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Preface

With the continued rise in social energy demand and the decreasing availability of
fossil fuels, there has been an increasing need for affordable, environmental friendly,
and efficient renewable energy conversion and storage systems. This pursuit has
become a critical challenge for modern society. Electrocatalysts play a crucial role
in various energy storage and conversion systems, such as fuel cells, metal–air bat-
teries, CO2 conversion, and water splitting. This is accomplished by accelerating
electrochemical reactions, which is essential for enhancing the efficiency of energy
conversion.

This book aims to provide a comprehensive overview of functional materials
in the electrocatalytic energy conversion process, including oxygen reduction,
electrochemical CO2 reduction, water splitting, nitrogen reduction, liquid fuel
oxidation, and electrocatalytic biomass conversion. In the first section, the catalytic
mechanisms and pathways of various electrocatalytic reactions are systematically
discussed. The second section uncovers the design ideas, geometric/electronic
structures, and structure–activity relationships of various state-of-the-art electro-
catalysts in detail. Finally, the book proposes the challenges and opportunities of
electrocatalytic functional materials for energy conversion in the future. Through
the dissemination of knowledge and information in this book, we aim to stimulate
increased interest and investment in further research and development in the field
of electrocatalysis, ultimately leading to impactful advancements in the use of
functional materials for practical applications.

30 January 2024 Zhicheng Zhang
Yuchen Qin

Meiting Zhao
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1

Introduction
Ruoqing Xu1, Jie Wang2, Lilin Zhang1, and Jingjie Ge1

1The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, 11 YuK
Choi Road, Hung Hom, Kowloon, HongKong
2Xihua University, Key Laboratory of Fluid and Power Machinery of Ministry of Education, Department of
Materials Science and Engineering, School of Materials Science and Engineering, No. 9999, Hongguang
Street, Pidu Area, Chengdu, 610039, China

With the current rapid growth of energy required by society, the rapid increase in fos-
sil fuel consumption has led to a series of environmental pollution problems, such as
global warming, ecosystem destruction, and air pollution. Therefore, the exploration
of low-cost, green, and clean renewable energy conversion and storage technologies
has become one of the most serious challenges facing today’s society [1]. Electro-
chemical energy storage and conversion systems such as fuel cells [2], metal–air
batteries [3], water electrolysis devices [4], and carbon dioxide capture, storage, and
reduction technologies [5] have emerged as important ways of dealing with environ-
mental and energy crises. Electrocatalysis is a key technology for energy conversion,
as it accelerates electrochemical reactions essential for improving conversion effi-
ciency. It plays a central role in reactions such as water splitting, carbon dioxide
reduction reaction (CO2RR), nitrogen reduction reaction (N2RR), and the produc-
tion of liquid fuels, etc. For example, in water splitting, electrocatalysis facilitates
the decomposition of water into hydrogen, a clean energy source essential for estab-
lishing a low-carbon economy. Catalysts enhance the energy conversion efficiency
of electrocatalysis by reducing the activation energy of the reactants and optimiz-
ing the reaction pathways and rates. However, one of the most critical challenges is
identifying suitable catalysts for various electrocatalytic reactions. These materials
are expected to demonstrate efficient electrocatalytic activity, selectivity, and stabil-
ity to ensure long-term, reliable energy conversion performance. Consequently, the
properties of the electrode materials, such as composition, surface structure, and
morphology, have to be carefully controlled according to the electrochemical condi-
tions to achieve efficient and high-performance electrocatalysis.

Functional materials offer more attractive solutions for sustainable energy
conversion due to their lower costs and wider resource availability compared to
conventional noble metal electrocatalytic materials [6, 7]. In addition, research on
functional materials has facilitated the development of novel energy conversion

Functional Materials for Electrocatalytic Energy Conversion, First Edition.
Edited by Zhicheng Zhang, Meiting Zhao, and Yuchen Qin.
© 2025 WILEY-VCH GmbH. Published 2025 by WILEY-VCH GmbH.



2 1 Introduction

technologies. For instance, CO2RR enables the conversion of greenhouse gas CO2
into valuable chemical fuels using renewable electricity, providing new opportu-
nities to reduce resource extraction and achieve carbon neutrality [5, 8]. Similarly,
N2RR, which converts of N2 to NH3 by electrochemical reduction is considered a
sustainable alternative process [9]. However, in electrocatalysis, the high dissoci-
ation energies of the C—O and N≡N bonds in the linear molecules of CO2 and N2
lead to their low chemical activity. The significant energy gap between the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) of CO2 and N2 molecules further enhances their chemical stability. Besides,
the low proton affinity of CO2 and N2 complicates direct protonation [10–12]. These
properties make CO2RR and N2RR challenging. Consequently, scientists are
focusing on developing innovative electrocatalysts to overcome the challenges
posed by the high dissociation energies and significant energy gaps of CO2 and N2,
while enhancing their chemical reactivity and protons affinity. Functional materials
based on covalent organic frameworks (COFs) have emerged as promising catalysts
for the efficient utilization of CO2. In particular, COF-based functional materials
with multiple active sites, such as single-metal sites, metal nanoparticles, and
metal oxides, offer great potential for realizing CO2 conversion and energy storage
[13]. Besides, the researchers also focused on the important effects of vacancies,
high-index facets, lattice strain, lattice disorder, and polymer–inorganic interface
configurations on the enhancement of CO2RR and N2RR performance. They noted
that defect engineering can enhance CO2 and N2 uptake and tune the electronic
structure of the catalyst. In terms of interfacial engineering, polymers play an impor-
tant role as supports, modifiers, or blenders of polymer–inorganic composites. The
introduction of polymers can inhibit hydrogen evolution reaction (HER), enhance
the concentrations of CO2 and N2, stabilize intermediates, and change the electronic
structure of the catalyst. This modulation affects the binding energies of CO2, N2,
and intermediates on the catalyst surface, leading to more efficient reactions [14].

Despite the significance and promising prospects of the aforementioned electro-
catalytic process, a common challenge in these reactions is the relatively low energy
conversion efficiency, which remains far from industrial viability. Conventional
electrocatalysts and energy storage materials still face technical problems, including
complicated preparation processes, high cost, and inadequate catalytic activity and
stability. These limitations severely restrict their commercialization and further
applications. To enhance the reaction rates of promising catalytic reactions, there is
a need for low-cost, highly active, and durable electrochemical materials. In recent
years, functional materials, particularly metal- and carbon-based nanomaterials,
have garnered significant attention from researchers due to their large specific
surface area and high surface activity. Moreover, the bonding and electronic states
on the surface of these nanocatalysts are different from those inside the particles,
and the incomplete coordination of the surface atoms increases the number of
surface-active sites, thereby improving catalytic performance. As a result, func-
tional materials with specific morphologies and architectures show great promise
for energy conversion applications. This book focuses on four different types
of functional materials, including metal-based materials, metallic compounds,
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Figure 1.1 Illustration of advanced functional materials for electrochemical catalysis.

carbon-based materials, and porous materials. By regulating their geometric struc-
tures and electronic structures, these functional materials demonstrate specific
catalytic effects on various electrochemical reactions in practical applications.
The facilitating role of functional materials as catalysts in electrocatalytic energy
conversion is explored from several perspectives (Figure 1.1).

The catalytic performance of metal-based nanocatalysts is influenced by their
geometric and electronic properties, including size, morphology, phase, atomic
distance, and composition. For example, the density of active sites and lattice strain
on the surface of nanoparticles can be modified by adjusting their shape and size,
thereby enhancing catalytic activity and selectivity. The most commonly employed
metal electrocatalysts are transition metals, such as platinum, palladium, copper,
iron, and nickel. In addition to metal-based catalysts, metallic compounds also
exhibit promising catalytic performances for various electrocatalytic processes.
These compounds are typically formed from metallic and nonmetallic elements.
Similarly, the performance of metal compound catalysts is influenced by their
composition, structure, and surface properties. Common metallic catalysts include
transition metal oxides, transition metal sulfides, and transition metal nitrides.
The metal elements in these compounds often possess a variety of oxidation states
and coordination environments, which enable them to interact effectively with
reactants and modulate the rate and selectivity of catalytic reactions.

In addition to metal-based functional materials, carbon-based materials exhibit
excellent properties for electrocatalytic applications. These materials feature a
highly specific surface area and abundant pore structure, providing abundant
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reactive active sites and diffusion pathways to increase the reaction rate. Their
good electrical conductivity and chemical stability enable efficient electron transfer
during catalytic reactions, allowing them to tolerate harsh conditions such as
high temperatures, acid, and alkali. Moreover, carbon-based nanocatalysts possess
tunable surface chemistry, and their catalytic activity and selectivity can be adjusted
by introducing or modifying surface functional groups, demonstrating excellent
catalytic performance in several fields. On the other hand, porous materials as
a fundamental category of functional materials also have garnered significant
attention and undergone extensive research. Their highly porous structures pro-
vide large specific surface areas and pore volumes, facilitating the regulation of
adsorption, diffusion, and reaction processes based on different pore sizes. The
tunable pore structure and distribution expose various types of active sites on
their surfaces, providing abundant opportunities for various catalytic applica-
tions. Currently, various types of porous material catalysts have been developed,
including metal–organic framework materials (MOFs), mesoporous silica materials
(e.g. SBA-15 and MCM-41), oxides (e.g. zirconia, alumina), and carbon-based
materials (e.g. activated carbon and carbon nanotubes). Researchers are dedicated
to designing and synthesizing novel porous materials to further optimize their
catalytic properties and advance catalytic science and engineering.

This book provides a comprehensive overview of functional materials and their
specific performances in electrocatalytic energy conversions. We focus on metal-
lic compounds, metal-based materials, carbon-based materials, and porous mate-
rials. By studying and optimizing the electrocatalytic properties of these functional
materials, we aim to advance the development of electrocatalytic energy conversion
technologies and contribute to the revolution toward sustainable energy. The goal of
this book is to deepen readers’ understanding of functional materials for electrocat-
alytic energy conversion while offering insights for future research and applications.
We hope that through continuous innovation and collaboration, we can overcome
the challenges we currently face and pave a way for a more sustainable and cleaner
energy future.
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