
Nicolaou · Yu · Rigol

Classics in Total Synthesis IV

New Targets, Strategies, Methods

Classics in Total Synthesis IV

New Targets, Strategies, Methods

K. C. Nicolaou Ruocheng Yu Stephan Rigol

Further Reading from Wiley-VCH

Nicolaou, K. C. / Sorensen, E. J.

Classics in Total Synthesis – Targets, Strategies, Methods 1996

ISBN 978-3-527-29231-8 (Softcover)

Nicolaou, K. C. / Snyder, S. A.

Classics in Total Synthesis II – More Targets, Strategies, Methods 2003

ISBN 978-3-527-30684-8 (Softcover)

Nicolaou, K. C. / Chen, J. S.

Classics in Total Synthesis III – Further Targets, Strategies, Methods

2011

ISBN 978-3-527-32958-8 (Hardcover)

ISBN 978-3-527-32957-1 (Softcover)

Carreira, E. M. / Kvaerno, L.

Classics in Stereoselective Synthesis

2009

ISBN 978-3-527-32452-1 (Hardcover)

ISBN 978-3-527-29966-9 (Softcover)

Corey, E. J. / Cheng, X.-M.

The Logic of Chemical Synthesis

1995

ISBN 978-0-471-11594-6 (Softcover)

Corey, E. J. / Wu, Y.-J.

Molecules Engineered Against Oncogenic Proteins and Cancer 2023

ISBN 978-1-394-20708-4 (Hardcover)

Classics in Total Ruocheng Yu **Synthesis IV**

K. C. Nicolaou Stephan Rigol

New Targets, Strategies, Methods

With a Foreword by E. J. Corey

Authors

Prof. Dr. K. C. Nicolaou

Rice University 6100 Main Street Houston, TX 77005 USA

Dr. Ruocheng Yu

Rice University 6100 Main Street Houston, TX 77005 USA

Dr. Stephan Rigol

Rice University 6100 Main Street Houston, TX 77005 USA

Cover Design: Wiley

Cover Image: © Black sponge Halichondria okadai, Courtesy of Dr. Norihito Maru All books published by **WILEY-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.

Applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2025 WILEY-VCH GmbH, Boschstraße 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages, text and data mining and training of artificial technologies or similar technologies). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-34877-0 **ePDF ISBN:** 978-3-527-83148-7 **ePub ISBN:** 978-3-527-83149-4

Typesetting Straive, Chennai, India.

Foreword

It is both an honor and a pleasure to pen the foreword for the fourth volume of *Classics in Total Synthesis*, as I did for the three previous volumes. This series has emerged as a guiding light in the ever-expansive realm of total synthesis. As we embark on this intellectual journey, it is essential to reflect on the profound impact that the preceding volumes have had on our understanding of the total synthesis of complex molecules.

Classics IV seamlessly joins its predecessors, weaving together the threads of scientific discovery, challenge, and intellectual pursuit. This series has proven to be not only a chronicle of synthetic triumphs but also a celebration of the inherent complexity and beauty, which are inherent to total synthesis endeavours.

As I delve into the prepublication draft of this volume, I find the presented synthetic research remarkably clear and vivid and find each of the chapters exerting a captive force. The collection of synthetic triumphs within these pages invites readers to traverse the great complexity and variety that is characteristic for total synthesis journeys. The challenges presented verge on the impossible, demanding not only mental and practical rigor but also unwavering dedication, persistence, and hard work.

One of the remarkable aspects of the *Classics in Total Synthesis* series has been its ability to transcend disciplinary boundaries. While rooted in chemistry, the series establishes strong connections with biology and medicine. This interdisciplinary approach highlights the relevance of synthetic chemistry at a fundamental level to human well-being, health, and education.

The educational approach employed by the authors is enormously valuable and effective. The careful balance between historical context, comments on the molecules' impact to humankind, and the design and execution aspects of each synthesis creates a narrative that is not only clear but also intellectually stimulating. It is a sheer delight to revisit each synthetic success guided by the insightful analyses found throughout *Classics IV*.

As mentioned in the Forewords of the earlier volumes, the enormous number of achievements in total synthesis is so large that capturing them all in a single collection is an impossible task. However, *Classics in Total Synthesis* has risen to this challenge with grace, presenting a carefully made selection that not only represents outstanding achievements, namely the construction of highly complex natural products, but also covers a diverse set of synthetic methodologies.

The question arises: Have we reached a plateau in scientific or intellectual discovery within the field of synthetic organic chemistry? The answer, as echoed by the authors, is a resounding no. The opportunities for new developments and discoveries are as vast as the

VI Foreword

synthetic targets that remain to be uncovered, chased, and conquered. Today's total synthesis is not a culmination but a prelude to a future that promises continued dynamic development, relentlessly pushing the boundaries of what we perceive as possible.

In crafting this Foreword, I thank K.C. Nicolaou, Ruocheng Yu, and Stephan Rigol for their work in sustaining the heritage of *Classics in Total Synthesis*. May the publication of *Classics IV* be met with the same enthusiasm and admiration as it was rightly the case with its predecessors. I am confident that studying the *Classics* will empower upcoming generations of chemists, fostering a profound comprehension and appreciation for the significance of total synthesis. This endeavour will instill in them a deep understanding of the value and importance of natural products through showcasing the appealing beauty inherent to their molecular architectures and such insights will serve as catalyst, inspiring these aspiring chemists to embark on their own transformative journeys of exploration, discovery, and innovation.

E. J. Corey Harvard University 23 January 2024

Preface

As we embark on the journey into the pages of this fourth volume in the *Classics in Total Synthesis* series, we find ourselves standing at the precipice of a new chapter in the evolving narrative of organic synthesis. This series, conceived with the dual purpose of documenting historical milestones and serving as an educational beacon, has traversed through the annals of synthetic chemistry, illuminating the paths carved by the practitioners of our field.

In the preceding volumes (Classics I, Classics II, and Classics III), we witnessed the meticulous unraveling of nature's complexity through ingenious synthetic strategies. Classics I laid the groundwork, introducing us to the profound philosophy and purpose of total synthesis. Building upon these foundational principles, Classics II expanded our horizons with a focused exploration of the transformative potential that the 21st century holds for synthetic chemistry. Classics III brought us up to speed with the rapid advancements of the recent era, showcasing the elegance, brevity, and environmental consciousness that characterize the latest synthetic frontiers.

As we delve into the rich tapestry of *Classics IV*, our aim remains steadfast—to chronicle the evolving landscape of total synthesis. This volume encapsulates the culmination of new methodologies, emerging trends, and a selection of significant total syntheses undertaken from 2009 to 2022 while additionally including two earlier syntheses from 1979 and 1992 for comparison and to highlight the development of organic synthesis over the past decades. In the spirit of its predecessors, *Classics IV* seeks to inspire and educate, weaving together the historical context, the intricacies of retrosynthetic analysis, and the tactical brilliance in execution.

From the complex architectures of natural products to the streamlined synthesis of functional molecules, each Chapter in *Classics IV* unfolds a unique story. The interplay of mechanisms, reactivity, selectivity, and stereochemical aspects is thoroughly examined, echoing the pedagogical format that has become synonymous with this series. Clear Schemes and Figures accompany the text, providing a visual guide to the sophisticated dance of atoms that is initiated by organic chemists, breaking bonds between some of them and forming new ones between others to build the molecules of Nature and their designed analogues in the laboratory.

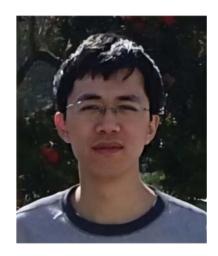
The creation of *Classics IV* has been a collaborative endeavour, made possible by the dedication and insights of numerous individuals. Besides all scientists involved in the presented synthetic journeys, we extend our deepest gratitude to Janise L. Petrey for her careful editing, ensuring a seamless reading experience and bringing clarity to complex concepts; Jenna L. Kripal for her valuable assistance in creating stimulating and engaging frontispieces for each Chapter;

VIII Preface

and the Editorial staff from Wiley-VCH for their professional and straightforward handling of our manuscript and its translation to the finished book that you are holding in your hands now.

We dedicate *Classics IV* to the continued legacy of organic synthesis and recognize the responsibility that lies ahead. To the students, researchers, and practitioners who hold these pages, we impart the torch of innovation and the quest for knowledge. May this volume inspire the next generation of synthetic organic chemists, just as its predecessors have done, to further sharpen the art and science of organic synthesis in general and total synthesis in particular for the betterment of humankind.

Houston, TX September 2024


K. C. Nicolaou Ruocheng Yu Stephan Rigol

About the Authors

K.C. Nicolaou was born in Cyprus and educated in the United Kingdom and United States. He currently holds the Harry C. and Olga K. Wiess Chair in Natural Sciences at Rice University. His previous appointments include positions at the University of Pennsylvania and joint positions as the Darlene Shiley Chair in Chemistry and the Aline W. and L. S. Skaggs Chair in Chemical Biology at The Scripps Research Institute and as Distinguished Professor of Chemistry at the University of California, San Diego. The impact of his work in chemistry, biology, and medicine flows from his contributions to chemical synthesis as described in over 800 publications. He is the recipient of numerous Prizes, Awards, and Honors (e.g., Nemitsas Prize, Wolf Prize, and the Robert Koch Gold Medal) and has been elected to several Academies, such as the New York Academy of Sciences; the American Academy of Arts and Sciences: the American Philosophical Society; the Royal Society of London; the National Academy of Sciences (USA); the Royal Society of Chemistry (UK); the Cyprus Academy of Sciences, Letters and Arts; and the German Academy of Sciences Leopoldina.

Ruocheng Yu studied chemistry at Peking University, China, as an undergraduate student under the supervision of Zhen Yang and Jiahua Chen. After receiving his bachelor's degree in 2012, he went on to pursue his doctoral studies under the guidance of K.C. Nicolaou at The Scripps Research Institute and later Rice University. In the Nicolaou lab, he completed the total syntheses of several natural and designed molecules, including gukulenin B. He is currently a postdoctoral fellow in the laboratory of Emily Balskus.

Stephan Rigol received his higher education at Leipzig University, Germany, where he obtained his undergraduate degrees, and received his doctorate in 2013 after carrying out research in the fields of synthetic organic and medicinal chemistry under the guidance of Athanassios Giannis. He then moved to the United States to join the group of K. C. Nicolaou at Rice University where he is currently conducting research in the field of natural products chemistry with a particular focus on molecules with antibacterial and anticancer activities.

Abbreviations

18-crown-6	1,4,7,10,13,16-hexaoxacyclo-	bpy	2,2'-bipyridine
	octadecane	bpz	2,2'-bipyrazine
4CzIPN	1,2,3,5-tetrakis(carbazol-9-yl)-	brsm	based on recovered starting material
	4,6-dicyanobenzene	Bu	butyl
9-BBN	9-borabicyclo[3.3.1]nonane	Bz	benzoyl
A	adenine	C	cytosine
Ac	acetyl	CAN	ceric ammonium nitrate
acac	acetoacetate	Cap	caproyl
Ad	adamantane	Cas9	CRISPR associated protein 9
AD	asymmetric dihydroxylation	cat.	catalytic or catalyst
ADC	antibody-drug conjugate	Cbz	benzyloxycarbonyl
ADP	adenosine diphosphate	CD	cluster of differentiation
AIBN	2,2'-azobisisobutyronitrile	CDI	1,1'-carbonyldiimidazole
AIDS	acquired immunodeficiency	CFL	compact fluorescent light
	syndrome	CIPE	complex-induced proximity effect
α KG	α -ketoglutaric acid disodium salt	Cit	L-citrulline
	dihydrate	Cl ₄ NHPI	tetrachloro-N-hydroxyphthalimide
AK	actinic keratosis	CMD	concerted metalation-deprotonation
Alloc	allyloxycarbonyl	CNS	central nervous system
amphos	di-tert-butyl(4-dimethylamino-	CoA	coenzyme A
•	phenyl)phosphine	cod	1,5-cyclooctadiene
aq.	aqueous	coe	cyclooctene
ÂQN	anthraquinone	Ср	cyclopentadienyl
ar or Ar	aryl	CRISPR	clustered regularly interspaced
ATP	adenosine triphosphate		short palindromic repeats
ATCC	American Type Culture Collection	CSA	10-camphorsulfonic acid
ax	axial	CV	cyclic voltammetry
AZADO	2-azaadamantane-N-oxyl	cy or Cy	cyclohexyl
BAIB	bis(acetoxy)iodobenzene	Δ	heat
BAr_F	tetrakis[3,5-bis(trifluoromethyl)-	dab	2,9-bis(<i>p</i> -anisyl)-1,10-phenan-
1	phenyl]borate		throline
BDE	bond dissociation energy	DABCO	1,4-diazabicyclo[2.2.2]octane
BHT	2,6-di- <i>tert</i> -butyl-4-methylphenol	DAST	(diethylamino)sulfur trifluoride
BINAP	([1,1'-binaphthalene]-2,2'-diyl)bis-	dba	(E,E)-dibenzylideneacetone
	(diphenylphosphane)	DBB	di-tert-butylbiphenylide
BINOL	2,2'-dihydroxy-1,1'-binaphthyl	DBN	1,5-diazabicyclo[4.3.0]non-5-ene
BIPHEP	2,2'-bis(diphenylphosphino)-1,1'-	DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
	biphenyl	DCC	1,3-dicyclohexylcarbodiimide
Bn	benzyl	DDQ	2,3-dichloro-5,6-dicyano-1,4-
BNAH	1-benzyl-1,4-dihydronicotinamide	•	benzoquinone
Boc	tert-butoxycarbonyl	DDT	dichlorodiphenyltrichloroethane
BOM	benzyloxymethyl	DEAD	diethyl azodicarboxylate
BOP	bis(2-oxo-3-oxazolidinyl)	DERA	2-deoxy-D-ribose-5-phosphate
_ 🗸 -	phosphinic		aldolase
	r - r		

dF(CF ₃)ppy	2-(2,4-difluorophenyl)-	G	guanine
D.C.	5-trifluoromethylpyridine	G2	gap 2
DG	directing group	gen.	generation
DHPR	dihydropyridine receptor	Gle	glucose
DHQ	dihydroquinine	GlyR	glycine receptors
DIAD	diisopropyl azodicarboxylate	GOase	galactose oxidase
DIANANE	endo,endo-2,5-diaminonorbornane	HAT	hydrogen atom transfer
DIBAL-H	diisobutylaluminium hydride	hfacac	hexafluoroacetylacetonate
dibm	diisobutyrylmethane	HFIP	hexafluoroisopropanol
DMAP	4-dimethylaminopyridine	HIV	human immunodeficiency virus
DMDO	3,3-dimethyldioxirane	HLF	Hofmann-Löffler-Freytag
DME	ethylene glycol dimethyl ether	HMDS	hexamethyldisilazane
DMF	<i>N</i> , <i>N</i> -dimethylformamide	HMG	3-hydroxy-3-methylglutaryl
DMP	Dess–Martin periodinane	HMPA	hexamethylphosphoramide
DMPU	1,3-dimethyl-3,4,5,6-tetrahydro-	HOBt	1-hydroxybenzotriazole
	2(1 <i>H</i>)-pyrimidinone	HPLC	high-performance liquid
DMSO	dimethyl sulfoxide		chromatography
DNA	deoxyribonucleic acid	HRMS	high-resolution mass spectrometry
DoM	directed ortho-metalation	Hsp	heat shock protein
DPBS	Dulbecco's phosphate-buffered	HWE	Horner-Wadsworth-Emmons
	saline	hv	light
dpm	dipivaloylmethanato	IBX	o-iodoxybenzoic acid
DPPA	diphenylphosphoryl azide	IC_{50}	50% inhibitory concentration
dppb	1,4-bis(diphenylphosphino)butane	IC_{70}	70% inhibitory concentration
dppf	diphenylphosphinoferrocene	imid.	imidazole
dppp	1,3-bis(diphenylphosphino)propane	Ipc	isopinocampheyl
dr	diastereomeric ratio	<i>i</i> -Pr	isopropyl
dtbbpy	4,4'-di- <i>tert</i> -butyl-2,2'-bipyridine	IR	infrared
DTBM	di-tert-butyl-4-methoxyphenyl	ISC	intersystem crossing
dtbpy	4,4'-di- <i>tert</i> -butyl-2,2'-bipyridine	k	reaction rate constant
EBX	ethynylbenziodoxolone	KHMDS	potassium hexamethyldisilazide
EC_{50}	half maximal effective	LA	Lewis acid
	concentration	LBA	Lewis acid-assisted chiral Brønsted
ECC	excitation-contraction coupling		acid
EDCI	1-ethyl-3-(3-dimethylamino-	LD_{50}	50% lethal dose
	propyl)carbodiimide	LDA	lithium diisopropylamide
ee	enantiomeric excess	LED	light-emitting diode
ep	error-prone	LG	leaving group
eq	equatorial	LiHMDS	lithium hexamethyldisilazide
equiv	equivalent(s)	liq.	liquid
esp	$\alpha, \alpha, \alpha', \alpha'$ -tetramethyl-1,3-	LLG-5	Linckia laevigata ganglioside 5
•	benzenedipropionic acid	LLS	longest linear sequence
ETP	epipolythiodiketopiperazine	LSF	late-stage functionalization
EWG	electron-withdrawing group	M	molar
Fc	ferrocenyl	M	mitosis
FDPP	furanyldiketopyrrolopyrrole	Mal	maleimido
FMO	frontier molecular orbital	MC	metal-centered
fod	1,1,1,2,2,3,3-heptafluoro-7,7-	m-CPBA	<i>m</i> -chloroperoxybenzoic acid
	dimethyl-4,6-octanedionate	MDR	multi-drug resistance
	•		E

Abbreviations

MeOH	methanol	Nu	nucleophile
MES	mesityl (2,4,6-trimethylphenyl)	OX	oxalate
MIC	minimum inhibitory concentration	PABC	<i>p</i> -aminobenzyloxycarbonyl
MLCT	metal-to-ligand charge transfer	PAF	platelet-activating factor
MMPP	magnesium monoperoxyphthalate	PAFR	platelet-activating factor receptor
	hexahydrate	PanK	pantothenate kinase
MMTrCl	4-methoxytriphenylmethyl	PBR	peripheral benzodiazepine receptor
MNBA	2-methyl-6-nitrobenzoic anhydride	Pc	phthalocyanine
modp	bis(1-morpholinocarbamoyl-4,4-	PCC	pyridinium chlorochromate
-	dimethyl-1,3-pentanedionato) [i.e.,	PCR	polymerase chain reaction
	4-[5,5-dimethyl-2,4-di(oxo-κO)-1-	PDC	pyridinium dichromate
	oxohexyl]morpholinato]	PDP	$2-(\{(S)-2-[(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(pyridin-2-(S)-1-(S)-(S)-(S)-(S)-(S)-(S)-(S)-(S)-(S)-(S)$
mol.	molecular		ylmethyl)pyrrolidin-2-yl]pyrrolidin-
MOM	methoxymethyl		1-yl}methyl)pyridine
MoOPH	oxodiperoxymolybdenum-	PdPc	palladium(II)
	(pyridine)(hexamethylphosphoric		octabutoxyphthalocyanine
	triamide)	PET	positron emission tomography or
MPAA	mono-N-protected amino acid		photoinduced electron transfer
MPO	4-methylpyridine <i>N</i> -oxide	PG	protecting group
Ms	methanesulfonyl	Ph	phenyl
MS	molecular sieves	phen	1,10-phenanthroline
MVK	methyl vinyl ketone (butenone)	PHOX	2-[2-(diphenylphosphino)phenyl]-
MW	microwave		2-oxazoline
N	normal (equivalent concentration)	pin	pinacolato
NAD ⁺	nicotinamide adenine dinucleotide	PIPES	piperazine- <i>N</i> , <i>N</i> ′-bis(2-ethane-
	(oxidized form)		sulfonic acid)
NADH	nicotinamide adenine dinucleotide	Piv	pivaloyl
	(reduced form)	PKC	protein kinase C
NADP ⁺	nicotinamide adenine dinucleotide	PKS	polyketide synthase
	phosphate (oxidized form)	PMB	4-methoxybenzyl
NADPH	nicotinamide adenine dinucleotide	PMP	4-methoxyphenyl or
N. ID CO	phosphate (reduced form)	D. 10	1,2,2,6,6-pentamethylpiperidine
NaHMDS	sodium hexamethyldisilazide	PNP	<i>p</i> -nitrophenol or purine nucleoside
Nap	naphthalenide or naphthalenyl	DDM (phosphorylase
NBS	N-bromosuccinimide	PPM	phosphopentomutase
NCIMB	National Collection of Industrial,	PPO	pyrophosphate
NCC	Food and Marine Bacteria	PPTS	pyridinium 4-toluenesulfonate
NCS	N-chlorosuccinimide	ppy DC DEMD	2-phenylpyridine
Nf NHC	nonafluorobutanesulfonyl	PS-BEMP	polystyrene-bound 2- <i>tert</i> -butyl-
NHC	N-heterocyclic carbene		imino-2-diethylamino-1,3-dimethyl-
NHK NIR	Nozaki–Hiyama–Kishi near-infrared		perhydro-1,3,2-diazaphosphorine
NIS	N-iodosuccinimide	py PyOX	pyridine 2 (pyridin 2 yl) 4.5 dibydrooyozolo
NMM	<i>N</i> -methylmorpholine	•	2-(pyridin-2-yl)-4,5-dihydrooxazole quantitative
NMO	4-methylmorpholine <i>N</i> -oxide	quant. RCM	ring-closing metathesis
NMP	<i>N</i> -methylpyrrolidone	Red-Al	sodium
NMR	nuclear magnetic resonance	NCU-AI	bis(2-methoxyethoxy)aluminium
NOE	nuclear Overhauser effect		hydride
Ns	nitrobenzenesulfonyl	RHF	restricted Hartree–Fock model
110	matocalcountilyi	MIII	resuretou france—Fuck model

XIV Abbreviations

RNA	ribonucleic acid	TES	triethylsilyl
rsm	recovered starting material	Tf	trifluoromethanesulfonyl
RyR	ryanodine receptor	TFA	trifluoroacetic acid
Sal	salen	TFAA	trifluoroacetic anhydride
SAR	structure–activity relationship	tfb*	tetrafluorobenzobarrelene
SCE	saturated calomel electrode	TFMS	zinc trifluoromethanesulfinate
SET	single-electron transfer	THF	tetrahydrofuran
Sia	siamyl	THP	tetrahydropyranyl
SP	sucrose phosphorylase	TIPS	triisopropylsilyl
sp.	species	Tle	tert-leucine
T	thymine	TMEDA	N,N,N',N'-tetramethylethylene-
TAS-F	tris(dimethylamino)sulfonium		diamine
	difluorotrimethylsilicate	TMP	2,2,6,6-tetramethylpiperidide
TBADT	tetra- <i>n</i> -butylammonium	tmphen	3,4,7,8-tetramethyl-1,10-
	decatungstate	•	phenanthroline
TBAF	tetra- <i>n</i> -butylammonium fluoride	TMS	trimethylsilyl
TBAI	tetra- <i>n</i> -butylammonium iodide	TMTU	tetramethylthiourea
TBD	triazabicyclodecene	tol or Tol	tolyl
TBDPS	<i>tert</i> -butyldiphenylsilyl	TPAP	tetra- <i>n</i> -propylammonium
TBDPSC1	<i>tert</i> -butyldiphenylchlorosilane		perruthenate
TBHP	<i>tert</i> -butyl hydroperoxide	TPCP	1,2,2-triphenylcyclopropane-
TBOx	tethered bis(8-quinolinolato)		carboxylate
TBS	<i>tert</i> -butyldimethylsilyl	TPP	tetraphenylporphyrin
TCAI	trichloroacetimidate	Tris	2,4,6-triisopropylbenzenesulfonyl
TCPTAD	adamantan-1-yl-(4,5,6,7-tetra-	Ts	4-toluenesulfonyl
	chloro-1,3-dioxo-1,3-dihydro-	TS	transition state
	isoindol-2-yl)acetate	Txn	trioxacarcin
TDAE	tetrakis(dimethylamino)ethylene	UHP	urea hydrogen peroxide complex
TEMPO	2,2,6,6-tetramethyl-1-	USSR	Union of Soviet Socialist Republics
	piperidinyloxy, free radical	UV	ultraviolet
Teoc	2-(trimethylsilyl)ethoxycarbonyl	VS.	versus

Contents Overview

1.	Introduction: Total Synthesis Marching on v Biology and Medicine	vith New Methods and Strategies and w	ith Molecules for
2.	Halichondrin B and Norhalichondrin B	(Y. Kishi; A. J. Phillips; K. C. Nicolaou	(1992; 2009; 2021)
3.	Daphmanidin E	(E. M. Carreira)	(2011)
4.	Epicoccin G and (-)-Acetylaranotin	(K. C. Nicolaou; S. E. Reisman; H. Tokuyama)	(2011; 2011; 2012)
5.	Taiwaniadducts B, C, and D	(A. Li)	(2014)
6.	Schindilactone A	(Z. Yang, J. Chen, Y. Tang)	(2011)
7.	Welwitindolinones	(V. H. Rawal; N. K. Garg)	2011, 2012, 2017; 2011, 2012, 2013, 2014)
8.	Ryanodine and Ryanodol	(P. Deslongchamps; M. Inoue; S. E. Reisman)	(1979; 2014; 2016)
9.	Gedunin, Mitrephorone A, and Antiretroviral Agent Islatravir	(M. A. Huffman, A. Fryszkowska; H. Renata)	(2019; 2020, 2022)
10.	Trioxacarcins	(A. G. Myers; K. C. Nicolaou)	2011, 2013; 2015, 2016)
11.	Aplyviolene	(L. E. Overman)	(2011, 2012)
12.	Dixiamycin B	(P. S. Baran)	(2014)
13.	Ingenol	(P. S. Baran)	(2013)
14.	Cardamom Peroxide, Nodulisporic Acid C, and Bilobalide	(T. J. Maimone; S. V. Pronin; R. A. Sher	nvi) (2014; 2018; 2019)
15.	Batrachotoxin and Conidiogenones	(J. Du Bois; S. A. Snyder)	(2016; 2019)
	~ ~		(2022)

(2022)

16. Gukulenin B and C-H Functionalization (K. C. Nicolaou)

Table of Contents

Chapter 1		
with Λ	uction: Total Synthesis Marching on Iew Methods and Strategies and with rules for Biology and Medicine	
1.1 1.2 1.3	Targets	2 5 5
Chapter 2		
	hondrin B and Norhalichondrin B a. J. Phillips; K. C. Nicolaou (1992; 2009; 2021)	
2.1 2.1.1 2.1.2 2.2 2.3 2.3.1 2.4 2.5 2.6 2.7 2.8 2.9	Introduction Nozaki–Hiyama–Kishi Reaction Achmatowicz Rearrangement Kishi's Retrosynthetic Analysis and Strategy Kishi's Total Syntheses of Halichondrin B and Norhalichondrin B Eribulin Phillips' Retrosynthetic Analysis and Strategy Phillips' Total Synthesis of Norhalichondrin B Nicolaou's Retrosynthetic Analyses and Strategies Nicolaou's Total Synthesis of Halichondrin B Nicolaou's Total Synthesis of Halichondrin B and the Sky's the Limit	11 14 22 25 27 48 52 54 63 66 75 81
	nanidin E reira (2011)	
3.1 3.2	Introduction	87 90

XVIII	Table of	Contents	
	3.3 3.4	Total Synthesis	90 103
	Chapter -	4	
		occin G and (-)-Acetylaranotin colaou; S. E. Reisman; H. Tokuyama (2011; 2011; 2012)	
	4.1	Introduction	111
	4.2	Nicolaou's Retrosynthetic Analysis of Epicoccin G	115
	4.3	Nicolaou's Total Synthesis of Epicoccin G	116
	4.4	Reisman's Retrosynthetic Analysis of	101
	4.5	(-)-Acetylaranotin	121 124
	4.6	Tokuyama's Retrosynthetic Analysis of	121
	4.7	(-)-Acetylaranotin	129
	4.7 4.8	Tokuyama's Total Synthesis of (–)-Acetylaranotin Conclusion	130 132
	Chapter:	5	
	Taiwa A. Li (20	aniadducts B , C , and D	
	5.1	Introduction	137
	5.1.1	Recent Advances in Nonenzymatic	1 4 4
		Enantioselective Polyene Cyclization	141

5.2

5.3

5.4

6.1

6.1.1

Chapter 6

Schindilactone A Z. Yang, J. Chen, Y. Tang (2011)

Retrosynthetic Analysis and Strategy

146

148

157

161

167

	Table of Conf	ents
6.1.2 6.2 6.3 6.4	Pd-Mediated Carbonylative Annulation Retrosynthetic Analysis and Strategy Total Synthesis The After Story	172 174 177 186
Chapter 7		
	tindolinones al; N. K. Garg (2011, 2012, 2017; 2011, 2012, 2013, 2014)	
7.1 7.2	Introduction	191
7.3	Welwitindolinones	196
7.4	Welwitindolinones	198
7.5	Welwitindolinones	207
7.6	Welwitindolinones	212
7.6	Total Syntheses of <i>N</i> -Methylwelwitindolinone B Isothiocyanate	220 225
Chapter 8		
	odine and Ryanodol gchamps; M. Inoue; S. E. Reisman (1979; 2014; 2016)	
8.1 8.2	Introduction	229
8.3	Strategy	233 235
8.4	Inoue's Retrosynthetic Analysis and Strategy	246
8.5	Inoue's Total Synthesis of Ryanodol	248
8.6	Reisman's Retrosynthetic Analysis and	255
0.7	Strategy	257
8.7 8.8	Reisman's Total Synthesis of Ryanodol	258
0.0	Inoue's and Reisman's Total Syntheses of Ryanodine	263
8.9	Conclusion	268

XIX

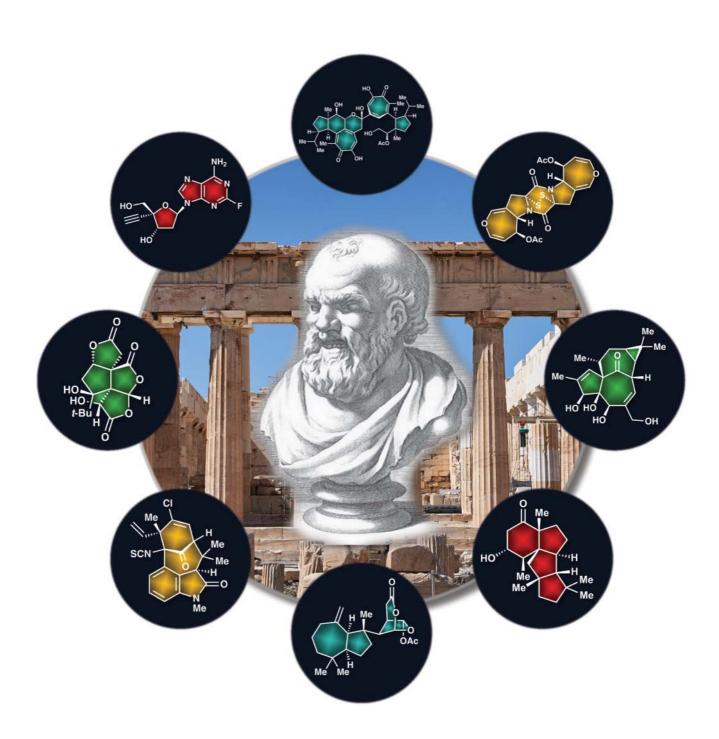
Table of Contents

Chapter 9

Antir	nin, Mitrephorone A, and retroviral Agent Islatravir (1908), 1909 (1908), 2020, 2022)	
9.1	Introduction	273
9.1.1	Gedunin	288
9.1.2	Mitrephorone A	289
9.1.3	Islatravir	289
9.2	Renata's Retrosynthetic Analysis of Gedunin	291
9.3	Renata's Chemoenzymatic Synthesis of Gedunin .	292
9.4	Renata's Retrosynthetic Analysis of	
	Mitrephorone A	296
9.5	Renata's Formal Total Synthesis of	
	Mitrephorone A	298
9.6	Huffman and Fryszkowska's Retrosynthetic	
	Analysis of Islatravir	301
9.7	Huffman and Fryszkowska's Total Synthesis of	
	Islatravir	303
9.8	Conclusion	308
Chapter	10	
Triox	cacarcins	
	vers; K. C. Nicolaou (2011, 2013; 2015, 2016)	
10.1	Introduction	317
10.1.1	Hauser–Kraus Annulation	323
10.2	Myers' Retrosynthetic Analysis and Strategy	328
10.3	Myers' Total Synthesis of Trioxacarcins	331
10.4	Nicolaou's Retrosynthetic Analysis and	
	Strategy	343
10.5	Nicolaou's Total Synthesis of Trioxacarcins	345
10.6	Synthesis and Biological Evaluation of	_
	Trioxacarcin Analogues	354
10.7	Conclusion	350

Chapter	1	1

	violene rman (2011, 2012)	
11.1 11.2	Introduction	
	Aplyviolene	
11.3	Overman's Total Synthesis of Aplyviolene 36	
11.3.1	First-Generation Synthesis	
11.3.2	Second-Generation Synthetic Approach 37	
11.3.3	Third-Generation Synthetic Approach 37	
11.4	Visible-Light Photoredox Catalysis 38	
11.5	Conclusion) 4
Chapter	12	
	mycin B m (2014)	
12.1	Introduction)7
12.2	Retrosynthetic Analysis and Strategy 41	
12.3	Total Synthesis	
12.4	Electroorganic Chemistry	
12.5	Conclusion	-
Chapter	13	
Inger		
P. S. Bard	an (2013)	
13.1	Introduction	. 1
13.2	Retrosynthetic Analysis and Strategy 45	
13.3	Total Synthesis	_
13.4	Synthesis and Biological Evaluation of Ingenol	
10.5	Analogues	
13.5	Conclusion 46	٠,


Chapter 14

Cardamom Peroxide, Nodulisporic Acid C,			
	ilobalide		
	one; S. V. Pronin; R.A. Shenvi (2014; 2018; 2019)		
14.1	Introduction	471	
14.2	Maimone's Retrosynthetic Analysis of Cardamom	476	
14.3	Peroxide	476	
1 1.0	Peroxide	477	
14.4	2nd Movement: HAT-Initiated Olefin	400	
14.5	Hydrogenation and Isomerization Shenvi's Retrosynthetic Analysis of Bilobalide	480 485	
14.6	Shenvi's Total Synthesis of Bilobalide	488	
14.7	3rd Movement: HAT-Initiated Olefin		
	Hydrofunctionalizations	496	
14.8	Pronin's Retrosynthesis Analysis of Nodulisporic	501	
14.9	Acid C	501 504	
14.10	To Be Continued	508	
14.11	Conclusion	511	
Chapter 15	5		
Ratra	chotoxin and Conidiogenones		
	; S.A. Snyder (2016; 2019)		
15.1	Introduction	517	
15.2	Snyder's Retrosynthetic Analysis of	017	
	Conidiogenones	527	
15.3	Snyder's Total Synthesis of Conidiogenones	529	
15.4 15.5	More Methods and Strategies	539	
13.3	Du Bois' Retrosynthetic Analysis of Batrachotoxin	544	
15.6	Du Bois' Total Synthesis of Batrachotoxin	547	
15.7	Conclusion	557	
Chapter 16			
-			
	enin B and C–H Functionalization		
16.1	Introduction	561	
16.1.1	Functionalization of C(sp ²)–H Bonds	562	

16.1.1.1	Electrophilic Aromatic Substitution (S _E Ar)	562
16.1.1.2	Nucleophilic Aromatic Substitution (S_NAr)	564
16.1.1.3	Radical-Mediated Aromatic Substitution	567
16.1.1.4	Deprotonation by a Strong Base	570
16.1.1.5	Transition Metal-Mediated C-H Activation	572
16.1.1.6	Formal C(sp ²)-H Insertion of Carbenes and	
	Nitrenes	591
16.1.2	Functionalization of $C(sp^3)$ -H Bonds	596
16.1.2.1	Transition Metal-Mediated C-H Activation	597
16.1.2.2	C-H Insertion of Metal Carbenoids, Nitrenoids,	
	and Oxenoids	607
16.1.2.3	C(sp ³)-H Functionalization via Free Radical	
	Intermediates	616
16.2	Retrosynthetic Analysis and Strategy	623
16.3	Total Synthesis	629
16.4	Conclusion	642
	Image / Photo Credits	647
	Author Index	649
	Subject Index	652

Table of Contents

XXIII

1

Introduction: Total Synthesis Marching on with New Methods and Strategies and with Molecules for Biology and Medicine

With its power constantly increasing, the essence of total synthesis remains the same. What changes is its purpose. Originally, it was to confirm a proposed structure of a natural product, then it became a means to produce natural products in bulk as a means to fulfill a need for society. From here it turned into a practice to demonstrate intellect and elegance, along with an opportunity to discover and develop new synthetic methods, to test the applicability of newly discovered methods, and to fill voids where existing methods failed. The ability of biochemists and other chemists to isolate minute amounts of natural products and determine their structures created the need to render them readily available for biological investigations. This challenge was taken up by synthetic chemists in the last decades of the 20th century, who delivered, through total synthesis, not only the targeted scarce natural products but also their designed analogues for extensive biological studies. Today, total synthesis endeavours blend all these aspects of the art and science of this discipline with

Classics in Total Synthesis IV: New Targets, Strategies, Methods, First Edition. K. C. Nicolaou, Ruocheng Yu, and Stephan Rigol.

^{© 2025} WILEY-VCH GmbH. Published 2025 by WILEY-VCH GmbH.

constant new additions. In its modern paradigm, and with mission, total synthesis is gathering momentum as a harmonious endeavour aiming not only for its own advancement but also as a partner to biology and medicine in a systematic way. It has a profound impact on the sciences of chemistry, biology, and medicine, specifically interfacing and facilitating chemical biology, medicinal chemistry, and the drug discovery and development process in general.

Classics in Total Synthesis IV features a variety of total syntheses that have been published in the literature since 2009 and more. For comparison and perspective reasons, the total syntheses of natural products related to those covered herein are, in certain cases, included. And while the main focus of the book is still the art and science of total synthesis, aspects of new synthetic methods and analogue design, synthesis, and biological investigation are also discussed. The latter underscores the trends in the state of the art of the discipline and emphasizes its importance to the science of organic synthesis in general and its impact on biology and medicine. It is also interesting to note that total synthesis still retains, to this day, its role of structure confirmation or revision, despite the enormous progress in analytical techniques and instrumentation. Statistics based on past total synthesis endeavours originating from the Nicolaou group, which have delivered almost 200 naturally occurring molecules, show that 13% of them contributed, in one way or another, to some structural aspect of the molecule, whether absolute configuration, revision of at least one stereogenic center of the previously assigned structure, or even its total synthesis and prediction of its existence in Nature before it was discovered. These seemingly odd occurrences are still common. However, the errors should not be attributed to the heroes of isolation of natural products. Due to the scarcity of numerous naturally occurring compounds, their characterization is regularly conducted by investigating only minute amounts, which, understandably, sometimes results in inaccuracies concerning their structure. These investigators did not have the privilege of collecting sufficient quantities of their products from their rare sources, a fact denying them the full armamentarium of analytical techniques, including the optimum tool of X-ray crystallography.

1.1 Targets

Nature's molecules are of unimaginable variety, complexity, novelty, and biological activity. This is more impressive if one considers the limited collection of building blocks, reactions, enzymes, and conditions as compared to the vast number of building blocks, ever-growing number of synthetic methods, catalysts, and reaction conditions that synthetic organic chemists enjoy, and yet we still have to surpass Nature's power and beauty when it comes to biosynthesis and novelty of natural products' structures.

Figure 1 highlights a selected number of natural products featured in this book, *Classics IV*, and yet these molecules represent

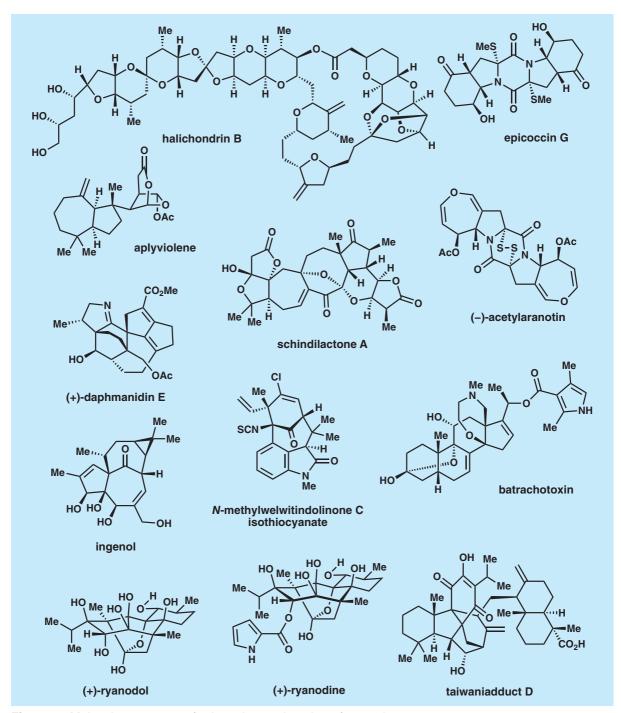


Figure 1. Molecular structures of selected natural products featured.

4 1 Introduction

Figure 1. Molecular structures of selected natural products featured (continued).