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Preface 

The present book is with dual missions: firstly to commemorate the 50th anniver-
sary of the successful prediction of the Haicheng MS7.3 earthquake (occurred on 
February 4, 1975) and secondly to illustrate the part of recent practical results from 
the regional and international collaboration in earthquake research and disaster miti-
gation fostered by the China Seismic Experimental Site (CSES). The CSES is carried 
out by geoscientists from Chinese scientific community with colleagues abroad and 
international organizations. The CSES provides a principal natural laboratory to 
support core researches in earthquake geology, tectonic geodesy, seismology, earth-
quake engineering, and computational science. Researchers from different schools, 
different “paradigms” and different technical routes, carrying out comparative studies 
and collaborative experiments by the CSES and other international experimental sites 
help promote standardization work, including the data products, planning, quality 
assurance, sharing, and upgrades in the design of earthquake science and technology. 
Reflecting the ongoing practices of the CSES, this book highlights the scientific inves-
tigation of earthquakes, that is, the close-in contact with earthquakes shortly after 
their occurrence, focusing on seismogenic and tectonic environments, seismogenic 
structures, seismogenic fault structures, source physics, focal mechanism, rupture 
dynamic process, induced earthquake by hydraulic fracturing, gas emission linked to 
earthquake activities, earthquake anomalies monitoring and risk assessment, explo-
ration of prediction methods, earthquake disaster characteristics and disaster-causing 
mechanisms, ground motion prediction, as well as state-of-the-art techniques. The 
readers of this book will broaden their horizons about observational, computational, 
and applied seismology, and earthquake physics and prediction via learning from the 
CSES’ practice to aid in preparedness, mitigation, and management of seismic risk. 
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Chapter 1 
Scientific Investigation of Continental 
Earthquakes and Relevant Studies: 
An Overview 

Yong-Gang Li, Yongxian Zhang, Zhongliang Wu, Ying Li, 
and Xiaodong Zhang 

Abstract Scientific investigation of earthquakes, characterized by its timing and 
multidisciplinary features, plays an important role in deepening the understanding of 
the nature of earthquakes and the reduction of the risk of seismic disasters. With new 
techniques emerging, the scientific investigation of earthquakes has had significant 
advancements. As reviewed in this introductory chapter, all the chapters in the book 
are aligned along this direction. The book itself is hoped to initiate the endeavor of 
systemization and the establishment of the practice-oriented theoretical framework. 
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On May 21, 2021, Beijing time, a strong earthquake occurred in Yangbi, Yunnan 
Province, China. Hours later, a bigger earthquake happened in Maduo, Qinghai 
Province, China. Scientific expeditions for these two earthquakes were promptly 
organized by the Department of Science and Technology and International Coopera-
tion of China Earthquake Administration (CEA), in association with the emergency 
response. The scientific expeditions were coordinated by the Institute of Earth-
quake Forecasting of CEA and the Qinghai Earthquake Agency. The Institute of 
Geophysics, Institute of Geology, Institute of Engineering Mechanics, the First Moni-
toring and Application Center, the Second Monitoring and Application Center, of 
CEA, and China Earthquake Networks Center, China Earthquake Disaster Prevention
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Center Jiangsu Earthquake Agency, Hubei Earthquake Agency, and Tongji Univer-
sity participated in the scientific investigation. The scientific investigation obtained 
fruitful results related to the seismotectonics, the seismogenesis, the source process, 
the seismic disaster and disaster chain, and so on (Institute of Earthquake Forecasting, 
CEA, 2022). Such results with multiple scientific disciplines were obtained based 
on the updated technologies of geodesy, seismology, remote sensing, geochemistry, 
and so on. 

From May 12, 2008, when the great Wenchuan earthquake stroke, and the scien-
tific expedition was organized in a hurry, to May 21, 2021, when the pre-planned 
comprehensive scientific expeditions of the two earthquakes were conducted in 
parallel, there have been significant advances in both earthquake science and tech-
nology and the systems engineering of the planning and organization of the scien-
tific investigation of earthquakes. These advancements facilitate the enhancement 
of the capabilities of earthquake emergency response and scientific investigation. 
Modernization of the scientific investigation of earthquakes has shown its potential 
for promoting the development of earthquake science and technology and for seismic 
disaster risk reduction. 

This book is to summarize the ongoing practice and theoretical framework along 
the direction of the scientific investigation of earthquakes, or the close-in contact with 
earthquakes for investigating the seismogenesis, the preparation process, the rupture 
process, and the disasters of the earthquakes. For seismic disaster risk reduction, 
retrospective investigation of the potential earthquake precursors, the seismic hazard 
assessment, and the preparedness for earthquake disasters played an important role in 
getting the lessons and experiences for the future. Related to this, new technologies 
and methods of earthquake science are the important components. Specifically, this 
book highlights continental earthquakes which have had more serious threats to 
sustainability. 

The eleven chapters are all in the direction of the scientific investigation of earth-
quakes. In such investigation, the deformation before and after the earthquake is 
one of the important issues to study. Su and Meng (Chap. 2) utilized the long-
term accumulated Global Navigation Satellite System (GNSS) observations of the 
epicenter and its surrounding areas to investigate the regional seismogenic environ-
ment, co-seismic displacements, and early post-seismic deformation evolution after 
the MW7.3 Maduo earthquake occurred in Golog Tibetan Autonomous Prefecture, 
Qinghai Province in China. They observed that the horizontal GNSS velocity field, 
which indicates the seismogenic environment of the epicenter and its surrounding 
areas, showed mainly sinistral shear mechanism of this strong earthquake. They 
found that the relative crustal deformation of the main boundary fault accounts for 
60% of the relative movement of the whole Bayan Har block, while the internal 
one accounts for 40%. The calculated GNSS strain rate field by using multi-scale 
spherical wavelet method shows that the significant strain accumulation areas are 
distributed along the main boundary fault of the block, and the epicenter is located 
on the high-to-low strain rate transition zone. Through continuous GNSS observa-
tions and calculations of the co-seismic and early post-seismic deformations, they
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found that the significant post-seismic deformation in the first 5 days accounts for 
72% of the first 20 days, and its direction is consistent with the co-seismic one. 

Seismological observation plays an essential role in characterizing the earthquake 
sequence and the tectonic environment of large earthquakes. Chang et al. (Chap. 3) 
deployed a dense seismic array to record aftershocks after the 2021 Maduo MW7.3 
earthquake to investigate the deep seismogenic environment in the source area, in 
terms of earthquake locations, three-dimensional high-resolution seismic imaging, 
focal mechanism solutions, and shear wave splitting. The results show obvious 
velocity in-heterogeneities around the main rupture. The delay times in the intensive 
area of aftershocks along the main rupture are significantly greater than those on 
the north and south sides outside the intense aftershock zone. The distribution of 
aftershock sequences, fast wave polarization, and surface rupture alignment around 
the main rupture zone exhibit strong consistency and segmentation characteristics. 
The aftershocks are mainly distributed on the north side of the main rupture, with 
larger delay times observed on the north side compared to the south side. The shape 
of seismogenic fault, as revealed by a high-resolution catalog, indicates a northward 
dip. The eastern segment for the main rupture is characterized by the most intensive 
distribution of aftershocks and the mainshock with the largest scale of high-velocity 
anomaly and the larger delay times in the source region. These characteristics suggest 
that the stress accumulation during the seismogenic process of the Maduo MW7.3 
earthquake is mainly concentrated in the eastern segment due to blockage of the 
high-speed anomaly in the east. 

In recent years, some earthquakes induced or triggered by human activities have 
occurred, being a challenge to industry, while providing a good opportunity to study 
the mechanics of earthquakes. On September 16, 2021, MS6.0 (MW5.4) Luxian earth-
quake occurred in the Luxian shale gas field. This is the second MS ≥ 6 earthquake to 
hit the Sichuan Basin since 2014, following the MS6.0 Changning earthquake on June 
17, 2019. Since 2014, a number of hydraulic fracturing wells for shale gas exploitation 
has increased rapidly, probably resulting in a sharp increase in the seismicity in the 
southern Sichuan Basin. Ye and Lu (Chap. 4) investigate the seismotectonic settings 
in the Sichuan Basin, eastern Tibetan Plateau, the largest shale gas-producing region 
in China, and the seismogenic mechanism of the 2021 MS6.0 Luxian earthquake 
which might be induced by hydraulic fracturing in the Luxian shale gas field located 
in the southern Sichuan Basin. Sophisticated methods and techniques (software) were 
used in various data analyses, including the normal-mode summation code Mineos 
to compute Green’s function and waveform inversion to obtain the source mech-
anism solution, the machine learning code PhaseNet to detectseismic phases, the 
REAL, Hyposat and HypoDD to obtain accurate locations of aftershocks, the gener-
alized Cut and Paste (gCAP) code to obtain the ambient stress field, the Sentinel-1 
Synthetic Aperture Radar images and GNSS observations to determine the seismo-
genic fault and slip distribution, the maximum curvature and likelihood methods to 
calculate b-value and its spatiotemporal variations, ambient noise tomography and 
the 3D seismic reflection profiling to construct a high-resolution 3-D S-wave velocity 
regional model and seismogenic fault structure. The results show that the underlying 
active fault structures and tectonic stress state control the rupture model of induced
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earthquakes in southern Sichuan. The seismicity in the southern Sichuan Basin in 
recent years is closely related to the tectonic activity by the eastern extension of 
the southeastward of Tibetan Plateau, and those induced strong earthquakes took 
place on the pre-existing basement faults. The seismogenic fault is located in the 
Precambrian basement, suggesting that the mainshock is most likely caused by the 
poroelastic effects due to fluid injection. Hydraulic fracturing could have reactivated 
a large-scale basement fault and triggered the strong earthquakes under relatively 
high geo-stress conditions in the study area. 

Due to seismic and tectonic activities, underground gases were released into the 
atmosphere from the fault zones through the earth’s degassing, leading to the varia-
tions in gases such as CH4 and CO in the atmosphere. Cui et al. (Chap. 5) examined 
gas emissions from the Kangding area associated with strong earthquakes, where the 
Longmenshan, Xianshuihe, and Anninghe faults characterized by intense degassing 
are important active faults in the eastern part of the Tibetan Plateau. They found 
that the variations of CH4 and CO in the Kangding area were closely related to 
earthquakes and tectonic activities, evident in their spatial alignment with tectonic 
distributions and their responsive patterns to nearby seismic events over time, thereby 
reflecting changes in tectonic stress. Degassing from faults provides a new approach 
for monitoring seismic activities in this region. 

Characterizing and monitoring of earthquake sequence has been one of the 
important missions of the scientific investigation of earthquakes. Zhang and Zhang 
(Chap. 6) reviewed several strong or large earthquakes occurred in Western China, 
over the past four years in terms of operational aftershock forecasting research 
for investigation of recent seismic activities in China. These attractive earthquakes 
include the Yutian, Xingjiang MS6.4 earthquake in 2020, the Maduo, Qinghai MW7.3 
earthquake in 2021, the Luding, Sichuan MS6.8 earthquake in 2022 and the Linxia, 
Gansu MS6.2 earthquake in 2023. The comprehension of the potential for strong after-
shocks, as gleaned from the analysis of operational aftershock forecasting models, 
assumes a crucial role in facilitating prompt emergency responses and informed 
scientific decision-making. They used the 2021 Maduo MW7.3 earthquake and 
the 2022 Luding MS6.8 earthquake as examples, and employed a range of fore-
casting models, including the Epidemic Type Aftershock Sequence (ETAS) model, 
to describe the temporal features of the sequence attenuation and the potential for 
triggering subsequent offsprings. This involved a short-term forecasting for the next 
three days, in a tracking manner and provided the probability and occurrence rate of 
aftershocks with different target magnitudes. Then, the Receiver Operating Charac-
teristic (ROC) method and a straightforward approach were employed to compare the 
performance of the two models with that of a random guess and relative consistency, 
respectively. These statistical methods in practice demonstrate their effectiveness in 
providing scientific and technological support for earthquake prediction. 

Predictability of an earthquake has been a challenging issue in earthquake science. 
The scientific investigation of earthquakes, although usually in retrospective perspec-
tives, provides earthquake forecast study with heuristic clues. Liu et al. (Chap. 7) 
revisited the instrumental and historical earthquake catalogues of the 2008 M8 
Wenchuan earthquake, and discussed its predictability from the perspective of the
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‘Dragon King’ theory and the ‘nowcasting’ approach by inspecting the frequency-
magnitude relation of earthquakes. Using the century-scale earthquake catalogue, this 
earthquake cannot be regarded as a ‘Dragon King’ event. However, on the decade to 
the annual time scale, this earthquake may be regarded as a ‘Dragon King’ events. In 
the framework of ‘nowcasting earthquakes’, the hazard of such a devastating earth-
quake can be described by the ‘earthquake potential score’ (EPS, up to 94%) and 
‘potential magnitude’ (MP, up to 7.4) just prior to the occurrence of this event. 

Focusing on the scientific investigation of earthquakes in China, this book also 
pays attention to the state-of-the-art methods developed and applied in relevant inves-
tigations of earthquakes around the world. Rundle et al. (Chap. 8) developed the 
earthquake generative pretrained transformer model, “QuakeGPT”, a deep learning 
technology to nowcasting earthquake disaster characteristics and disaster-causing 
mechanisms based on science transformers. It is a type of model that underpins the 
new AI technologies like ChatGPT, to tag important sequences of data and to identify 
relationships between those tagged data. Typically, the data used to train the model 
is in the billions or larger when applied to earthquake problems. This transformer 
might be able to learn the sequence of events leading up to a major earthquake. In this 
research, authors simulated catalogs from the physics-based model Virtual Quake 
and from stochastic seismicity models. In the current work, they are using a new type 
of stochastic seismicity model “ERAMS” (Earthquake Rescaled Aftershock Model 
for Seismicity) to find emergent properties of the underlying scaling parameters by 
mining the USGS online catalog of California for the time rescaling and the spatial 
migration of aftershocks. 

In the scientific investigation of an earthquake, the most straightforward investi-
gation of evaluating the prescribed seismic hazard (or ground motion level) is of no 
doubt through the comparison of real strong ground motion records with the assessed 
results. On the other hand, however, as discussed by Zhang et al. (Chap. 9) in the  
framework of neo-deterministic seismic hazard assessment (NDSHA), such an eval-
uation can be implemented directly through a comparison between the magnitude 
of the earthquake and the Mdesign, which seems not fully discussed in the agenda of 
the scientific investigations of earthquakes. The contribution of this chapter lies in 
that at the present time there have been results related to probabilistic SHA (PSHA) 
and deterministic SHA (DSHA), and the evaluation of SHAs based on scientific 
investigations of earthquakes, albeit without a ‘standard’ procedure. 

Because actual fault zones are composed of multiple layers of varying lithology 
at depths, they usually form a depth-dependent multi-layer low-velocity waveguide 
(LVWG). Li (Chap. 10) discussed fault-zone waveguide effects from numerical tests 
and field observations that aid in rock failure estimation at depth and ground motion 
prediction. 3-D finite-difference synthetic fault-zone trapped waves (FZTWs) in 
terms of a multi-layer LVWG show that the early portion of FZTWs with larger 
amplitude peak at lower frequency is mainly produced within the top layer of the 
LVWG having the slower velocity, while the late portion of FZTWs with smaller 
amplitude peaks at higher frequencies arises from deeper layers of the LVWG having 
faster velocities. Even if the seismic source is located out of the multi-layer LVWG, 
as long as it is lower than the bottom of the upper layer of LVWG, FZTWs with



6 Y.-G. Li et al.

large amplitudes could be produced when waves enter the upper layer, but they show 
shorter post-S durations with smaller PSSP ratios than those for the source located 
at the same depth within the LVWG. These FZTWs from off-fault events might lead 
us to extract the shallow portion of the fault damage zone, but miss its deep portion. 
Therefore, we should carefully identify the FZTWs from these deep on-fault events 
when we analyze the recorded waveform data to accurately extract the depth exten-
sion of a realistic fault damage zone. Our numerical investigations are consistent 
with the observed FZTWs at rupture zones of the Landers, Hector Mine, and Park-
field earthquakes in California. The fine structure of fault damage zone around the 
earthquake source at depth will influence rupture propagation and may offer a basis 
for “asperities”, “barriers” and the upper bound frequency “fmax” of seismic waves 
that can be radiated from a fault zone in sake for the strong ground motion prediction. 

Scientific investigation of earthquakes is by its nature a systems engineering. It is 
especially challenging in the planning stage for an earthquake which is not predicted. 
More challenges in the organization lie in the interdisciplinary feature of the compre-
hensive investigation. Dealing with these challenges, Hu et al. (Chap. 11) summarize 
the detailed investigation of earthquake hazardous areas and comprehensive scien-
tific investigation of earthquakes in China by proposing a comprehensive project. 
The experiences of practice call for the establishment of the theoretical framework 
of the scientific investigation of earthquakes, in such development there is appar-
ently much to be done. In this regard, this book is just a starting of the research and 
reflection. In cooperation with the general guidances to the scientific investigation 
of earthquakes (Institute of Earthquake Forecasting, CEA, 2024), this book provides 
the scientific investigation of earthquakes with case examples of the application of 
the general guidances, although it is still neither systematic nor optimized. 

In recent years the present book series has focused on the development of earth-
quake science in China with implications for the development of global seismology, 
including the decade retrospective of the 2008 Wenchuan earthquake (Li, 2019) 
and the China Seismic Experimental Site (Li et al., 2021). As a continuation of 
this series, the present book, focusing on the scientific investigation of earthquakes, 
covers the disciplines of seismology, geodesy, geology, geochemistry, engineering 
seismology, earthquake engineering, etc., and faces a wide range of readers from 
scientists in the field of natural science and disaster risk reduction to graduate students 
in geosciences, covering multi-disciplinary topics to allow readers grasp the various 
methods and skills used in data processing, analysis and numerical modeling for 
geological, geophysical, and mechanical interpretation of earthquake phenomena 
and physics. This book is a self-contained volume and explores each topic with in-
depth detail. Reference lists and cross-references with other volumes facilitate further 
research to aid the understanding of earthquake processes and hazards globally. 
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Chapter 2 
Crustal Deformation and Regional 
Seismogenic Environment Associated 
with the 2021 Maduo MW7.3 Earthquake 

Xiaoning Su and Guojie Meng 

Abstract The Maduo MW 7.3 earthquake occurred at 2:04 local standard time on 
May 22, 2021, in Maduo County, Golog Tibetan Autonomous Prefecture, Qinghai 
Province, China. In this chapter, the regional seismogenic environment, co-seismic 
displacements, and evolution of early post-seismic deformation are studied by using 
the long-term accumulated GNSS observations of the epicenter and its surrounding 
areas. Firstly, we obtained the horizontal GNSS velocity field, which indicated the 
seismogenic environment of the epicenter and its surrounding areas is mainly sinis-
tral shear. The relative crustal deformation of the main boundary fault accounts for 
60% of the relative movement of the whole Bayan Har block, while the internal one 
accounts for 40%. Secondly, we calculated the GNSS strain rate field by using a 
multi-scale spherical wavelet method considering robustness. The result shows that 
the significant strain accumulation areas are distributed along the main boundary fault 
of the block, and the epicenter is located in the transition zone from the great strain 
rate values to the low one. Finally, the co-seismic and early post-seismic deformation 
were calculated by continuous GNSS observations. Two strategies were adopted to 
calculate the co-seismic displacements, the difference between them indicated the 
co-seismic displacements can be obtained more accurately by using the strategy of 
4 h observations after the mainshock, and the results of a single day strategy have 
included the early post-seismic deformation. The significant post-seismic deforma-
tion was obtained at station QHMD, and its direction is consistent with the co-seismic 
one. The logarithmic attenuation model which characterizes mainly after-slip defor-
mation can accurately model the observed values. The post-seismic deformation in 
the first 5 days accounts for 72% of the first 20 days. 

Keywords 2021 Maduo MW 7.3 earthquake · Crustal deformation · Seismogenic 
environment · Co-seismic displacements · Post-seismic deformation
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2.1 Introduction 

According to the China Earthquake Network Center, at 2: 04 Beijing time on May 
22, 2021, an earthquake of MW 7.3 occurred in Maduo, Qinghai Province, China 
with the epicenter at (98.34° E, 34.59° N) and the focal depth at 17 km (provided 
by China Earthquake Networks Center). The epicenter of this earthquake is located 
close to the Maduo-Gande fault and the Kunlunshankou-Jiangcuo fault (Xu et al., 
2016), approximately 70 km away from the East Kunlun fault zone, which forms 
the northern boundary of Bayan Har block. Wang et al. (2021) initially identified the 
Kunlunshankou-Jiangcuo fault as the main seismogenic fault for this earthquake. Xu 
et al. (2016) suggested that the seismogenic structure was a high-angle, left-lateral 
strike-slip fault within the Bayan Har block oriented in an NWW direction. Zhu et al. 
(2021) speculated that the seismogenic fault was parallel to the Kunlun Mountain 
fault on the main boundary by integrating the distribution of post-seismic slips and the 
displacement discontinuities in InSAR interferogram. Li et al. (2021), through exten-
sive field geological surveys combined with source parameters, aftershock distribu-
tion, and InSAR co-seismic deformation results, confirmed that the seismogenic 
fault is an NW-trending and sinistral strike-slip Kunlunshankou-Jiangcuo fault, and 
the rupture segment is Jiangcuo section (Fig. 2.1). The focal mechanism solution 
(GCMT) and the characteristics of earthquake surface rupture consistently indicated 
that this was a typical sinistral strike-slip event (Li et al., 2021). It is the second major 
earthquake closely related to the activity of the Bayan Har block with a magnitude 
greater than M 7.0, following the M 7.0 Jiuzhaigou earthquake in September 2017, 
occurring after a gap of 3 years and 8 months. Precise aftershock relocations revealed 
that over 1241 aftershocks were recorded within ten days after the main shock, 
forming a belt 170 km in length (Wang et al., 2021). Analysis of the spatiotemporal 
distribution characteristics of aftershocks showed that a belt of aftershock distribution 
had already formed within one day after the mainshock, with subsequent aftershocks 
merely superimposing on the existing spatial layout. The mainshock was positioned 
in the middle of the aftershock belt, with rupture lengths of about 85 km on both the 
eastern and western sides of the mainshock, exhibiting a bilateral rupture feature.

The Bayan Har block is a strip-shaped active tectonic block in the central-eastern 
part of the Tibetan Plateau. Owing to the continuous northward push of the Indian 
plate, the block undergoes a general southeastward lateral extrusion movement, 
which has also led to a series of major earthquakes along its periphery and within it 
(Gao & Deng, 2013; Wen et al., 2011; Xu et al., 2008a). Besides the large left-lateral 
strike-slip Garze-Yushu-Xianshuihe fault zone and the East Kunlun fault zone at the 
southern and the northern boundaries of the block, a series of late Quaternary active 
faults with NW-trending and left-lateral strike-slip movement are also developed in 
the block, showing the complex and unique characteristics of tectonic movement 
and strain accumulation in the block boundary and its interior (He et al., 2018; Jiang 
et al., 2006; Li et al., 2011; Meng et al., 2016; Xu et al., 2008b; Zhou et al., 1996).


