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Foreword 

Robotic assembly is a fundamental technique in a wide range of manufacturing 
processes. While the classical rule-based robotic assembly methods have reached 
an elevated level of maturity, they have limitations when it comes to handling 
complex tasks with a large variety of components, which significantly restricts their 
applications. 

Fortunately, in the past decade, deep learning and artificial intelligence have under-
gone transformative breakthroughs, showcasing remarkable success across various 
domains such as computer vision and natural language processing. These data-driven 
approaches have demonstrated great generalizability and have paved the way for 
significant advancements in robotic assembly by improving the robot capability of 
perception, planning and control to meet the requirement of increasing complexity 
and variety of assembly tasks. 

This book is devoted to presenting the latest advances in robotic intelligent 
assembly strategies, with a focus on pig-in-hole tasks. The book covers a range 
of perspectives related to robotic PiH assembly strategies, including perception, 
model-based control, and learning-based control. The authors have put great effort 
into organizing previous research works in a systematic manner, offering readers a 
comprehensive understanding of the field. 

The first part of the book introduces the background and drawbacks of existing 
approaches. The second part delves into improving the accuracy and computational 
efficiency of learning-based multi-view stereo and narrowing the simulation-to-
reality domain gap for depth sensors. These techniques improve the robot’s ability 
to perceive the geometry information of the assembly environment. The third part 
describes the model-based strategies. And the fourth part presents state-of-the-art 
learning-based strategies for general PiH tasks. These approaches enhance the gener-
alizability of robot assembly by utilizing learning-based algorithms. By leveraging 
the power of deep learning, robots can adapt to new assembly scenarios and handle 
a wider range of components efficiently. The authors also explore techniques for 
accelerating the training process of existing learning algorithms, enabling faster 
deployment and improved performance.
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vi Foreword

The outcome of this book is a comprehensive treatise that establishes signifi-
cant advances in the theoretical formulation and experimental validation of robotic 
assembly techniques. By leveraging the power of deep learning and artificial intelli-
gence, the authors have made substantial contributions to the field. This book serves as 
a vivid signature, showcasing the remarkable progress in robotic intelligent assembly 
and inspiring future advancements in the field. 

Hong Kong, China Ning Xi



Preface 

Over a decade ago, we embarked on tackling one of the most fundamental yet chal-
lenging tasks in manufacturing—the robot assembly at a time when reinforcement 
learning (RL) methods were not yet well-developed or widely adopted. 

Our initial efforts focused on developing models to accurately represent the intri-
cate contact status between the peg and the hole during insertion. We reasoned that 
by precisely capturing and recognizing this critical contact status, we could adjust the 
peg’s movements accordingly and accomplish the assembly task. The model-based 
approaches offered the advantages of efficiency and explainability. 

However, as our research progressed, we gradually uncovered the limitations of 
this methodology. Complex contact scenarios involving multiple points of interac-
tion and substantial variability in real-world conditions posed significant challenges 
that our models struggled to accommodate. It became evident that a paradigm shift 
was necessary to overcome these bottlenecks and achieve robust, adaptive assembly 
capabilities. 

Consequently, we pivoted our focus towards learning-based strategies, embracing 
the power of reinforcement learning to derive optimal policies from data and expe-
rience. Unlike the vast body of work on RL in simulation environments or video 
games, two critical factors emerged as paramount for the successful adoption of RL 
in PiH tasks on physical robots: safety and sample efficiency. Any learning algorithm 
deployed in a real manufacturing setting must ensure the safety of the equipment and 
components, while also minimizing the need for costly trial-and-error during the 
training phase. 

To address these challenges, we delved into the study of impedance-conditioned 
actions and hierarchical RL techniques. By incorporating compliant control and 
hierarchies of low-level policies, our methods demonstrated the ability to learn 
intricate insertion strategies that could successfully handle complex contact situ-
ations. Experimental validations on real PiH tasks verified the efficacy of our 
approaches, accomplishing these intricate assembly tasks with remarkable efficiency 
and reliability. 

Despite these promising results, we recognize that there remain opportunities for 
further advancement. Aspects such as the autonomous discovery and definition of
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low-level policies, seamless integration with higher-level task planners, and gener-
alization to diverse manufacturing scenarios warrant continued investigation. Our 
team remains committed to exploring these fundamental scientific problems, driven 
by the ambition to push the boundaries of intelligent robotic systems. 

Beijing, China 
June 2024 

Jing Xu 
Rui Chen
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Chapter 1 
Introduction 

1.1 Background 

ASSEMBLY is a capstone stage in the manufacturing process, which directly affects 
the quality of the final product [154]. Statistical evidence indicates that the time spent 
on assembly typically accounts for 20–50% of the total production time, while the 
associated costs constitute approximately 20–30% of the overall cost of a given prod-
uct [160]. With the development and advancement of automation technologies, robots 
have been widely used in assembly tasks to overcome the inherent challenges associ-
ated with manual assembly, such as low efficiency, high cost, and increased accident 
rate [166]. Nevertheless, the escalating complexity and specialization of assembly 
tasks necessitate the deployment of an increasing number of assembly robots within 
unstructured and dynamic environments, thereby presenting substantial challenges 
such as inadequate adaptability to assembly processes, limited sensing capabilities, 
and demanding assembly environment prerequisites [ 61, 62]. Consequently, robotic 
assembly necessitates a transition towards enhanced intelligence to address these 
challenges. 

The rapid advancement of Artificial Intelligence (AI) technology has promoted the 
advancement of intelligent robotic assembly system. When combined with advanced 
sensing system and control strategy, AI can significantly augment the capabilities 
of assembly robots in all the phases, including perception, decision-making, and 
control [ 20]. 

Peg-in-Hole (PiH) assembly is a fundamental and widely employed technique in 
industrial manufacturing [ 99, 154]. It accounts for approximately 40% of the over-
all assembly workload [ 61]. PiH has been extensively investigated across various 
domains, ranging from large-scale aviation component assembly [149] to small-
scale component assembly in automotive production lines [133] and mold casting 
manufacturing [ 95]. Furthermore, it extends to the assembly of electronic compo-
nents [ 60] and even micro-product assembly [ 83]. Notably, there has been a recent 
surge in research on PiH assembly for household tasks in human environments [ 6], 
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e.g., chair assembly [136]. Due to its prominent status in assembly processes, the 
study of PiH assembly is of importance for the advancement of robotic intelligent 
assembly technology. Consequently, this monograph focuses explicitly on robotic 
PiH assembly. 

1.2 Robotic Peg-in-Hole Assembly System 

We first introduce a typical robotic PiH system. As shown in Fig. 1.1a, the holes 
are fixed, while manipulators grasp pegs to complete part mating based on feedback 
from the sensing system. Therefore, the sensing system is crucial for acquiring the 
feedback for successful assembly. 

Fig. 1.1 Robotic PiH 
assembly system. 
a Framework. 
b Cylinder [115], 
square [ 67], and 
complex-shaped 
cases [131]. c Single [ 57], 
dual [166], and multiple PiH 
assemblies [120]
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1.2.1 Manipulators 

Manipulators have evolved significantly to meet the diverse requirements of assembly 
tasks. Industrial robots excel in large-scale and heavy component assembly and 
possess advanced position and velocity control for high-precision tasks. In contrast, 
collaborative robots find extensive application in the assembly of small products and 
deformable parts due to their ability to achieve compliant behaviors through precise 
force and torque control. 

1.2.2 Mating Parts 

Mating parts consist of a peg and a corresponding hole (Fig. 1.1a). While cylindrical 
PiH assemblies serve as the foundation, other geometries, including square pegs [ 67, 
107], pegs with key slots, and complex shapes like gear assemblies [85], are employed 
in special cases. Besides single PiH [ 57], dual PiH [166], multiple PiH [120, 148] 
are also necessary for certain industrial applications, like electronics industry (see 
Fig. 1.1b). 

The scale of mating parts varies significantly depending on the application. It 
ranges from macro-assembly, involving large aviation parts [149], to micro-assembly, 
focused on electronic components in circuit boards [ 83]. Certain assembly tasks 
require high precision, with clearances smaller than the resolution and accuracy of 
robots, often ranging from 0.02 mm to 0.2 mm [ 49]. Additionally, in addition to 
common rigid parts with high stiffness properties, other tasks necessitate flexible 
components made of materials such as plastics and wood [ 57, 85]. The clearance 
and surface characteristics of mating parts contribute to the complexity of assembly 
tasks, resulting in varying degrees of difficulty. While this monograph aims to provide 
an in-depth analysis of robotic PiH systems, the examination of clearance and surface 
characteristics falls outside its scope. 

1.2.3 Sensing 

Similar to human tactile and vision sensing, the sensing in PiH includes force and 
vision. 

Force feedback is commonly used to monitor contact force and recognize envi-
ronmental uncertainties. As shown in Fig. 1.1a, an external Force-Torque (F/T) sen-
sor is amounted to the industrial robot wrist to obtain wrench signals (forces and 
torques) [158]. Wrench signals can also be estimated based on joint currents [108]. 
For compliant robots, joint torque sensors have been utilized to calculate wrench 
signals at the end-effector [ 74, 115]. Some researchers have embedded force sensors
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in grippers or dexterous hands [ 9, 14, 109]. A table force sensor has been applied to 
guide PiH insertion [101, 161]. 

Vision is commonly used to capture the pose (position and orientation) of holes 
and pegs (see Fig. 1.1a). 2D cameras are widely utilized for coarse localization of 
holes by extracting their boundaries from images [ 92]. Marker points captured by 
2D cameras are used to calculate the pose of pegs [149]. Image-based visual servo 
systems have been designed to track the relationship between pegs and holes [ 82, 
110]. Position-based visual servo systems have been improved to enable high-speed 
microscale PiH assembly [ 48]. 

In contrast to 2D cameras, depth sensors [ 2, 108, 151] have been applied to 
capture the 3D geometry information. The obtained depth information is advanta-
geous for estimating the spatial relationship between mating parts. In recent years, 
the cost reduction of 3D measurement systems and the rapid development of 3D 
vision and deep learning have significantly improved the efficiency and robustness 
of robotic assembly based on 3D vision, making it a new mainstream solution. In this 
monograph, we mainly focus on multi-view stereo (MVS) in general environment. 

1.2.4 Assembly Strategies 

Assembly trajectories are generally generated by a high-level planning module, 
which takes into account task specifications and assembly knowledge. Subsequently, 
low-level controllers are employed to track the planned trajectories and compensate 
for uncertainties arising from the environment or the robot. Since these low-level 
controllers have matured in implementing accurate motion and force tracking. The 
assembly strategies for PiH tasks can be categorized based on the high-level planning 
module. 

With advancements in robotic techniques and task specifications, the strategies 
for robotic PiH assembly can be broadly classified into three types: model-based 
strategies, learning from demonstrations (LFD) [119], and learning from envi-
ronments (LFE) [ 70]. It should be noted that the term “model” within the context 
of model-based strategies pertains to the process of modeling the contact status 
between the peg and the hole. In the subsequent chapters of this monograph, we will 
explore these assembly strategies in detail, focusing on their application to various 
PiH tasks. 

1.3 Literature Review 

In this section, we present a literature overview of MVS, tactile sensor simulation, 
model-based strategies, LFD and LFE. We organize the review in the aforementioned 
order to provide a coherent and structured presentation of these topics.
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1.3.1 Multi-view Stereo 

The geometry information of the peg and the hole is critical for assembly strategy. 
MVS aims to reconstruct the dense geometry of the 3D object from a sequence of 
images and corresponding camera poses and intrinsic parameters. MVS is a classical 
problem that had been extensively studied before the rise of deep learning. A number 
of 3D representations were adopted, including volumes [ 23, 44, 45], deformation 
models [ 25, 127, 165], and patches [ 8, 31, 39], which were iteratively updated 
through multi-view photo-consistency and regularization optimization. 

Learning-Based Multi-view Stereo 

Inspired by the success of deep learning in image recognition tasks, researchers 
began to apply learning techniques to stereo reconstruction tasks for better patch 
representation and matching [ 37, 69, 122]. Although these methods, in which only 
2D networks were used, had made a great improvement on stereo tasks, it was difficult 
to extend them to MVS tasks, and their performance was limited in challenging scenes 
due to the lack of contextual geometry knowledge. Concurrently, 3D cost volume 
regularization approaches were proposed [ 59, 64, 65], where a 3D cost volume was 
built either in the camera frustum or the scene. Next, the multi-view 2D image features 
were warped into the cost volume, so that 3D CNNs could be applied to it. The key 
advantage of 3D cost volume is that the 3D geometry of the scene can be captured by 
the network explicitly, and the photo-metric matching can be performed in 3D space, 
alleviating the influence of image distortion caused by perspective transformation, 
which makes these methods achieve better results than 2D learning-based methods. 

More recently, Luo et al. [ 86] proposed to use a learnable patchwise aggregation 
function and apply isotropic and anisotropic 3D convolutions on the 3D cost vol-
ume to improve the matching accuracy and robustness. Xue et al. [163] proposed 
Multi-view StereoCRF, where Multi-Scale Conditional Random Fields are adopted 
to constraint the smoothness of depth prediction explicitly. 

High-Resolution and Hierarchical Multi-View Stereo 

High-resolution MVS is critical to PiH assembly. Traditional methods [ 31, 77, 104] 
generated dense 3D patches by expanding from confident matching key points repeat-
edly, which was potentially time-consuming. These methods were also sensitive to 
noise and change of viewpoint owing to the usage of hand-crafted features. Recent 
learning methods tried to ease memory consumption by advanced space partition-
ing [116, 142, 150] or by replacing 3D CNNs with RNN [164]. However, most of 
these methods constructed a fixed cost volume representation for the whole scene, 
lacking flexibility.
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Hierarchical MVS generates high-resolution depth maps in a coarse-to-fine man-
ner, which reduces unnecessary computation and leads to improved efficiency. For 
classic methods, hierarchical Mutual Information computation was utilized to ini-
tialize and refine disparity maps [ 41, 117]. Learning-based methods were proposed 
to predict the residual of the depth map from warped images [105] or by constructing 
cascade narrow cost volume [ 33, 169]. 

1.3.2 Tactile Sensor Simulation 

The simulation process of tactile sensors is typically divided into two phases. The 
first phase involves the simulation of the sensor’s deformation caused by contact. 
The second phase involves the simulation of the transduction of physical quantities 
from the deformation. For marker-based visuotactile sensors, the first phase is a fun-
damental step for the second phase. This subsection primarily summarizes methods 
related to the first phase. Tactile sensors that operate on other principles, such as 
BioTac [ 30], share a similar first phase as marker-based visuotactile sensors and are 
also included in this subsection. 

In [ 32, 168], a Gazebo-based GelSight simulator was proposed, where the defor-
mation was simulated from the contact geometry using Gaussian filtering followed 
by difference of Gaussian. In [ 18, 81, 152], PyBullet was used to simulate the con-
tact between the object and the sensor, and the deformation was approximated by 
calculating the penetration of the object into the sensor. A similar method is also 
reported in [ 3]. The focus of these works is the simulation of sensors’ optical prop-
erties. Despite their computational efficiency, these geometry-based methods cannot 
model the sensor’s tangential deformation, which is crucial for many robot appli-
cations such as slip detection and peg-in-hole insertion. Xu et al. [159] proposed a 
penalty-based tactile model upon rigid body dynamics, which is able to simulate both 
normal and shear tactile force fields at high speed. While the penalty-based simula-
tion can approximate the sensor deformation in manipulation, it cannot simulate the 
elastic behavior of the elastomer accurately, especially the contact force caused by 
the tangential deformation. Therefore, its Sim2Real transferability is limited, which 
has been demonstrated by our experimental results. 

Compared with rigid-body-based simulation, Finite Element Methods (FEM) can 
model the deformation of the sensor’s elastomer more accurately. Bi et al. [ 5] devel-
oped a FEM-based tactile sensor simulator and achieved zero-shot Sim2Real trans-
fer of RL policies for aggressive swing-up manipulation. However, they utilized the 
cylindrical geometry of the poles to simplify the simulation, and constrained the 
motion of the pole in the x-y plane, rendering it inapplicable to objects with various 
geometries. Si and Yuan [124] proposed a superposition method to approximate the 
FEM dynamics and successfully simulate the sensor’s tangential deformation, but no 
manipulation tasks were demonstrated. Narang et al. built a linear-FEM-based tactile 
simulator for BioTac with Isaac Gym [ 96], achieving faster speeds than the commer-
cial FEM software (ANSYS) [ 97]. Recently, Luu et al. employed SOFA [ 28] to build



1.3 Literature Review 7

a simulator for large-scale marker-cum-vision-based-tactile sensor [ 87]. However, 
both [ 87, 96] primarily used their simulators to collect supervised datasets for inter-
preting tactile signals, leaving the potential of using simulation to train manipulation 
policies unexplored. 

1.3.3 Model-Based Strategies 

Model-based strategies employ contact state recognition to generate assembly motion 
trajectories. Hence, constructing an accurate contact state model becomes crucial. 
In the 1990s, several analytical models were proposed for contact state recognition. 
However, with the growing amount of data and task complexity, statistical approaches 
have been researched to identify contact states from assembly data. 

Analytical Contact Model 

Contact states can be recognized relying on the analysis of the geometrical and 
environmental constraints [153]. It can be implemented via two stages: contact state 
modeling and contact state determining [157]. 

Firstly, contact states can be modeled according to the mating features. Commonly 
used features include geometrical information and topology information [121]. Desai 
et al. [ 22] classified the contact states as the set of Elemental Contacts with same 
topology information. Xiao et al. [138, 156] introduced the concept of Principal 
Contacts for topological representation of contact states and generated the graph to 
represent the transition of contact states. Bruyninckx et al. [ 11, 12] built the kinematic 
models based on the constraints analysis for compliant motion in the presence of 
uncertainties [ 89]. Ohwovoriole et al. [103] defined three screw pairs to represent 
the contact constraints based on the screw theory. Hirai and Asada [ 40] extended 
the theory of polyhedral convex cones to solve manipulation problems governed by 
unidirectional constraints. 

Secondly, the contact states can be determined or verified depending on the 
force/torque information [ 4]. McCarragher and Asada [ 91] developed a neural 
network-based qualitative recognition method to identify the transition of contact 
states quickly, where the dynamics effects were analyzed with the Petri Net. In an 
edge mating task, the contact states were detected via a singular value decomposi-
tion technique depending on analyzing the force/moment signals, which has shown 
better robustness to noise [ 68]. Geometric interpretation based on polyhedral convex 
cones was utilized to determine the likelihood of each feasible contact formation even 
without accurate contact force [ 27]. To reduce the redundancies to build the static 
equilibrium equations, a part knowledge-based system was developed to identify the 
contact states [144].
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In summary, the contact constraints can be analyzed at a certain level [ 22]. How-
ever, the environmental uncertainties (e.g., part poses, rigidity or elasticity of the 
assembly components, and friction model) always result in challenges to recognize 
the contact state exactly. Additionally, the analytical analysis is sensitive to uncer-
tainties, and it is impossible for any perfect model to account for all uncertainties. 
Moreover, the analytical analysis relies solely on past contact states, which limits its 
ability to generalize to new situations. 

Statistical Contact Model 

Statistical analysis methods often model the assembly trajectory as several seg-
mented phases with different contact states [134]. Contact state recognition via 
statistical analysis is often formulated as a classification problem given possible 
contact states [ 93]. Statistical strategies can recognize the contact states from the 
pattern of collected samples without any assumption [ 51]. Commonly used statis-
tical techniques for contact states consist of non-parametric classification methods, 
e.g., Fuzzy Classifier (FC) and Random Forest (RF); and parametric classification 
methods, e.g., Neural Network, Support Vector Machine (SVM), Gaussian Mixture 
Model (GMM), and Hidden Markov Model (HMM). 

FC was applied in recognizing contact states via accommodating the uncertainties 
based on task knowledge [111, 128]. To enhance the robustness of the fuzzy system, 
the Gravitational Search (GS) was used to adjust the fuzzy rules [ 55]. GS-FC could 
solve the simple classification with little computing time through giving more accu-
rate logic rules. Additionally, RF [ 16] and binary Stochastic Gradient Boosting [ 15] 
with strong classifier diversity were explored for multiple classification problems. 

NN was researched to map the nonlinear relationship between the force infor-
mation and contact states [ 10]. Two NN-based efficient classifiers combining with 
FC had achieved better sample efficiency performance in terms of the environmental 
noise [128, 130]. SVMs could reduce the risk and controlling the confidence interval 
for correct classification. It was suitable and applicable to design a practical contact 
states recognition method or real-world tasks [ 51, 53]. A Fuzzy Inference Mecha-
nism with an adaptive classifier boundary was proposed to improve the robustness 
of the contact states classification [ 52]. 

GMM was employed to encode the states of PiH assembly, and Expectation 
Maximization (EM) had been demonstrated to optimize the parameters of GMMs. 
Bayesian classification had been incorporated to estimate a binary classification of the 
given GMMs [ 56, 58]. Jasim et al. [ 58] utilized the Distribution Similarity Measure 
to determine the optimal number of GMM components. HMMs could recognize both 
the contact states and state transitions via considering the temporal information [ 38]. 
It was suitable for dynamic assembly with sensor noise because the parameters of 
HMMs can be learned from empirical data [ 46]. A practical contact states identifi-
cation system based on HMMs was implemented via incorporating with the prior 
spatial relationships of contact formations [ 21, 72].


