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Preface

Many drugs act on more than one target [1]. This can
be necessary for efficacy, but can also lead to adverse
effects [2]. For instance, it was discovered in the 1980s that
dual D2/3 and 5-HT2a receptor antagonism is needed for
efficacy in antipsychotic drugs [3]. Today we know that
antipsychotics bind to more than 20 targets, some of which
contribute to efficacy, but also cause adverse effects [4].

In the early 2000s, the term polypharmacology was
introduced to describe this concept of drugs binding to
several targets. During this time, it became increasingly
recognized that multi-target activity is often needed for
efficacy. For instance, the antibiotic research of the 1990s
focused on single targets derived from bacterial genomes.
These single-targeted approaches were generally fruitless
and did not lead to new drugs. Instead, nearly all sys-
temically efficacious antibiotics bind to multiple targets
or to targets encoded by multiple genes, so that single
mutations do not lead to drug resistance (further discussed
in Chapter 10) [5]. It was also recognized that unintended
“anti-target” activity leads to adverse effects. Here, the
most prominent example is an unusual high number of
drugs withdrawn from the market in 1996–2001. These
drugs were withdrawn due to adverse effects, which could
be traced back to anti-target activity. For instance, half a
dozen of drugs was withdrawn due to their potential to
cause cardiac arrhythmias caused by unintended blockade
of the hERG channel (see Chapter 7) [6]. Thus, polyphar-
macology can be beneficial or detrimental – these two sides
of the polypharmacology coin are further detailed in the
introduction.

Following some widely read papers on concepts such
as “Network Pharmacology” [7] or “Magic Shotguns”
[8], polypharmacology became an increasingly popular
research topic. From 2010 onward, Scifinder searches
retrieve an ever-increasing number of publications on
polypharmacology and related topics, such as multi-target,
off-target, and secondary or network pharmacology. A first
book on polypharmacology was published in 2012 and
became a popular read [9]. This current book is a follow-up
with an updated and expanded content.

The book is divided into four parts A–D. Part A discusses
undesired polypharmacology, which is often a safety
concern. For instance, many drugs bind to “anti-targets”
or “off-targets”, e.g. to cardiac ion channels. This causes
adverse effects such as cardiac arrhythmia. The relevance
of such anti-targets for adverse effects will be discussed in
a first chapter, followed by chapters on the link between
off-targets and adverse drug reactions, on how to screen
for off-target activity and how to recognize and optimize
compounds with a potential for off-target activity. This
is followed by a discussion of kinases and cardiac ion
channels, two of the most important classes of anti-targets.

The remainder of the book is dedicated to intended
polypharmacology. Part B discusses disease areas, which
benefit from polypharmacological approaches. A first
chapter outlines the general concept of network phar-
macology and multi-target drugs. The following chapters
focus on oncology, bacterial and viral infections, CNS
diseases, and metabolic diseases, followed by a discussion
of the role of polypharmacology in the history of drug
discovery.

But how can we discover such multi-target drugs? Part
C of the book highlights important approaches, such as
compound design, data mining with web-based tools,
multi-target peptides, as well as phenotypic screening in
cells, tissues, and animal models. A related topic is the
Selective Optimization of Side Effects (SOSA) approach to
drug discovery, which will be discussed as well.

The final Part D collects case studies on polyphar-
macological drugs and current research. PROTACs and
molecular glues are hot topics in drug discovery, and
the first chapter outlines how these originate from the
polypharmacology of thalidomide. Next is a story on
achieving “selective dual activity” for cyclin-dependent
kinase inhibitors. This is followed by a bouquet of topics,
from the discovery of cariprazine and tapentadol, to cur-
rent research on antivirals, malaria, tuberculosis, HIV, and
pancreatic cancer.

This book on polypharmacology is intended as a compre-
hensive resource for industrial drug hunters and academic
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researchers. It illuminates all facets of polypharmacology,
from anti-target screening, to the design of multi-target
ligands. A comparison of the current book with the first
book from 2012 [9] shows that polypharmacology has
certainly come of age. Polypharmacology research has
improved the drug discovery process, has delivered ideas
for Biotech Startups, and has garnered the attention of
the media [10]. Hopefully, this book will inspire readers
for new drug discovery projects and will help to mitigate
attrition due to safety issues.

I am very grateful to all contributing authors, who
invested their time and their expertise into this book. Also,
I thank the team at Wiley for proposing this book and
for their advice throughout this project: Katherine Wong,
Jonathan Rose, Sabeen Aziz, Shwathi Srinivasan, and
Keerthana Baskaran.

Enjoy reading!

Jens-Uwe Peters
Basel, Switzerland, December 2024
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Introduction
Facets of Polypharmacology – a Janus-Headed Concept for Drug Discovery
Jürgen Bajorath

1.1 Origins

Since the 1980s, target-centric approaches have dominated
drug discovery efforts, triggered by the molecular-biology-
driven reductionist approach [1] and leading to the “one
drug, one target,” or “drug specificity” paradigm [2].
Molecular reductionism aimed at “dissecting biological
systems into their constituent parts” [1]. Different from the
preceding more holistic and pharmacology-oriented era in
drug discovery, molecular sciences and the single-target
(ST) focus took the centerstage and shaped drug discovery
efforts for many years to come [1, 2]. These developments
were paralleled by advances in X-ray crystallography and
molecular graphics catalyzing a wave of structure-based
(“rational”) drug design efforts [3, 4], which further
emphasized the focus on target-specific compounds in
drug discovery.

In the early 2000s, systems biology emerged [5] and
also entered the drug discovery arena [6] introducing, for
example, network representations of biological systems,
pathway modeling, and computational disease models.
These developments originating from bioinformatics also
altered the view of traditional disciplines such as pharma-
cology, giving rise to a network perception of physiological
processes and increasing the notion of their interdepen-
dence [7]. In pharmacological networks, multiple signaling
and metabolic pathways establish functional links and
dependencies between different target proteins [7, 8]. If
pathways in such networks are perturbed or regulatory and
control mechanisms compromised, different types of mul-
tifactorial diseases might arise, including various forms of
cancer, complex diseases of the central nervous system, or
metabolic diseases [9–12]. Such diseases could most likely
not be effectively treated by therapeutic intervention of
individual targets, but required multi-target (MT) engage-
ment instead, thus departing from the target specificity
paradigm in drug discovery. MT activity of drugs was not

unknown and probably first observed for anti-psychotics
and antiepileptics beginning in the late 1980s [12, 13].

In 2006, as a consequence of the increasing notion of
pharmacological networks, the concept of polypharma-
cology was introduced [14], focusing on MT agents for
the treatment of multifactorial diseases: “Contrary to the
dogma that the ‘rational’ way to discover drugs is to design
exquisitely selective ligands for single molecular targets, a
rival hypothesis proposes polypharmacology or the promis-
cuous modulation of several molecular targets” [14]. In
2014, a formal definition of polypharmacology appeared
in the US National Library of Medicine (NLM) as “the
design or use of pharmaceutical agents that act on multi-
ple targets or disease pathways.” Polypharmacology also
encompasses the pharmacological effects resulting from
the use of MT compounds (MT-CPDs), consistent with
the principles of network pharmacology. MT activity of
drugs and other bioactive compounds is often also referred
to as “promiscuity” (not to be confused with nonspecific
compound–protein interactions).

1.2 Pros and Cons

Following its inception, polypharmacology emerged as an
alternative to reductionist approaches and rational drug
design and further evolved into a multifaceted drug discov-
ery strategy [15–17], albeit “Janus-headedly.” In Roman
mythology, Janus, the god of the beginnings, passages, and
endings, had two opposing faces. Accordingly, the “Janus
head” became a symbol of duality and ambivalence – which
exactly applied to the polypharmacology concept: on the
one hand, MT activity of drugs is a prerequisite for thera-
peutic efficacy in the treatment of multifactorial diseases;
on the other, it is responsible for unwanted (adverse)
side effects [15, 18, 19]. While adverse side effects can be
elicited by the engagement of a primary target, they are
more frequently caused by inhibiting so-called anti-targets

Polypharmacology: Strategies for Multi-Target Drug Discovery, First Edition. Edited by Jens-Uwe Peters.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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such as cardiac ion channels (hERG), drug-metabolizing
cytochrome P450 isoforms, or G-protein-coupled neuro-
transmitter receptors [15, 16]. Furthermore, side effects of
MT-CPDs might also be caused by interacting with other
targets not implicated in immediate toxicity, due to path-
way modulations. In the pharmaceutical industry, potential
liabilities as a consequence of interactions with anti-targets
are a major concern, for example, leading to the assessment
of newly identified candidate compounds in various safety
screens for activity against such targets. However, not all
unexpected side effects are undesired, taking into consid-
eration that MT activity also provides the basis for drug
repurposing [20]. Benefits of MT activity of drugs were
often discovered post hoc. For example, adenosine triphos-
phate (ATP)-site-directed kinase inhibitors used in cancer
therapy were originally thought to be kinase-selective,
based on reductionist assessment, before it was discov-
ered that their clinical efficacy depended on multi-kinase
activity and simultaneous interference with multiple
deregulated signaling pathways [21]. This also applied to
imatinib, the first kinase inhibitor marketed as a drug [21].

Despite the Janus-headed nature of polypharmacol-
ogy and the risks associated with potential adverse side
effects resulting from the MT activity of drugs, the pos-
itive impact of polypharmacology on drug discovery
and development is undeniable, as demonstrated by
the continuous occurrence of MT agents among newly
approved drugs. For example, 10 of 49 European Medicines
Agency (EMA)-approved drugs marketed in Germany in
2022 were annotated with two or more targets [22]. Of
course, despite the strong impact of polypharmacology,
the development of compounds with target selectivity or
specificity continues to be a pillar of drug discovery and
development. For example, for long-term treatment of
chronic and non-life-threatening diseases, drug side effects
must inevitably be minimized, rendering target-selective
compounds highly desirable.

1.3 Discovery and Design

Similar to coincidental findings that side effects of drugs
originally thought to be specific were caused by previ-
ously unknown secondary targets, new MT-CPDs are
often discovered serendipitously, for example, in screening
campaigns or target deconvolution of active compounds
from phenotypic assays. Given the high interest in com-
pounds with defined MT activity in different therapeutic
areas, prospective design of such compounds is also a
topical issue in drug discovery [23, 24]. However, consis-
tent with findings that characteristic structural features of
MT-CPDs generally depend on target combinations, as fur-
ther discussed below, the prospective design of MT-CPDs

with desired activity is challenging, mostly carried out
on a case-by-case basis in medicinal chemistry and far
from being routine. For all practical purposes, prospective
design of MT-CPDs for polypharmacology is limited to
two or at most three targets. To this end, combining or
merging target-dependent pharmacophores is a popular
knowledge-based approach for MT-CPD design that is
readily applicable in the practice of medicinal chemistry
and does not require sophisticated computations [23–25].
Pharmacophore fusion attempts can be further extended by
screening of test compounds using pharmacophore mod-
els for different targets and follow-up analysis of shared
hits [26]. As an alternative to pharmacophore modeling,
scaffolds isolated from compounds with known activity
against different targets can also be used as templates for
MT-CPD design, as further discussed below.

In addition to knowledge-based design strategies that
are close to practical medicinal chemistry, other ligand-
or target-structure-based computational approaches have
been applied to identify compounds for polypharma-
cology [27, 28]. For example, various machine learning
(ML) models have been reported to distinguish between
compounds with MT activity and corresponding ST activ-
ity (typically achieving reasonable to high prediction
accuracy). Furthermore, ML models have been used for
computational target profiling. Here, test compounds are
virtually screened using large numbers of individually
derived target-based models to predict MT-CPDs. As a
deep learning alternative, multitask models have also
been developed to predict compounds with activity against
related targets. At the structural level, similarities of bind-
ing sites in different targets have been quantified as an
indicator of polypharmacology potential at the target level.
In addition, parallel docking campaigns or cross-docking
screens have been carried out for structure-based target
profiling. Furthermore, ligands bound to different proteins
have been systematically compared to identify compound
pairs with the highest shape similarity to prioritize and
evaluate putative cross-target activities [28].

1.4 Structural Data

In addition to its relevance for polypharmacology,
the study of MT-CPDs is also of interest from a basic
scientific perspective. For example, exploring the mech-
anisms by which small molecules “multi-specifically” or
“pseudo-specifically” interact with different targets helps
to better understand these special molecular recogni-
tion phenomena. To this end, currently available X-ray
structures of complexes formed by MT-CPDs and different
proteins provide substantial information. For example,
in 2018, we identified 1418 crystallographic MT-CPDs
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(>300 Da) in X-ray structures of complexes with differ-
ent targets available in the Protein Data Bank (PDB)
[29, 30]. These MT-CPDs included 702 ligands forming
complexes with targets from different protein families
(termed multifamily ligands) [30]. Bound conformations
of multifamily ligands available in complexes with unre-
lated targets were compared in detail, revealing a variety
of ligand binding modes [31]. In some instances, these
ligands conformationally adapted to binding sites having
different architectures and chemical features and displayed
different binding modes; in others, binding modes were
surprisingly conserved in differently shaped active sites.
If binding modes of multifamily ligands were conserved,
characteristic interaction patterns emerged for targets
from a given family that differed from others, hence pro-
viding a possible rationale for the conservation of binding
modes [31].

As a representative example, Figure 1.1 shows conserved
and variable binding modes in different active sites for
indomethacin, a nonsteroidal anti-inflammatory drug
(NSAID) with known polypharmacology used for the
treatment of acute pain and symptoms of osteoarthritis
and rheumatoid arthritis.

For 243 of the 702 multifamily ligands, 168 analogue
series were detected in the ChEMBL database [32]. These
series consisted of a total of 4829 compounds, covered
190 additional targets, and yielded 133 unique analogue
series-based scaffolds [30]. Figure 1.2 shows an exemplary

scaffold. All analogue series scaffolds were annotated with
different target combinations, providing a knowledge base
of MT template compounds.

1.5 Activity Data

Rapidly growing volumes of compound activity data pro-
vide another information-rich resource for the study of
MT-CPDs and polypharmacology. Since the analysis
of MT activity is particularly vulnerable to false-positive
activity annotations, compound activity data should be
carefully curated and potential assay interference com-
pounds [33, 34] or colloidal aggregators [35] should be
removed. Indeed, results of MT activity analysis strongly
depend on applied data confidence criteria [36], as illus-
trated in Figure 1.3 for imatinib, suggesting to restrict
the assessment of MT-CPDs to high-confidence activity
data [36].

There are different facets of MT activity. For instance, it
is not very surprising that some active compounds exhibit a
tendency to interact with more than one closely related tar-
get, such as ATP-site-directed protein kinase inhibitors. By
contrast, compounds binding to structurally and function-
ally unrelated proteins are rather unexpected, but of special
interest, from both a basic scientific and a polypharma-
cology perspective. For example, such compounds might
interfere with distinct physiological functions and elicit

Indomethacin
Structures with 3
different targets

Lactoylglutathione lyase (gray, PDB ID: 4KYK; orange)
Prostaglandin G/H synthase 2 (black, PDB ID: 4COX; cyan)

Lactoylglutathione lyase (gray, PDB ID: 4KYK; orange)
Aldoketo reductase 1_C2 (black, PDB ID: 4JQ4; cyan)

Figure 1.1 X-ray structures of indomethacin in complex with three distinct targets. On the left, and right, pairwise superpositions of
bound ligand conformations are shown, revealing conserved (left) and variable binding modes (right) in different protein environments.

Figure 1.2 Scaffold of a multifamily ligand with
kinase activity representing an analogue series. For
the ligand, crystal structures of complexes with
Aurora and TEC kinases were available (PDB) and
structural analogues found in ChEMBL were active
against additional kinase targets from other
families.
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Figure 1.3 Target annotations of imatinib. Based on increasing volumes of activity data from ChEMBL collected over time, the number
of targets reported for imatinib is monitored at three different confidence levels: all activity data (no confidence criteria were applied)
medium- and high-confidence data. Adapted from Hu and Bajorath [36]. The number of target annotations based on all activity data
and medium-confidence data (690 and 406, respectively) is unrealistic.

unexpected pharmacological effects. Systematic analysis
of compound activity data helps to estimate the frequency
with which MT-CPDs occur and the number of targets they
are active against. Especially for candidate compounds and
drugs, such estimates are relevant to balance often artic-
ulated expectation values that are largely unsubstantiated
(e.g., “most drugs bind to 10 or 20 targets …”). In addition,
careful analysis of available compounds and activity data
also helps to gauge predictions of MT-CPDs and their
target numbers, for example, from computational target
profiling (vide supra). Notably, compound-data-driven
analysis principally underestimates MT activity due to data
incompleteness, given that not “all compounds have been
tested against all targets” (the ultimate goal of chemoge-
nomics). This must be taken into consideration. On the
other hand, analysis of the large and rapidly growing
volumes of activity data available in the public domain
should reveal some statistically sound trends [36]. For
instance, in 2019, we carried out a large-scale analysis of
biological screening data from PubChem [37] in the search
for compounds with activity against targets from different
classes [38]. A total of 1063 compounds were identified that
were tested in assays for at least 100 human target proteins
and were active against at least 10 targets from more than
one class [38]. These findings showed that MT-CPDs with
activity against distantly or unrelated targets occurred
rather frequently.

1.6 Drug Target Estimates

Systematic experimental determination of the targets
that drugs are active against is far from being an easy
task. Accordingly, insights into drug target numbers are
typically confined to case-by-case proteomic analysis or
statistics from target panel assays such as kinome screens
[39]. However, based on compound data analysis, different
estimates of target numbers for drugs and other active
compounds have been reported.

Early attempts to predict drug targets used network
representations of drug–target interactions [40]. From dif-
ferent databases, drugs, targets, and interaction data were
collected and analyzed in drug–target networks. From such
network representations, it was estimated that a drug on
average interacted with six targets. Depending on the data
used, targets per drug ranged from approximately 3 to 13
[40]. Comparable estimates were obtained when approved
and experimental drugs taken from DrugBank [41] were
mapped to ChEMBL and drug data and targets were mon-
itored over a 15-year period [42]. For bioactive compounds
from screening assays, different target numbers were deter-
mined. In an early analysis of PubChem [37], MT activities
were analyzed on the basis 600+ assays [43]. It was found
that approximately 58% of active screening compounds
only displayed ST activity in combined primary and con-
firmatory assays. In addition, based on high-confidence


