Prasad Krishnam, Akula Rajitha, Anandhi R. J., Atul Singla and Joshuva Arockia Dhanraj</i>	
21.1 Introduction	296
21.2 Web Mining	298
21.3 Taxonomy of Web Data Mining	299
21.3.1 Web Usage Mining	300
21.3.2 Web Structure Mining	301
21.3.3 Web Content Mining	301
21.4 Web Content Mining Methods	302
21.4.1 Unstructured Text Data Mining	302
21.4.2 Structured Data Mining	303
21.4.3 Semi-Structured Data Mining	303
21.5 Efficient Algorithms for Web Data Extraction	304
21.6 Machine Learning Based Web Content Extraction Methods	305
21.7 Conclusion	307
References	307
22 Intelligent Pattern Discovery Using Web Data Mining	311
<i>Vidyapati Jha, Chinnum Rama Mohan, T. Sampath Kumar, Anandhi R.J., Bhimasen Moharana and P. Pavankumar</i>	
22.1 Introduction	312
22.2 Pattern Discovery from Web Server Logs	313
22.2.1 Subsequently Accessed Interesting Page Categories	314
22.2.2 Subsequent Probable Page of Visit	314

22.2.3	Strongly and Weakly Linked Web Pages	314
22.2.4	User Groups	315
22.2.5	Fraudulent and Genuine Sessions	315
22.2.6	Web Traffic Behavior	315
22.2.7	Purchase Preference of Customers	315
22.3	Data Mining Techniques for Web Server Log Analysis	316
22.4	Graph Theory Techniques for Analysis of Web Server Logs	318
22.5	Conclusion	319
	References	320
23	A Review of Security Features in Prominent Cloud Service Providers	323
	<i>Abhishek Mishra, Abhishek Sharma, Rajat Bhardwaj, Romil Rawat, T.M. Thiyyagu and Hitesh Rawat</i>	
23.1	Introduction	324
23.2	Cloud Computing Overview	324
23.3	Cloud Computing Model	326
23.4	Challenges with Cloud Security and Potential Solutions	327
23.5	Comparative Analysis	332
23.6	Conclusion	332
	References	332
24	Prioritization of Security Vulnerabilities under Cloud Infrastructure Using AHP	335
	<i>Abhishek Sharma and Umesh Kumar Singh</i>	
24.1	Introduction	336
24.2	Related Work	338
24.3	Proposed Method	341
24.4	Result and Discussion	346
24.5	Conclusion	352
	References	352
25	Cloud Computing Security Through Detection & Mitigation of Zero-Day Attack Using Machine Learning Techniques	357
	<i>Abhishek Sharma and Umesh Kumar Singh</i>	
25.1	Introduction	358
25.2	Related Work	360
25.2.1	Analysis of Zero-Day Exploits and Traditional Methods	364
25.3	Proposed Methodology	367
25.4	Results and Discussion	376

25.4.1	Prevention & Mitigation of Zero Day Attacks (ZDAs)	381
25.5	Conclusion and Future Work	383
	References	384
26	Predicting Rumors Spread Using Textual and Social Context in Propagation Graph with Graph Neural Network	389
	<i>Siddharath Kumar Arjaria, Hardik Sachan, Satyam Dubey, Ayush Pandey, Mansi Gautam, Nikita Gupta and Abhishek Singh Rathore</i>	
26.1	Introduction	390
26.2	Literature Review	391
26.3	Proposed Methodology	393
26.3.1	Tweep Tendency Encoding	394
26.3.2	Network Dynamics Extraction	395
26.3.3	Extracted Information Integration	396
26.4	Results and Discussion	398
26.5	Conclusion	399
	References	400
27	Implications, Opportunities, and Challenges of Blockchain in Natural Language Processing	403
	<i>Neha Agrawal, Balwinder Kaur Dhaliwal, Shilpa Sharma, Neha Yadav and Ranjana Sikarwar</i>	
27.1	Introduction	404
27.2	Related Work	406
27.3	Overview on Blockchain Technology and NLP	409
27.3.1	Blockchain Technology, Features, and Applications	409
27.3.2	Natural Language Processing	410
27.3.3	Challenges in NLP	411
27.3.4	Data Integration and Accuracy in NLP	411
27.4	Integration of Blockchain into NLP	412
27.5	Applications of Blockchain in NLP	414
27.6	Blockchain Solutions for NLP	417
27.7	Implications of Blockchain Development Solutions in NLP	418
27.8	Sectors That can be Benified from Blockchain and NLP Integration	419
27.9	Challenges	420
27.10	Conclusion	422
	References	

28 Emotion Detection Using Natural Language Processing by Text Classification	425
<i>Jyoti Jayal, Vijay Kumar, Paramita Sarkar and Sudipta Kumar Dutta</i>	
28.1 Introduction	426
28.2 Natural Language Processing	427
28.3 Emotion Recognition	429
28.4 Related Work	430
28.4.1 Emotion Detection Using Machine Learning	430
28.4.2 Emotion Detection Using Deep Learning	432
28.4.3 Emotion Detection Using Ensemble Learning	435
28.5 Machine Learning Techniques for Emotion Detection	437
28.6 Conclusion	439
References	439
29 Alzheimer Disease Detection Using Machine Learning Techniques	443
<i>M. Prabavathy, Paramita Sarkar, Abhrendu Bhattacharya and Anil Kumar Behera</i>	
29.1 Introduction	444
29.2 Machine Learning Techniques to Detect Alzheimer's Disease	445
29.3 Pre-Processing Techniques for Alzheimer's Disease Detection	446
29.4 Feature Extraction Techniques for Alzheimer's Disease Detection	448
29.5 Feature Selection Techniques for Diagnosis of Alzheimer's Disease	449
29.6 Machine Learning Models Used for Alzheimer's Disease Detection	451
29.7 Conclusion	453
References	454
30 Netnographic Literature Review and Research Methodology for Maritime Business and Potential Cyber Threats	457
<i>Hitesh Rawat, Anjali Rawat and Romil Rawat</i>	
30.1 Introduction	458
30.2 Criminal Flows Framework	460
30.3 Oceanic Crime Exchange and Categorization	462
30.4 Fisheries Crimes and Mobility Crimes	469
30.5 Conclusion	470

30.6	Discussion	470
	References	470
31	Review of Research Methodology and IT for Business and Threat Management	475
	<i>Hitesh Rawat, Anjali Rawat, Sunday Adeola Ajagbe and Yagyanath Rimal</i>	
	Abbreviation Used	476
31.1	Introduction	477
31.2	Conclusion	484
	References	485
	About the Editors	487
	Index	489

Preface

The book's goal is to discuss the most current trends in applying natural language processing (NLP) approaches. It makes the case that these areas will continue to develop and merit contributions.

The book focusses on software development that is based on visual modelling, is object-orientated, and is one of the most significant development paradigms today. To reduce issues throughout the documentation process, there are still a few considerations to make. To assist developers in their documentation tasks, a few aids have been developed. To aid with the documentation process, a variety of related tools (such as assistants) may be made using natural language processing (NLP). The book is focused on software development and operation using data mining, informatics, big data analytics, artificial intelligence (AI), machine learning (ML), digital image processing, the Internet of Things (IoT), cloud computing, computer vision, cyber security, Industry 4.0, and health informatics domains.

Machine Learning and Artificial Intelligence for Detecting Cyber Security Threats in IoT Environment

Ravindra Bhardwaj^{1*}, Sreenivasulu Gogula², Bidisha Bhabani³,
K. Kanagalakshmi⁴, Aparajita Mukherjee⁵ and D. Vetrithangam⁶

¹*Department of Physics and Computer Science, Dayalbagh Educational Institute (Deemed to be University), Agra, Uttar Pradesh, India*

²*Department of CSE (Data Science), Vardhaman College of Engineering, Shamshabad, Hyderabad, India*

³*Department of Computer Science and Engineering, University of Engineering and Management (UEM), New Town, West Bengal, India*

⁴*Department of Computer Applications, SRM Institute of Science and Technology (Deemed to be University), Trichy, India*

⁵*Department of Computer Science and Engineering, Institute of Engineering and Management, University of Engineering and Management (UEM), New Town, Kolkata, West Bengal, India*

⁶*Department of Computer Science & Engineering University, Institute of Engineering, Chandigarh University, Mohali, Punjab, India*

Abstract

The Internet of Things (IoT) refers to the increasing connectivity of many human-made entities, such as healthcare systems, smart homes, and smart grids, through the internet. Currently, a vast amount of material and expertise has been widely spread. These networks give rise to several security threats and privacy concerns. Intrusions refer to malevolent and unlawful actions that cause harm to the network. IoT networks are susceptible to a diverse range of security issues due to their widespread presence. Cyber attacks on the IoT architecture can lead to the loss of information or data, as well as the sluggishness of IoT devices. For the past twenty years, an Intrusion Detection System has been utilized to ensure the security of

*Corresponding author: ravindrabhardwaj2@gmail.com

data and networks. Conventional intrusion detection technologies are ineffective in detecting security breaches in the Internet of Things (IoT) because of the distinct standards and protocol stacks used in its network. Regularly analyzing the vast amount of data created by IoT is a tough task due to its endless nature. An intrusion detection system (IDS) is employed to safeguard a system or network against unauthorized access by actively monitoring and identifying any potentially malicious or suspicious activities. Machine learning technologies provide robust and efficient approaches for mitigating these distinct hazards. The establishment of a robust machine learning system is the key to acquiring networks that are free from any form of threats.

Keywords: Machine learning, Internet of Things, security, privacy, attacks, vulnerability, intrusions

1.1 Introduction

The use of connected devices made ordinary chores easier and more efficient. They also provide a lot of information that is of great use. Connected automobiles, for example, may be able to take use of services that provide driver assistance. Medical devices give detailed patient records. The unfortunate reality is that a digital assault is possible on any device that is capable of establishing a connection to the internet. In worst case, many of these devices are missing even the most basic safety safeguards. According to the authors of the report, almost all of the data flow associated with the internet of things (98%) is not secured. This information may be obtained by anybody with little effort. To repeat, devices that are connected to the Internet of Things provide fraudsters with an easy target. Not only might their information be stolen, but perhaps other sensitive data as well. Using one of these devices is a frequent strategy used by hackers to gain access to a company's internal network. The sheer number of these devices and the settings they control may be enough to pique the interest of a cyber-attacker [1] as given in Figure 1.1: Increasing Number of DDOS Attacks [Source: Cisco Annual Internet Report 2018-2023] and in Figure 1.2: Threats to Internet of Things.

In a smart environment, any number of items, including databases of user credentials, electronic sensors, CCTV installations, access controls, personal electronic devices, recorded biometrics, and so on, might be the target of an attack. It is essential to protect the confidentiality, integrity, availability, authentication, and authorization features of the IoT architecture from a security point of view [2]. DDoS attacks are becoming more common, and Cisco's Annual Internet Report (2018-2023) White Paper forecasts that the total number of DDoS attacks would more than double

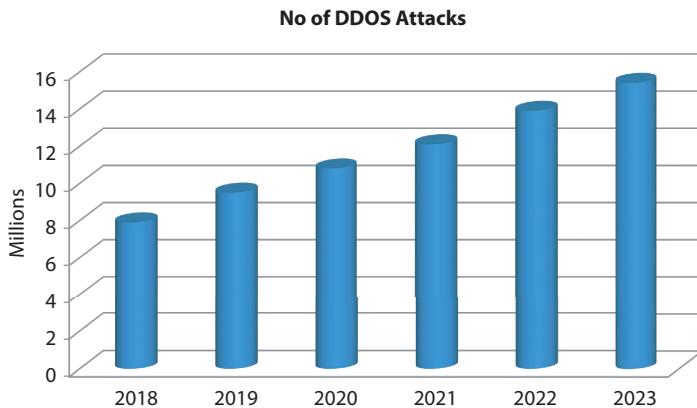


Figure 1.1 Increasing number of DDOS attacks [Source: Cisco Annual Internet Report 2018-2023].

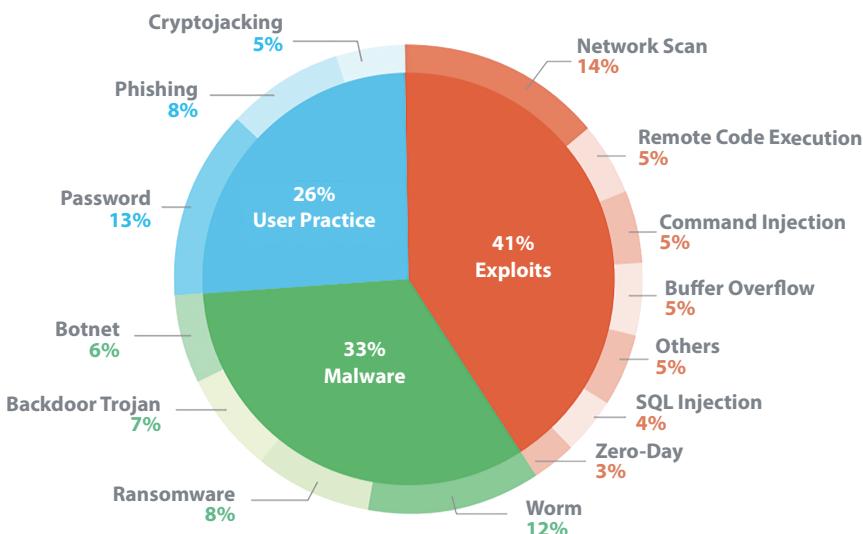
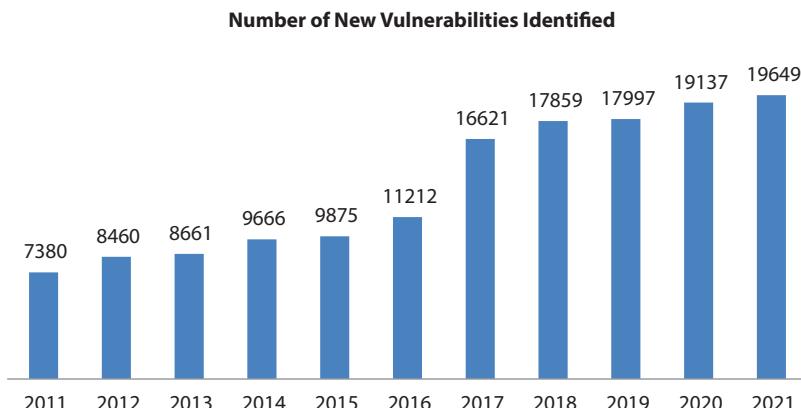


Figure 1.2 Threats to Internet of Things.

from the 7.9 million that were seen in 2018 to anywhere over 15 million by 2023 as shown in Figure 1.1.

According to the survey, 57% of IoT devices that are connected via this insecure traffic are susceptible to medium- to high-severity attacks, making them an easy target for cybercriminals [3]. In addition, the survey found that 41% of attacks target IoT vulnerabilities by scanning them


against publicly available databases of known security flaws. The analysis is shown in Figure 1.2.

According to the Internet of Things Threat Report published by Palo Alto Networks in March 2020, 98% of all traffic from IoT devices is unencrypted, giving attackers a chance to eavesdrop. This network contains sensitive and private information that is easily accessible to attackers, who may then sell the information on the dark web for a profit.

1.2 Need of Vulnerability Identification

Vulnerabilities in IoT network are increasing every year. As shown in Figure 1.3, IoT environment is experiencing a large number of new vulnerabilities every year. All the Internet of Things applications—smart city, smart farming, smart healthcare, smart transportation, and smart traffic—are experiencing new vulnerabilities and increasing number of attacks every year. Also, vulnerabilities and attacks are increasing every year. Number of vulnerabilities has increased threefold in the last decade and twofold in last five years as represented in Figure 1.3: Number of New Vulnerabilities Identified in IOT [Source- IBM X-Force Threat Intelligence Index 2022].

The process of determining how vulnerable a system is to attack is referred to as a vulnerability scan. This kind of scan is carried out to identify potential entry points into a computer or network so that appropriate preventative measures may be taken. Automated scanning methods check applications to see if they have any security problems to establish whether

Figure 1.3 Number of new vulnerabilities identified in IoT [Source- IBM X-Force Threat Intelligence Index 2022].

or not there are vulnerabilities in an organization's internal network. Users are spared the time and effort required to carry out hundreds or even thousands of manual tests for each kind of vulnerability since vulnerability scanners automate the process of searching for security issues in a system.

To maintain the integrity of the system's protections, it is essential to assign vulnerabilities a severity ranking before putting into action any remedial procedures. Common Vulnerability Scoring System (CVSS) is a tool that administrators may use to prioritize security problems according to the severity level associated with each fault. The CVSS score of vulnerability is a standard metric that is not developed for unique network architecture. Despite the fact that the frequency and impact of vulnerabilities affect the security risk level of a specific network, the CVSS score of vulnerability is a standard metric. In addition to the severity score, a number of other factors also affect the level of security risk that is posed by the organization's underlying infrastructure. These factors include the age and frequency of vulnerabilities already present in the system, as well as the impact that exploiting vulnerability has on the system. For this reason, it is advised that, when doing risk level calculations, these components, together with the CVSS severity score, be used. This will allow for effective network security risk management.

1.3 Vulnerabilities in IoT Web Applications

The authors of [4] provide a code inspection-based strategy. To identify a number of mistakes hidden inside the process, this method makes use of code inspection. It is said that the offered approach may be used to locate each and every vulnerability in the NVD. Using this classifier might assist in more accurately identifying potential security flaws.

In addition, a web crawler was developed by Guojun and his colleagues [5]. This web spider collects papers that are connected to one another. The TF-IDF is essential to the methodology. Medeiros *et al.* [6] were the ones who first proposed the approach for evaluating the quality of the code. The concepts that underlie data mining are built on this methodology, which acts as the basis for those concepts. New techniques for identifying web server vulnerabilities were developed by [7].

Authors [8] have developed an innovative method for locating vulnerabilities in web applications. In addition to this, static analysis and data mining directly from the source code are used. Researchers [9] came to the conclusion that XML injection is a critical issue that exists in all web applications.

The vast majority of recently published web apps continue to be plagued by XML injection difficulties.

According to research by [10], a large percentage of such norms rely on online application security. Security measures designed to prevent code injection attacks on web applications were the primary focus of these studies. But even if the notion of acceptance is clearly defined and extensively concealed in almost all international standard regulations, the number of assaults is rising because of flaws in the infusion of code. This is the opinion of the developers. To reduce safety gauges, it is crucial to inform engineers and clients about the relevance of these metrics and to urge them to fulfil the standards with meticulous care. The time we waste waiting for this type of instruction and support is just not acceptable.

Authors [11] spoke about the significant factors that are engaged in the life cycle of product innovation. In addition, a number of software engineers have introduced security mechanization tools and processes that can be used at any stage of the software development life cycle (SDLC) to enhance the stability and quality of even the most fundamental digital systems. In addition to this, they requested that all organizations working to improve networks place a higher priority on planning, education, risk assessment, threat modelling, audits of architecture configuration, secure coding, and assessments of data that has been sent and received after it has been processed.

Wang and Reiter [12] developed a method for mitigating denial of service attacks by making use of a website's diagrammatic structure to counter flooding assaults. When visiting the destination website, a valid customer has the opportunity to quickly get a reward URL by clicking on a referral link provided by a reputable source. The proposed paradigm has no requirements in terms of infrastructure, and it does not call for any changes to be made to the code that users use when they access websites. The WRAPS framework, in addition to the intentions that its creator had for it, was provided. Nearly all of the smart assaults on websites recycled old strategies and methods from earlier attacks. There is a wide number of guises under which one may launch an assault against a strategy or an approach. They may also be seen in circumstances that are not related to the web. Attacks on a website's business logic may be harmful to the website itself, but attackers can also utilize websites as a go-between to accomplish their goals.

The SQLProb [13] will remove the user input and check to see whether it complies with the syntactic requirements of the query. This is accomplished by applying the formula that was inherited and then improving it. The SQLProb is a comprehensive discovery approach that does not need

any modifications to be made to either the application or the database. This allows it to avoid the complexity of polluting, learning, and instrumenting code. In addition, neither education nor metadata are required in order to go on with the material's approval procedure.

Authors presented a complete stream-based WS-security handling architecture in their paper [14]. This design improves the level of preparedness in the administration processing and raises the level of resistance to different kinds of DoS assaults. When leaking is used as a strategy, their engine is able to handle standard WS-Security application scenarios.

The author [15] has examined the vast majority of the conventional criteria that are used to judge Web service quality. The majority of the measures, including performance, consistency, adaptability, limit, strength, exception handling, correctness, uprightness, openness, accessibility, interoperability, and security, all fall below the average level.

Hoquea *et al.* [16] took into consideration the activities that may be taken as well as the probable results or degrees of harm. Following that, the designer divides the assaults into a number of distinct categories. They consistently offered a scientific classification of attack equipment to assist in the organization of security specialists. This was done to help in the prevention of potential threats. They delivered a detailed and well-organized examination of existing tools and frameworks that may aid attackers as well as system defenders. Their focus was on tools and frameworks that are available now. The writers have included a description of both the benefits and drawbacks of the tools and frameworks in the event that you are interested in learning more about them.

Binbin Qu *et al.* [17] provided an explanation of the method that lies behind a model design. The construction of a pollutant dependency diagram for the program requires many steps, one of which is a static examination of the program's source code. They employ a limited state automaton to adhere to the attack model while communicating the pollutant string estimate and verifying the robustness of the program's protections for user input. All of this takes place while maintaining the integrity of the attack model. They utilized the framework model for computerized recognition based on the examination of the spoils and placed it into operation.

1.4 Intrusion Detection System

An incursion refers to any malevolent or dubious activity that jeopardizes the security of a computer or network. Intruders may originate from either

internal or external sources. Internal intruders conceal themselves within the targeted network and acquire elevated privileges to deliberately harm the network infrastructure. External intruders surreptitiously extract data from the target network while remaining concealed outside of it. Internal attacks are initiated by nodes that are either malevolent or compromised, whereas external assaults are initiated by entities that are external to the system. An intrusion detection system (IDS) refers to any hardware or software that can identify and alert to potentially malicious activity on a network or computer system. Moreover, it may also be employed to detect any dubious activities or breaches within the system. Typically, when a network or system behaves abnormally, it suggests the occurrence of anything violent, harmful, or illegal. Although the majority of intrusion detection systems (IDS) mostly depend on identifying and reporting anomalies, there are a handful that excel in detecting intrusions that are overlooked by conventional firewalls. In terms of safeguarding the system from harm, intrusion detection systems (IDS) function similarly to firewalls by preventing unauthorized individuals from gaining access.

There are a total of three categories of intrusion detection systems based on the source of data, four groups based on the technique of analysis, and an additional three groups in total.

The Host-Based Intrusion Detection System (HIDS) software is placed on a computer to monitor, evaluate, and gather data on the traffic and suspicious activities of that specific system. In addition, it analyses not just the traffic activity, but also the system calls, file system changes, inter-process communication, and program running on the computer (Zarpelño *et al.*, 2017). HIDS utilizes data collected from the operating system and application software to detect suspicious activities. When a host-based intrusion detection system (HIDS) is deployed, it is capable of detecting intrusions solely on the host where it is installed. Installation of HIDS eliminates the need for extra software to identify threats on the system. Intruder detection systems are designed to detect and identify instances of unauthorized access or attacks from within a protected area. The installation cost is substantial due to the requirement of individual Host-based Intrusion Detection Systems (HIDS) for each device as given in Figure 1.4: Host-based IDS.

The Network-Based Intrusion Detection System (NIDS) safeguards network nodes by capturing and scrutinizing all network packets for malicious activities. Figure 1.5 displays the structure of the NIDS. The sensor is strategically positioned in a vulnerable region inside the

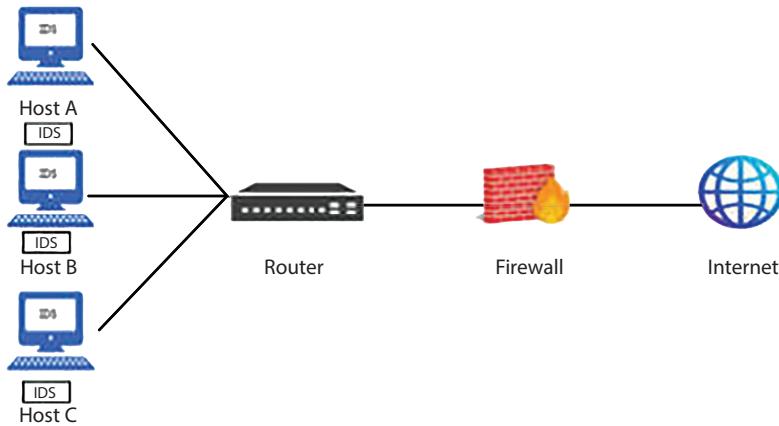


Figure 1.4 Host-based IDS.

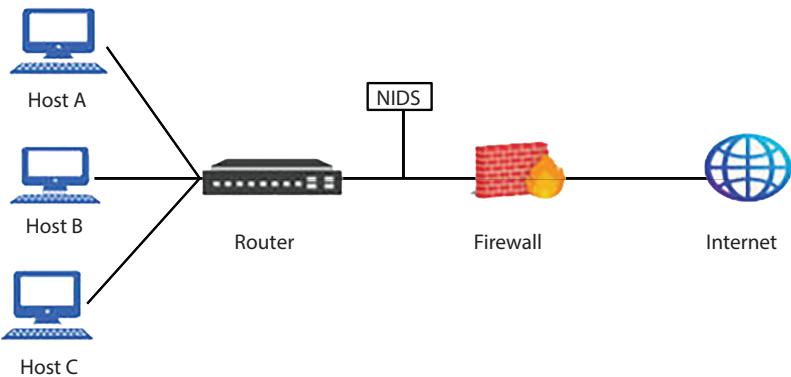


Figure 1.5 Network-based intrusion detection system.

network, bridging the server and the network. The NIDS monitors both incoming and outgoing communications. If the system identifies any network risks, it will need to respond rigorously in order to safeguard itself. One possible course of action is to prohibit network access from the specified IP address, while another alternative is to inform the responsible party through warning notifications. Determining if the NIDS has noticed their potential intrusions might provide a challenge

for a thief. Monitoring extensive networks is under the purview of only a limited number of intrusion detection systems. To mitigate potential security risks, it is imperative to implement scanners, sniffers, and network intrusion detection tools. These measures are necessary to safeguard against various malicious activities such as IP spoofing, DOS assaults, DNS name corruption, man-in-the-middle attacks, and arp cache poisoning. These vulnerabilities arise due to the inherent weaknesses in TCP/IP protocols represented in Figure 1.5 Network-Based Intrusion Detection System.

Hybrid Intrusion Detection Systems (HIDS) integrate the functionalities of several intrusion detection systems to identify and expose intrusions. A hybrid intrusion detection system integrates data from both the network and the host agent or system to create a full overview of the network system. The hybrid technique is the most effective strategy for intrusion detection. Prelude is an example of a hybrid intrusion detection system.

1.5 Machine Learning in Intrusion Detection System

Soft computing makes it possible to build intelligent machines that are able to solve challenging issues that arise in the real world but are beyond the purview of standard mathematical modelling. These kinds of problems cannot be adequately modelled using traditional methods. It has a high tolerance for approximate information, ambiguity, imprecision, and merely a partial view of the environment [18], which enables it to emulate the way individuals form their opinions and make decisions. In this section, we will have a brief discussion on the many different techniques to soft computing that may be used in the process of detecting intrusions.

The genetic algorithm (GA) is a search engine that has been in use since it was conceived in Holland. This search engine is both strong and adaptable. There it first emerged in its current shape for the first time. Because of advances in technology, it is now possible to recreate the natural process of evolution that takes place in uncontrolled environments. The GA may be seen in this way as an example of a global search process that depends on randomness. The concept of “survival of the fittest” is applied by the algorithm to the challenge of developing ever more accurate approximations of a solution to the issue.

The most experienced people in the sector are recruited to teach the next generation, which ultimately results in the development of novel solutions to the issue. If this approach is used, the newly recruited staff members could be better able to address the current challenge [19]. The fitness