

Theory of Computational
Complexity

WILEY SERIES IN
DISCRETE MATHEMATICS AND OPTIMIZATION

A complete list of titles in this series appears at the end of this volume.

Theory of Computational
Complexity
Second Edition

Ding-Zhu Du
Department of Computer Science
University of Texas at Dallas
Richardson, TX

Ker-I Ko
Department of Computer Science
National Chiao Tung University
Hsinchu, Taiwan

Copyright ©2014 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please contact
our Customer Care Department within the United States at (800) 762-2974, outside the United
States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our
web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Du, Dingzhu, author.
Theory of computational complexity / Ding-Zhu Du, Department of Computer Science,

University of Texas at Dallas, Ann Arbor, Ml, Ker-l Ko, Department of Computer Science, State
University of New York at Stony Brook, Stony Brook, NY. –Second edition.

pages cm
Includes bibliographical references and index.
ISBN 978-1-118-30608-6 (cloth)

1. Computational complexity. I. Ko, Ker-I, author. II. Title.
QA267.7.D8 2014
511.3′52–dc23

2013047839

Printed in the United States of America

ISBN: 9781118306086

10 9 8 7 6 5 4 3 2 1

Contents

Preface ix

Notes on the Second Edition xv

Part I Uniform Complexity 1

1 Models of Computation and Complexity Classes 3
1.1 Strings, Coding, and Boolean Functions 3
1.2 Deterministic Turing Machines 7
1.3 Nondeterministic Turing Machines 14
1.4 Complexity Classes 18
1.5 Universal Turing Machine 25
1.6 Diagonalization 29
1.7 Simulation 33
Exercises 38
Historical Notes 43

2 NP-Completeness 45
2.1 NP 45
2.2 Cook’s Theorem 49
2.3 More NP-Complete Problems 54
2.4 Polynomial-Time Turing Reducibility 61
2.5 NP-Complete Optimization Problems 68
Exercises 76
Historical Notes 79

v

vi CONTENTS

3 The Polynomial-Time Hierarchy and Polynomial Space 81
3.1 Nondeterministic Oracle Turing Machines 81
3.2 Polynomial-Time Hierarchy 83
3.3 Complete Problems in PH 88
3.4 Alternating Turing Machines 95
3.5 PSPACE-Complete Problems 100
3.6 EXP-Complete Problems 108
Exercises 114
Historical Notes 117

4 Structure of NP 119
4.1 Incomplete Problems in NP 119
4.2 One-Way Functions and Cryptography 122
4.3 Relativization 129
4.4 Unrelativizable Proof Techniques 131
4.5 Independence Results 131
4.6 Positive Relativization 132
4.7 Random Oracles 135
4.8 Structure of Relativized NP 140
Exercises 144
Historical Notes 147

Part II Nonuniform Complexity 149

5 Decision Trees 151
5.1 Graphs and Decision Trees 151
5.2 Examples 157
5.3 Algebraic Criterion 161
5.4 Monotone Graph Properties 166
5.5 Topological Criterion 168
5.6 Applications of the Fixed Point Theorems 175
5.7 Applications of Permutation Groups 179
5.8 Randomized Decision Trees 182
5.9 Branching Programs 187
Exercises 194
Historical Notes 198

6 Circuit Complexity 200
6.1 Boolean Circuits 200
6.2 Polynomial-Size Circuits 204
6.3 Monotone Circuits 210
6.4 Circuits with Modulo Gates 219
6.5 NC 222

CONTENTS vii

6.6 Parity Function 228
6.7 P-Completeness 235
6.8 Random Circuits and RNC 242
Exercises 246
Historical Notes 249

7 Polynomial-Time Isomorphism 252
7.1 Polynomial-Time Isomorphism 252
7.2 Paddability 256
7.3 Density of NP-Complete Sets 261
7.4 Density of EXP-Complete Sets 271
7.5 One-Way Functions and Isomorphism in EXP 275
7.6 Density of P-Complete Sets 285
Exercises 289
Historical Notes 292

Part III Probabilistic Complexity 295

8 Probabilistic Machines and Complexity Classes 297
8.1 Randomized Algorithms 297
8.2 Probabilistic Turing Machines 302
8.3 Time Complexity of Probabilistic Turing Machines 305
8.4 Probabilistic Machines with Bounded Errors 309
8.5 BPP and P 312
8.6 BPP and NP 315
8.7 BPP and the Polynomial-Time Hierarchy 318
8.8 Relativized Probabilistic Complexity Classes 321
Exercises 327
Historical Notes 330

9 Complexity of Counting 332
9.1 Counting Class #P 333
9.2 #P-Complete Problems 336
9.3 ⊕P and the Polynomial-Time Hierarchy 346
9.4 #P and the Polynomial-Time Hierarchy 352
9.5 Circuit Complexity and Relativized⊕P and #P 354
9.6 Relativized Polynomial-Time Hierarchy 358
Exercises 361
Historical Notes 364

10 Interactive Proof Systems 366
10.1 Examples and Definitions 366

viii CONTENTS

10.2 Arthur–Merlin Proof Systems 375
10.3 AM Hierarchy Versus Polynomial-Time Hierarchy 379
10.4 IP Versus AM 387
10.5 IP Versus PSPACE 396
Exercises 402
Historical Notes 406

11 Probabilistically Checkable Proofs and NP-Hard
Optimization Problems 407
11.1 Probabilistically Checkable Proofs 407
11.2 PCP Characterization of NP 411

11.2.1 Expanders 414
11.2.2 Gap Amplification 418
11.2.3 Assignment Tester 428

11.3 Probabilistic Checking and Inapproximability 437
11.4 More NP-Hard Approximation Problems 440
Exercises 452
Historical Notes 455

References 458

Index 480

Preface

Computational complexity theory has been a central area of theoretical
computer science since its early development in the mid-1960s. The
subsequent rapid development in the next three decades has not only
established it as a rich exciting theory, but also shown strong influence
on many other related areas in computer science, mathematics, and
operations research. We may roughly divide its development into three
periods. The works from the mid-1960s to the early 1970s paved a solid
foundation for the theory of feasible computation. The Turing-machine-
based complexity theory and the axiomatic complexity theory established
computational complexity as an independent mathematics discipline.
The identification of polynomial-time computability with feasible com-
putability and the discovery of the NP-complete problems consolidated
the P versus NP question as the central issue of the complexity theory.

From the early 1970s to the mid-1980s, research in computational
complexity expanded at an exponential rate both in depth and in breadth.
Various new computational models were proposed as alternatives to
the traditional deterministic models. Finer complexity hierarchies and
complexity classes were identified from these new models and more accu-
rate classifications have been obtained for the complexity of practical
algorithmic problems. Parallel computational models, such as alternating
Turing machines and parallel random access machines, together with
the NC hierarchy, provide a tool for the classification of the complexity
of feasible problems. Probabilistic Turing machines are a model for
the complexity theory of distribution-independent randomized algo-
rithms. Interactive proof systems, an extension of probabilistic Turing
machines, and communication complexity study the complexity aspect
of distributed or interactive computing. The study of one-way func-
tions led to a breakthrough in cryptography. A theory of average-case

ix

x PREFACE

completeness, based on the notion of distribution-faithful reductions,
aims at establishing the foundation for the distribution-dependent
average-case complexity. Boolean and threshold circuits are models for
nonuniform complexity in which algebraic and topological methods
have found interesting applications. Oracle Turing machines are the
model for the theory of relativization in which combinatorial techniques
meet recursion-theoretic techniques. Program-size complexity (or the
Kolmogorov complexity) formalizes the notion of descriptive complexity
and has strong connections with computational complexity. Although
the central questions remain open, these developments demonstrate
that computational complexity is a rich discipline with both a deep
mathematical theory and a diverse area of applications.

Beginning in the mid-1980s, we have seen a number of deep surpris-
ing results using diverse sophisticated proof techniques. In addition,
seemingly independent subareas have found interesting connections. The
exponential lower bounds for monotone circuits and constant-depth
circuits have been found using probabilistic and algebraic methods. The
connection between constant-depth circuits and relativization led to the
relativized separation of the polynomial-time hierarchy. The technique of
nondeterministic iterative counting has been used to collapse the nonde-
terministic space hierarchy. The study of probabilistic reductions gave us
the surprising result about the power of the counting class #𝑃 versus the
polynomial-time hierarchy. Arithmetization of Boolean computation in
interactive proof systems collapses the class of polynomial space to the
class of sets with interactive proof systems. Further development of this
research, together with techniques of coding theory, have led to strong
negative results in combinatorial approximation.

As outlined above, complexity theory has grown fast both in breadth
and in depth. With so many new computational models, new proof
techniques, and applications in different areas, it is simply not possible
to cover all important topics of the theory in a single book. The goal
of this book is, therefore, not to provide a comprehensive treatment
of complexity theory. Instead, we only select some of the fundamental
areas that we believe represent the most important recent advances in
complexity theory, in particular, on the P versusNP problem and present
the complete treatment of these subjects. The presentation follows the
approach of traditional mathematics textbooks. With a small number
of exceptions, all theorems are presented with rigorous mathematical
proofs.

We divide the subjects of this book into three parts, each repre-
senting a different approach to computational complexity. In Part I,
we develop the theory of uniform computational complexity, which is
based on the worst-case complexity measures on traditional models
of Turing machines, both deterministic ones and nondeterministic
ones. The central issue here is the P versus NP question, and we apply

PREFACE xi

the notions of reducibility and completeness to develop a complexity
hierarchy. We first develop the notion of time and space complexity
and complexity classes, in Chapter 1. Two basic proof techniques,
simulation and diagonalization, including Immerman and Szelepc-
sényi’s iterative counting technique, are presented. The knowledge of
recursion theory is useful here but is not required. Chapter 2 presents
the notion of NP-completeness, including Cook’s theorem and a few
well-known NP-complete problems. The relations between decision
problems versus search problems are carefully discussed through the
notion of polynomial-time Turing reducibility. Chapter 3 extends the
theory of NP-completeness to the polynomial-time hierarchy and
polynomial space. In addition to complete problems for these com-
plexity classes, we also present the natural characterizations of these
complexity classes by alternating Turing machines and alternating
quantifiers. In Chapter 4, the structure of the class NP is analyzed
in several different views. We present both the abstract proof that
there exist problems in NP that are neither NP-complete nor in P,
assuming NP does not collapse to P, and some natural problems
as the candidates of such problems, as well as their applications in
public-key cryptography. The controversial theory of relativization
and their interpretations are also introduced and discussed in this
chapter.

In Part II, we study the theory of nonuniform computational complex-
ity, including the computational models of decision trees and Boolean
circuits, and the notion of sparse sets. The nonuniform computational
models grew out of our inability to solve the major open questions in the
uniform complexity theory. It is hoped that the simpler structure of these
nonuniform models will allow better lower bound results. Although the
efforts so far are not strong enough to settle the major open questions
in the area of uniform complexity theory, a number of nontrivial lower
bound results have been obtained through new proof techniques. The
emphasis of this part is therefore not on the subjects themselves but
on the proof techniques. In Chapter 5, we present both the algebraic
and the topological techniques to prove the lower bounds for decision
trees of Boolean functions, particularly Boolean functions representing
monotone graph properties. In Chapter 6, we present two exponential
lower bound results on circuits using the approximation circuit technique
and the probabilistic method. The notion of sparse sets links the study of
nonuniform complexity with uniform complexity theory. This interesting
interconnection between uniform and nonuniform complexity theory,
such as the question of NC versus P, is also studied in Chapter 6. Then,
we present, in Chapter 7, the works on the Hartmanis–Berman conjec-
ture about the polynomial-time isomorphism of NP-complete problems,
which provide further insight into the structure of the complexity
class NP.

xii PREFACE

Part III is about the theory of probabilistic complexity, which studies
the complexity issues related to randomized computation. Randomiza-
tion in algorithms started in the late 1970s and has become increasingly
popular. The computational model for randomized algorithms, the prob-
abilistic Turing machine, and the corresponding probabilistic complexity
classes are introduced in Chapter 8. The notion of probabilistic quan-
tifiers is used to provide characterizations of these complexity classes,
and their relations with deterministic and nondeterministic complexity
classes are discussed. The counting problems and the complexity class
#𝑃 may be viewed as an extension of probabilistic computation, and they
are the main subjects of Chapter 9. Valiant’s proof of #𝑃 -completeness
of the permanent problem, as well as Toda’s theorem that all problems
in the polynomial-time hierarchy are reducible to problems in #𝑃 , are
presented. The exponential lower bound of constant-depth circuits
developed in Chapter 6 has an interesting application to the relativized
separation of the complexity class #𝑃 from the polynomial-time hier-
archy. This result is also presented in Chapter 9. Chapter 10 studies
the notion of interactive proof systems, which is another extension of
probabilistic computation. The collapse of the interactive proof systems
hierarchy is presented, and the relations between the interactive proof
systems and the Arthur–Merlin proof systems are discussed. Shamir’s
characterization of polynomial space by interactive proof systems is also
presented as a prelude to the recent breakthrough on probabilistically
checkable proofs. This celebrated result of Arora et al., that probabilis-
tically checkable proofs with a constant number of queries characterize
precisely the class NP, is presented in Chapter 11. We also present,
in this chapter, the application of this result to various combinatorial
approximation problems.

Althoughwe have tried to include, within this framework, asmany sub-
jects in complexity theory as possible, many interesting topics inevitably
have to be omitted. Two of the most important topics that we are not
able to include here are program-size complexity (or the Kolmogorov
complexity) and average-case completeness. Program-size complexity is a
central theory that would provide a unified view of the other nonuniform
models of Part II. However, this topic has grown into an independent
discipline in recent years and has become too big to be included in this
book. Interested readers are referred to the comprehensive book of Li
and Vitányi (1997). Average-case completeness provides a different view
toward the notion of distribution-independent average-case complexity
and would complement the works studied in Part III about distribution-
independent probabilistic complexity. This theory, however, seems to be
still in the early development stage.Much research is needed before we can
better understand its proof techniques and its relation to the worst-case
complexity theory, and we reluctantly omit it here. We refer interested
readers to Wang (1997) for a thorough review of this topic. Exercises at

PREFACE xiii

the end of each chapter often include additional topics that are worth
studying but are omitted in the main text owing to space limitations.

This book is grown out of authors’ lecture notes developed in the
past 10 years at the University of Minnesota and the State University of
New York at Stony Brook. We have taught from these notes in several
different ways. For a one-semester graduate course in which the students
have had limited exposure to theory, we typically cover most of Part
I plus a couple of chapters from either Part II or Part III. For better
prepared students, a course emphasizing the recent advances can be
taught based mainly on either Part II or Part III. Seminars based on
some advanced materials in Parts II and III, plus recent journal papers,
have also been conducted for Ph.D. students.

We are grateful to all our colleagues and students who have made pre-
cious suggestions, corrections, and criticism on the earlier drafts of this
book. We are also grateful to the following institutions for their finan-
cial support in preparing this book: the National Science Foundation of
the United States, National Science Council of Taiwan, National Natural
Science Foundation of China, National 973 Fundamental Research Pro-
gram of China, City University of HongKong, and National Chiao Tung
University of Taiwan.

DING-ZHU DU

KER-I KO

Notes on the Second Edition

The PCP characterization of the complexity class NP has been consid-
ered as one of the most important and insightful results in computational
complexity theory. It was first proved in 1992, but the proof kept evolving
in the past 20 years. Particularly, through the effort of Dinur and other
researchers, we now have a combinatorial proof of this theorem that
provides new different insight into this celebrated result. In the First
Edition of this book, we presented the original proof. That proof was
long and was based on algebraic coding theory, which made it hard
to follow for students who are not familiar with this area. Due to the
importance of the PCP theorem, in theory as well as in applications, we
decided to replace the original proof by the new combinatorial proof
that is based on the notion of expander graphs, a research area that has
recently found many applications in computer science. We hope that the
new proof will make this result more accessible to readers.

The work of the second author is partially supported by Aiming for
the Top University Program of the National Chiao Tung University and
Ministry of Education, Taiwan, R.O.C.

DING-ZHU DU

KER-I KO

xv

Part I

Uniform Complexity

In P or not in P,
That is the question.

—William Shakespeare (?)

1
Models of Computation and
Complexity Classes

O time! thou must untangle this, not I;
It is too hard a knot for me to untie.

—William Shakespeare

The greatest friend of truth is time.
—Charles Caleb Colton

The notions of algorithms and complexity are meaningful only when they
are defined in terms of formal computational models. In this chapter,
we introduce our basic computational models: deterministic Turing
machines and nondeterministic Turing machines. Based on these models,
we define the notion of time and space complexity and the fundamental
complexity classes including P and NP. In the last two sections, we study
two best known proof techniques, diagonalization and simulation, that
are used to separate and collapse complexity classes, respectively.

1.1 Strings, Coding, and Boolean Functions

Our basic data structure is a string. All other data structures are to
be encoded and represented by strings. A string is a finite sequence of

Theory of Computational Complexity, Second Edition. Ding-Zhu Du and Ker-I Ko.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

3

4 COMPLEXITY CLASSES

symbols. For instance, the word string is a string over the symbols of
English letters; the arithmetic expression “3 + 4 − 5” is a string over sym-
bols 3, 4, 5, +, and −. Thus, to describe a string, we must specify the set of
symbols to occur in that string.We call a finite set of symbols to be used to
define strings an alphabet. Note that not every finite set can be an alpha-
bet. A finite set S can be an alphabet if and only if the following condition
holds.

Property 1.1 Two finite sequences of elements in S are identical if and only
if the elements in the two sequences are identical respectively in ordering.

For example, {0, 1} and {00, 01} are alphabets, but {1, 11} is not an
alphabet because 11 can be formed by either 11 or (1 and 1).

Assume that Σ is an alphabet. A set of strings over the alphabet Σ is
called a language. A collection of languages is called a language class, or
simply a class.

The length of a string x is the number of symbols in the string
x, denoted by |x|. For example, |string| = 6 and |3 + 4 − 5| = 5. For
convenience, we allow a string to contain no symbol. Such a string is
called the empty string, which is denoted by 𝜆. So, |𝜆| = 0. (The notation| ⋅ | is also used on sets. If S is a finite set, we write |S| to denote its
cardinality.)

There is a fundamental operation on strings. The concatenation of two
strings x and y is the string xy. The concatenation follows associative law,
that is, x(yz) = (xy)z. Moreover, 𝜆x = x𝜆 = x. Thus, all strings over an
alphabet form a monoid under concatenation.1 We denote x0 = 𝜆 and
xn = xxn−1 for n ≥ 1.

The concatenation operation on strings can be extended to languages.
The concatenation of two languages A and B is the language AB = {ab ∶
a ∈ A, b ∈ B}. We also denote A0 = {𝜆} and An = AAn−1 for n ≥ 1. In
addition, we define A∗ =

⋃∞

i=0A
i. The language A∗ is called the Kleene

closure of A. The Kleene closure of an alphabet is the set of all strings
over the alphabet.

For convenience, we will often work only on strings over the alphabet
{0, 1}. To show that this does not impose a serious restriction on the the-
ory, we note that there exists a simple way of encoding strings over any
finite alphabet into the strings over {0, 1}. Let X be a finite set. A one–
one mapping f from X to Σ∗ is called a coding (of X in Σ∗). If both X
and {f (x) ∶ x ∈ X} are alphabets, then, by Property 1.1, f induces a cod-
ing from X∗ to Σ∗. Suppose that X is an alphabet of n elements. Choose
k = ⌈log n⌉ and choose a one–one mapping f from X to {0, 1}k.2 Note

1A set with an associative multiplication operation and an identity element is amonoid.
A monoid is a group if every element in it has an inverse.

2Throughout this book, unless otherwise stated, log denotes the logarithm function
with base 2.

1.1 Strings, Coding, and Boolean Functions 5

that any subset of {0, 1}k is an alphabet, and hence, f is a coding from X
to {0, 1}∗ and f induces a coding from X∗ to {0, 1}∗.

Given a linear ordering for an alphabet Σ = {a1, · · · , an}, the lexico-
graphic ordering < on Σ∗ is defined as follows: x = ai1ai2 · · · aim < y =
aj1aj2 · · · ajk if and only if either [m < k] or [m = k and for some 𝓁 < m,
i1 = j1, · · · , i𝓁 = j𝓁 and i𝓁+1 < j𝓁+1]. The lexicographic ordering is a coding
from natural numbers to all strings over an alphabet.

A coding from Σ∗ × Σ∗ to Σ∗ is also called a pairing function on Σ∗. As
an example, for x, y ∈ {0, 1}∗ define ⟨x, y⟩ = 0|x|1xy and x # y = x0y1xR,
where xR is the reverse of x. Then ⟨⋅, ⋅⟩ and “#” are pairing functions on
{0, 1}∗. A pairing function induces a coding from Σ∗ × · · · × Σ∗

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
n

to Σ∗ by

defining ⟨x1, x2, x3,… , xn⟩ = ⟨· · · ⟨⟨x1, x2⟩, x3⟩,… , xn⟩.
Pairing functions can also be defined on natural numbers. For instance,

let 𝜄 ∶ {0, 1}∗ → ℕ be the lexicographic ordering function, that is, 𝜄(x) = n
if x is the nth string in {0, 1}∗ under the lexicographic ordering (starting
with 0). Then, we can define a pairing function on natural numbers from
a pairing function on binary strings: ⟨n,m⟩ = 𝜄(⟨𝜄−1(n), 𝜄−1(m)⟩).

In the above, we have seen some specific simple codings. In general, if
A is a finite set of strings over some alphabet, when can A be an alpha-
bet? Clearly, A cannot contain the empty string 𝜆 because 𝜆x = x𝜆. The
following theorem gives another necessary condition.

Theorem 1.2 (McMillan’s Theorem) Let s1,… , sq be q nonempty strings
over an alphabet of r symbols. If {s1,… , sq} is an alphabet, then

q∑
i=1

r−|si| ≤ 1.

Proof. For any natural number n, consider(q∑
i=1

r−|si|)n = n𝓁∑
k=n

mkr
−k,

where 𝓁 = max{|s1|,… , |sq|} and mk is the number of elements in the
following set:

Ak = {(i1, · · · , in) ∶ 1 ≤ i1 ≤ q,… , 1 ≤ in ≤ q, k = |si1| + · · · + |sin|}.
As {s1,… , sq} is an alphabet, different vectors (i1,… , in) correspond to
different strings si1 … sin . The strings corresponding to vectors in Ak all
have length k. Note that there are at most rk strings of length k. Therefore,
mk ≤ rk. It implies

6 COMPLEXITY CLASSES

(q∑
i=1

r−|si|)n ≤ n𝓁∑
k=n

rkr−k = n𝓁 − (n − 1) ≤ n𝓁. (1.1)

Now, suppose
∑q

i=1 r
−|si| > 1. Then for sufficiently large n, (

∑q
i=1 r

−|si|)n >
n𝓁, contradicting (1.1). ◾

A Boolean function is a function whose variable values and function
value are all in {TRUE, FALSE}. We often denote TRUE by 1 and FALSE by
0. In the following table, we show two Boolean functions of two variables,
conjunction ∧ and disjunction ∨, and a Boolean function of a variable,
negation ¬.

x y x ∧ y x ∨ y ¬x
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

All Boolean functions can be defined in terms of these three functions.
For instance, the two-variable function exclusive-or⊕ can be defined by

x⊕ y = ((¬x) ∧ y) ∨ (x ∧ (¬y)).

For simplicity, we also write xy for x ∧ y, x + y for x ∨ y, and x for ¬x.
A table like the above, in which the value of a Boolean function for each
possible input is given explicitly, is called a truth-table for the Boolean
function. For each Boolean function f over variables x1, x2,… , xn, a
function 𝜏 ∶ {x1, x2,… , xn} → {0, 1} is called a Boolean assignment
(or, simply, an assignment) for f . An assignment on n variables can
be seen as a binary string of length n, that is, a string in {0, 1}n. A
function 𝜏 ∶ Y → {0, 1}, where Y = {xi1 , xi2 ,… , xik} is a subset of
X = {x1, x2,… , xn}, is called a partial assignment on X . A partial assign-
ment 𝜏 on n variables can be seen as a string of length n over {0, 1, ∗}, with
∗ denoting “unchanged.” If 𝜏 ∶ Y → {0, 1} is a partial assignment for f ,
we write f |𝜏 or f |xi1 = 𝜏(xi1),…, xik = 𝜏(xik)

to denote the function obtained by
substituting 𝜏(xij) for xij , 1 ≤ j ≤ k, into f . This function f |𝜏 is a Boolean
function on X − Y and is called the restriction of f by 𝜏. We say a partial
assignment 𝜏 satisfies f or 𝜏 is a truth assignment for f , if f |𝜏 = 1.3

The functions conjunction, disjunction, and exclusive-or all follow
the commutative and associative laws. The distributive law holds for
conjunction to disjunction, disjunction to conjunction, and conjunction
to exclusive-or, that is, (x + y)z = xz + yz, xy + z = (x + z)(y + z), and

3In the literature, the term truth assignment sometimes simply means a Boolean assign-
ment.

1.2 Deterministic Turing Machines 7

(x⊕ y)z = xz⊕ yz. An interesting and important law about negation is
de Morgan’s law, that is, xy = x + y and x + y = xy. A Boolean formula
is a formula over Boolean variables using operators ∨, ∧, and ¬.

A literal is either a Boolean variable or the negation of a Boolean vari-
able. An elementary product is a product of several literals. Consider an
elementary product p and a Boolean function f . If p = 1 implies f = 1,
then p is called an implicant of f . An implicant p is prime if no product of
any proper subset of the literals defining p is an implicant of f . A prime
implicant is also called a minterm. For example, function f (x1, x2, x3) =
(x1 + x2)(x2 + x3) has minterms x1x2, x1x3, and x2x3. x1x2x3 is an impli-
cant of f but not aminterm. The size of an implicant is the number of vari-
ables in the implicant. We letD1(f) denote the maximum size of minterms
of f . A DNF (disjunctive normal form) is a sum of elementary products.
Every Boolean function is equal to the sum of all its minterms. So, every
Boolean function can be represented by a DNFwith terms of size at most
D1(f). For a constant function f ≡ 0 or f ≡ 1, we define D1(f) = 0. For a
nonconstant function f , we always have D1(f) ≥ 1.

Similarly, an elementary sum is a sum of several literals. Consider an
elementary sum c and a Boolean function f . If c = 0 implies f = 0, then
c is called a clause of f . A minimal clause is also called a prime clause.
The size of a clause is the number of literals in it. We let D0(f) denote the
maximum size of prime clauses of f . A CNF (conjunctive normal form)
is a product of elementary sums. Every Boolean function is equal to the
product of all its prime clauses, which is a CNF with clauses of size at
most D0(f). For a constant function f ≡ 0 or f ≡ 1, we define D0(f) = 0.
For a nonconstant function f , we always have D0(f) ≥ 1.

The following states a relation between implicants and clauses.

Proposition 1.3 Any implicant and any clause of a Boolean function f have
at least one variable in common.

Proof. Let p and c be an implicant and a clause of f , respectively. Suppose
that p and c have no variable in common. Then we can assign values to all
variables in p to make p = 1 and to all variables in c to make c = 0 simul-
taneously. However, p = 1 implies f = 1 and c = 0 implies f = 0, which is
a contradiction. ◾

1.2 Deterministic Turing Machines

Turing machines (TMs) are simple and yet powerful enough compu-
tational models. Almost all reasonable general-purpose computational
models have been known to be equivalent to TMs, in the sense that they
define the same class of computable functions. There are many variations
of TMs studied in literature. We are going to introduce, in this section,

8 COMPLEXITY CLASSES

the simplest model of TMs, namely, the deterministic Turing machine
(DTM). Another model, the nondeterministic Turing machine (NTM),
is to be defined in the next section. Other generalized TM models, such
as deterministic and nondeterministic oracle TMs, will be defined in
later chapters. In addition, we will introduce in Part II other nonuniform
computational models which are not equivalent to TMs.

A deterministic (one-tape) TM (DTM) consists of two basic units: the
control unit and the memory unit. The control unit contains a finite num-
ber of states. The memory unit is a tape that extends infinitely to both
ends. The tape is divided into an infinite number of tape squares (or, tape
cells). Each tape square stores one of a finite number of tape symbols.
The communication between the control unit and the tape is through a
read/write tape head that scans a tape square at a time (See Figure 1.1).

A normal move of a TM consists of the following actions:

(1) Reading the tape symbol from the tape square currently scanned by
the tape head;

(2) Writing a new tape symbol on the tape square currently scanned by
the tape head;

(3) Moving the tape head to the right or left of the current square; and

(4) Changing to a new control state.

The exact actions of (2)–(4) depend on the current control state and the
tape symbol read in (1). This relation between the current state and the
current tape symbol and actions (2)–(4) is predefined by a program.

Formally, a TMM is defined by the following information:

(1) A finite set Q of states;

(2) An initial state q0 ∈ Q;

(3) A subset F ⊆ Q of accepting states;

(4) A finite set Σ of input symbols;

(5) A finite set Γ ⊃ Σ of tape symbols, including a special blank symbol
B ∈ Γ − Σ; and

B B B B Ba a ab b

Finite
control

Tape head

Tape

Figure 1.1 A Turing machine.

1.2 Deterministic Turing Machines 9

(6) A partial transition function 𝛿 that maps (Q − F) × Γ to Q × Γ ×
{L,R} (the program).

In the above, the transition function 𝛿 is a partial function, meaning that
the function 𝛿 may be undefined on some pairs (q, s) ∈ (Q − F) × Γ. The
use of the initial state, accepting states, and the blank symbol is explained
in the following text.

In order to discuss the notions of accepting a language and computing a
function by a TM, we add some convention to the computation of a TM.
First, we assume that initially an input string 𝑤 is stored in the consec-
utive squares of the tape of M, and the other squares contain the blank
symbol B. The tape head of M is initially scanning the leftmost square
of the input 𝑤, and the machine starts at the initial state q0. (Figure 1.1
shows the initial setting for a TM with input abbaa.) Starting from this
initial configuration, the machine M operates move by move according
to the transition function 𝛿. The machine may either operate forever or
halt when it enters a control state q and reads a tape symbol s for which
𝛿(q, s) is undefined. If a TMM eventually halts at an accepting state q ∈ F
on input 𝑤, then we sayM accepts 𝑤. IfM halts at a nonaccepting state
q ∉ F on input 𝑤, then we sayM rejects 𝑤.

To formally define the notion of accepting an input string, we need
to define the concept of configurations. A configuration 𝛼 of a TM M
is a record of all the information of the computation of M at a specific
moment, which includes the current state, the current symbols in the tape,
and the current position of the tape head. From this information, one can
determine what the future computation is. Formally, a configuration of a
TMM is an element (q, x, y) ofQ × Γ∗ × Γ∗ such that the leftmost symbol
of x and the rightmost symbol of y are not B. A configuration (q, x, y)
denotes that the current state is q, the current nonblank symbols in the
tape are the string xy, and the tape head is scanning the leftmost symbol of
y (when y is empty, the tape head is scanning the blank that is immediately
to the right of the rightmost symbol of x).4 Assuming Q ∩ Γ = ∅, we also
write xqy to stand for (q, x, y).

We now generalize the transition function 𝛿 of a TM M to the next
configuration function ⊢M (or, simply ⊢ if M is understood) defined on
configurations ofM. Intuitively, the function ⊢ maps each configuration
to the next configuration after one move of M. To handle the special
nonblank requirement in the definition of configurations, we define two
simple functions: 𝓁(x) = the string x with the leading blanks removed
and r(x) = the string x with the trailing blanks removed. Assume that
(q1, x1, y1) is a configuration of M. If y1 is not the empty string, then
let y1 = s1y2 for some s1 ∈ Γ and y2 ∈ Γ∗; if y1 = 𝜆, then let s1 = B and

4The nonblank requirement for the leftmost symbol of x and for the rightmost symbol
of y is added so that each configuration has a unique finite representation.

10 COMPLEXITY CLASSES

y2 = 𝜆. Then, we can formally define the function ⊢ as follows (we write
𝛼 ⊢𝛽 for ⊢(𝛼) = 𝛽):

Case 1. 𝛿(q1, s1) = (q2, s2,L) for some q2 ∈ Q and s2 ∈ Γ. If x1 = 𝜆,
then let s3 = B and x2 = 𝜆; otherwise, let x1 = x2s3 for some x2 ∈ Γ∗ and
s3 ∈ Γ. Then, (q1, x1, y1)⊢(q2,𝓁(x2), r(s3s2y2)).

Case 2. 𝛿(q1, s1) = (q2, s2,R) for some q2 ∈ Q and s2 ∈ Γ. Then,
(q1, x1, y1)⊢(q2,𝓁(x1s2), r(y2)).

Case 3. 𝛿(q1, s1) is undefined. Then, ⊢ is undefined on (q1, x1, y1).

Now we define the notion of the computation of a TM. A TMM halts
on an input string 𝑤 if there exists a finite sequence of configurations
𝛼0, 𝛼1,… , 𝛼n such that

(1) 𝛼0 = (q0, 𝜆, 𝑤) (this is called the initial configuration for input 𝑤);

(2) 𝛼i ⊢𝛼i+1 for all i = 0, 1,… , n − 1; and

(3) ⊢(𝛼n) is undefined.

A TM M accepts an input string 𝑤 if M halts on 𝑤 and, in addition,
the halting state is in F , that is, in (3) above, 𝛼n = (q, x, y) for some q ∈ F
and x, y ∈ Γ∗. A TMM outputs y ∈ Σ∗ on input 𝑤 ifM halts on 𝑤 and,
in addition, the final configuration 𝛼n is of the form 𝛼n = (q, 𝜆, y) for some
q ∈ F .

Example 1.4 We describe a TMM that accepts the strings in L = {aibaj∶
0 ≤ i ≤ j}. The machineM has states Q = {q0, q1,… , q5}, with the initial
state q0 and accepting state q5 (i.e., F = {q5}). It accepts input symbols
from Σ = {a, b} and uses tape symbols in Γ = {a, b, c,B}. Figure 1.2 is the
transition function 𝛿 ofM.

It is not hard to check thatM halts at state q5 on all strings in L, that
it halts at a state qi, 0 ≤ i ≤ 4, on strings having zero or more than one b,
and that it does not halt on strings aibaj with i > j ≥ 0. In the following,
we show the computation paths of machineM on some inputs (we write
xqiy to denote the configuration (qi, x, y)):

a b c B
q0 q1, c, R q4, B, R q0, B, R
q1 q1, a, R q2, b, R
q2 q3, c, L q2, c, R q2, B, R
q3 q3, a, L q3, b, L q3, c, L q0, B, R
q4 q4, a, R q4, B, R q5, B, R

δ

Figure 1.2 The transition function of machineM.

1.2 Deterministic Turing Machines 11

On input abaa: q0abaa ⊢ cq1baa ⊢ cbq2aa ⊢ cq3bca ⊢ q3cbca ⊢
q3Bcbca ⊢ q0cbca ⊢ q0bca ⊢ q4ca ⊢ q4a ⊢ aq4 ⊢ aBq5.

On input aaba: q0aaba ⊢ cq1aba ⊢ caq1ba ⊢ cabq2a ⊢ caq3bc ⊢
cq3abc ⊢ q3cabc ⊢ q3Bcabc ⊢ q0cabc ⊢ q0abc ⊢ cq1bc ⊢ cbq2c ⊢
cbcq2 ⊢ cbcBq2 ⊢ cbcBBq2 ⊢ · · · .

On input abab: q0abab ⊢ cq1bab ⊢ cbq2ab ⊢ cq3bcb ⊢ q3cbcb ⊢
q3Bcbcb ⊢ q0cbcb ⊢ q0bcb ⊢ q4cb ⊢ q4b. ◽

The notion of computable languages and computable functions can
now be formally defined. In the following, we say f is a partial function
defined on Σ∗ if the domain of f is a subset of Σ∗, and f is a total function
defined on Σ∗ if the domain of f is Σ∗.

Definition 1.5 (a) A language A over a finite alphabet Σ is recursively enu-
merable (r.e.) if there exists a TM M that halts on all strings 𝑤 in A and
does not halt on any string 𝑤 in Σ∗ − A.
(b) A language A over a finite alphabet Σ is computable (or, recursive)

if there exists a TMM that halts on all strings 𝑤 in Σ∗, accepts all strings
𝑤 in A and does not accept any string 𝑤 in Σ∗ − A.
(c) A partial function f defined from Σ∗ to Σ∗ is partial computable (or,

partial recursive) if there exists a TMM that outputs f (𝑤) on all 𝑤 in the
domain of f and does not halt on any 𝑤 not in the domain of f .
(d) A (total) function f ∶ Σ∗ → Σ∗ is computable (or, recursive) if it is

partial computable (i.e., the TMM that computes it halts on all 𝑤 ∈ Σ∗).

For each TM M with the input alphabet Σ, we let L(M) denote the
set of all strings 𝑤 ∈ Σ∗ that are accepted by M. Thus, a language A is
recursively enumerable if and only if A = L(M) for some TM M. Also,
a language A is recursive if and only if A = L(M) for some TM M that
halts on all inputs 𝑤.

Recursive sets, recursively enumerable sets, partial recursive functions,
and recursive functions are the main objects studied in recursive function
theory, or, recursion theory. See, for instance, Rogers (1967) for a complete
treatment.

The above classes of recursive sets and recursively enumerable sets are
defined based on the model of deterministic, one-tape TMs. As TMs look
very primitive, the question arises whether TMs are as powerful as other
machinemodels. In other words, do the classes of recursive sets and recur-
sively enumerable sets remain the same if they are defined based on dif-
ferent computational models? The answer is yes, according to the famous
Church–Turing Thesis.

Church–Turing Thesis. A function computable in any reasonable computa-
tional model is computable by a TM.

12 COMPLEXITY CLASSES

What is a reasonable computational model? Intuitively, it is a model in
which the following conditions hold:

(1) The computation of a function is given by a set of finite instruc-
tions.

(2) Each instruction can be carried out in this model in a finite number
of steps or in a finite amount of time.

(3) Each instruction can be carried out in this model in a deterministic
manner.5

As the notion of reasonable computational models in the Church–
Turing Thesis is not well defined mathematically, we cannot prove the
Church–Turing Thesis as a mathematical statement but can only collect
mathematical proofs as evidence to support it. So far, many different
computational models have been proposed and compared with the TM
model, and all reasonable ones are proven to be equivalent to TMs. The
Church–Turing Thesis thus remains trustworthy.

In the following, we show that multi-tape TMs compute the same class
of functions as one-tape TMs. A multi-tape TM is similar to a one-tape
TM with the following exceptions. First, it has a finite number of tapes
that extends infinitely to the both ends. Each tape is equipped with its own
tape head.All tape heads are controlled by a commonfinite control. There
are two special tapes: an input tape and an output tape. The input tape is
used to hold the input strings only; it is a read-only tape that prohibits
erasing and writing. The output tape is used to hold the output string
when the computation of a function is concerned; it is a write-only tape.
The other tapes are called the storage tapes or the work tapes. All work
tapes are allowed to read, erase, and write (see Figure 1.3).

Next, we allow each tape head in a multi-tape TM, during a move, to
stay at the same square without moving to the right or the left. Thus,
each move of a k-tape TM is defined by a partial transition function 𝛿
that maps (Q − F) × Γk to Q × Γk × {L,R,S}k (where S stands for stay).
The initial setting of the input tape of the multi-tape TM is the same as
that of the one-tape TM, and other tapes of the multi-tape TM initially
contain only blanks. The formal definition of the computation of a multi-
tape TM on an input string x and the concepts of accepting a language
and computing a function by a multi-tape TM can be defined similar to
that of a one-tape TM. We leave it as an exercise.

5By condition (1), we exclude the nonuniformmodels; by condition (2), we exclude the
models with infinite amount of resources; and by condition (3), we exclude the nonde-
terministic models and probabilistic models. Although they are considered unreasonable,
meaning probably not realizable by reliable physical devices, these nonstandard models
remain as interesting mathematical models and will be studied extensively in the rest of
the book. In fact, we will see that the Church–Turing Thesis still holds even if we allow
nondeterministic or probabilistic instructions in the computational model.

