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Foreword

Demography can be considered the key to understanding much of biology. It is the
demographic processes of birth and death which govern the spread of populations
through environments and the spread of genes through populations. An understand-
ing of demography can yield not only an understanding of population size and pop-
ulation change, it can help us to understand the form and function of life histories;
when organisms mature, when they breed, and when they die. Demographic insights
allow us to see how populations function, how they interact with their changing
environment, and how they adapt.

The analysis of demographic processes in free-living organisms is however no
simple task and involves considerable challenges in observation and analysis. Some
20 years ago, there was a concerted effort to promote inter-disciplinary collaboration
between biologists and statisticians to address these challenges and thereby to fur-
ther our understanding of demographic processes in natural populations. Although
many diverse organisms can be studied in the wild, birds have proved particularly
amenable with large numbers being marked and followed by large networks of ob-
servers. It was no coincidence then that the European Union for Bird Ringing (EUR-
ING) played a leading role in these initiatives, teaming up in the mid-1980s with the
Mathematical Ecology Group of the Biometric Society, and the British Ecological
Society, to bring together experts from diverse fields to address the challenges in
hand. Twenty years on, progress has been considerable and we now have significant
insights into demographic processes thanks to the wide range of quantitative tools
and systematically collected datasets which have been built up over this period.

The biological questions and the methodological challenges are however by no
means settled, indeed the field continues to progress at an ever accelerating pace. In
2003, a group of just under 100 scientists met to discuss and identify the key areas
of development in which ongoing research effort should be focused. As listed in the
Contents section, the group identified five areas defined by biological applications
and five areas defined by statistical approaches including the issue of software with
which to implement state-of-the-art analyses. Experts in each of these areas then
took the lead in assembling authoritative contributions, with one or two overview- or
perspectives- papers prepared by leading figures, and three to five primary research
papers which reported the most significant new findings. A further open-forum was
created for notable contributions which lay outside the ten targeted areas. Authors
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vi Foreword

came together to discuss their contributions at a meeting hosted by the University
of Otago at the beginning of 2007.

This field continues to move rapidly, but we hope this resulting volume will stand
as a definitive compilation on the state-of-the-field at the present time, and that it
will steer the further development of the field over the years ahead. As reflected
in this volume, we anticipate increasing emphasis on integrated approaches which
combine multiple sources of information and an increasing emphasis on Bayesian
approaches. In terms of biological applications, it has traditionally been the field
of wildlife management which has provided the impetus for developing modern ap-
proaches, but increasingly we see the activities of evolutionary biologists and biode-
mographers as a driver of growth in this field. Modeling demographic processes in
marked populations is a truly interdisciplinary endeavour, and we look forward to
continued fruitful dialogue not just between biologists and statisticians but between
these different fields of biology which are conceptually similar and which share the
same need for sound quantitative approaches to demographic analysis.

This volume has been a team effort, and as well as crediting all the work of
the authors themselves and the associate editors listed in the Contents section, we
would like to acknowledge Prof. Richard Barker and his team for their hard work
and kind hospitality in hosting a successful meeting of contributors in Dunedin. All
contributions have benefited from the expert input of at least two referees, and we
would of course like to thank Prof. G.P. Patil, Manjula Jude (Project Manager at
Integra Software Services), Lindy Paul and the team at Springer for facilitating the
publication of this volume.

David L. Thomson
Evan G. Cooch

Michael J. Conroy
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Bayesian Hierarchical Models for Inference
About Population Growth

Richard J. Barker, Matthew R. Schofield, Doug P. Armstrong,
and R. Scott Davidson

Abstract Mark recapture models have long been used for estimating wildlife popu-
lation parameters. Typically, the data are summarized in terms of parameters that are
interpreted in the context of an implicit demographic model for describing popula-
tion dynamics. Usually, this demographic model plays little or no role in the mark-
recapture model. Bayesian hierarchical models (BHM) offer a way to explicitly
include demographic models in an analysis. We argue that such an approach should
have wide appeal to ecologists as it allows inference to focus on ecological models
of interest rather than obtaining a parsimonious depiction of the sampling process.
We discuss the use of BHM’s for modeling mark-recapture data with a focus on
models describing density-dependent growth.

1 Introduction

Ecologists interested in population dynamics of wildlife populations typically work
with two kinds of models: demographic models, in which predicted population
trajectories are obtained conditional on parameter values and statistical models
in which parameter estimates are obtained using data sampled from the study
population.

Demographic models may be matrix- or individual-based and can be determin-
istic or stochastic (Williams et al. 2002). Whether population models are determin-
istic or stochastic they depend on parameters. Formally, we can write our model as
F(Z ; λ) where Z represents the output and λ represents demographic parameters. In
using demographic models our interest lies in predicting future population behavior,
usually in terms of summaries of Z such as extinction rate or equilibrium population
size.

Statistical models are used to summarize data. We can formalize a statistical
model as F(Y ;π ) where Y represents data and π parameters involved in describing
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the sampling process. Note that π might include some or all of the demographic
parameters in λ. Once the data have been collected they are fixed; we use the statis-
tical model to describe the mechanism by which we imagine our data were gener-
ated. We use our data and the model to obtain information about the parameters.
In the model, Y is regarded as random outcome sampled from F(Y ;π ) with the
parameters π fixed at (usually) unknown values.

In the context of the EURING technical meetings, the mark-recapture model is
an important class of statistical model. A strong tradition of the EURING technical
meetings has been the stimulation of the development of mark-recapture analysis,
to the extent that one of the main aims of these meetings has been to establish
mark-recapture as one of the standard methodologies in ecology and conservation
biology (Senar et al. 2004b). The past 20 years have seen the development of models
appropriate for analyzing almost every conceivable type of mark-recapture data, and
the development of powerful software such as MARK (White and Burnham 1999),
MSURGE (Choquet et al. 2004) and POPAN (Arnason and Schwarz 2002). Obvi-
ously, the development of mark-recapture modeling is not an end in itself. The value
of mark-recapture models lies in their application. “I note that although EURING
conferences have focused on estimation issues, it is important to recall that esti-
mation is not a ‘stand-alone’ activity or an inherently useful endeavor and attains
value primarily in the context of larger processes, such as science or management”
(Nichols 2004).

Applications of mark-recapture models have tended to focus on estimation as a
means for summarizing status of populations, for example the MAPS program in
North America (Tautin et al. 1999), or the interpretation of vital rates and factors
influencing these e.g. (Catchpole et al. 1999; Conroy et al. 2002; Reed 2004).

Implicit to a mark-recapture model is a demographic model that describes the
population dynamics of the study population, at least in part. For example, in the
Cormack–Jolly–Seber model (Cormack 1964; Jolly 1965; Seber 1965), the number
of marked survivors alive at occasion i + 1 is a binomial random variable with
index being the number of marked animals in the population immediately after
sample i and probability the survival rate for interval [i, i + 1). The implied demo-
graphic model has tended to play little part in subsequent analysis, although the most
recent EURING conference (Senar et al. 2004a) saw the appearance of a number of
papers that focused on assessment of population dynamics based on mark-recapture
data (e.g., Caswell and Fujiwara 2004; Francies and Saurola 2004; Gauthier and
Lebreton 2004; Brooks et al. 2004).

Caswell and Fujiwara (2004) stressed the potential benefits of explicitly incor-
porating demographic models into a mark-recapture analysis by “. . . making the
estimation of demographic models a goal at the outset of a mark-recapture study”.
A key advantage to integrating demographic and statistical models, of which mark-
recapture models are an example, is that it allows full expression of uncertainties.

Typically, demographic modelers have used fixed values for parameters in their
models. For example, Francis and Saurola (2004) used a deterministic model based
on mean parameter values to construct a deterministic predator-prey model to make
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predictions about tawny owl Strix aluco demographics. While this approach allows
general predictions to be made, it does not provide any measure of prediction
uncertainty associated with the fact that parameters must be estimated. Conditioning
on a set of parameter estimates allows one to consider the implications of this partic-
ular set of parameter values (Caswell and Fujiwara 2004). To assess the influence of
parameter uncertainty Caswell and Fujiwara (2004) discusses use of “perturbation
analysis” based on derivatives of population summaries, or functions of these, such
as sensitivities and elasticities.

An alternative to expression of parameter uncertainty using calculus and sensi-
tivities is to use probability distributions. The use of probability distributions to
describe uncertainty is a defining feature of Bayesian inference. In Bayesian infer-
ence prior probability distributions for parameters are combined with models for
data to construct posterior distributions for parameters and posterior predictive
distributions for predicted values. These posterior distributions express the uncer-
tainty that we have about parameters and associated predictions after the data have
been collected. Instead of focusing on the implications of a particular set of param-
eter estimates for projected population growth, the Bayesian approach allows us to
consider a range of plausible parameter values with the contribution of any particular
combination weighted by its posterior density.

The use of posterior distributions to summarize knowledge about parameters
is convenient if interest is in exploring the demographic consequences of certain
choices of parameter values in demographic simulations. Predictions under the
demographic model can be made by sampling plausible values for parameters
from the posterior distributions generated by the statistical model. Alternatively,
we can combine the demographic and sampling models to obtain a fully integrated
analysis.

A specific advantage of Bayesian inference procedures is that Bayesian models
are naturally hierarchical. Hierarchical models have several levels of variability. In
a Bayesian model we have data which depends on parameters that are themselves
drawn from a distribution that also has parameters. The term hyperparameters is
often used to describe parameters for distributions of parameters. Bayesian hier-
archical models offer a way to formally integrate statistical models for estimating
parameters with simulation models for predicting the likely future behavior of popu-
lations based on sample data. Mark-recapture models are also naturally hierarchical
in that parameters such as survival probability and abundance are often modeled
as random variables by demographers. Moreover, ecologists are often interested
in relationships among parameters, such as density-dependent survival or recruit-
ment, that have major implications for predicted population trajectories. Hierar-
chical mark-recapture models offer a way to model all sources of data as well as to
model relationships among parameters (Link and Barker 2004) in a way that allows
all posterior uncertainty, including uncertainty about predictions, to be expressed
using probability distributions.

In this paper we use a case study of North Island saddlebacks (Philesturnus
rufusater) to illustrate the use of Bayesian hierarchical modeling to predict
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population trajectories based on a density-dependent population model. Our
emphasis is on accounting for parameter uncertainty conditional on the model.
Methodology for multi-model inference in a Bayesian setting has been well covered
elsewhere (Brooks et al. 2004).

2 North Island Saddlebacks of Mokoia Island

The North Island saddleback is a member of the wattlebird family (Callaeidae), a
family of birds endemic to New Zealand. The Callaeidae comprise two or three
(depending on taxonomic fashion) extant species. By the end of the nineteenth
century saddlebacks had become locally extinct from the mainland of New Zealand:
a single remnant population survived on one island off the coast of the North Island
(Armstrong et al. 2005) and a single remnant population survived on one island off
the coast of the South Island. Since the early 1960 s translocations have been used
to re-establish populations including some mainland populations.

Armstrong et al. (2005) used mark-resighting analysis and counts of fledged and
unmarked birds to monitor the outcome of a translocation to Mokoia Island in Lake
Rotorua. Thirty six adult birds were released on the 135-ha island in 1992 following
rat eradication. Mokoia Island is 2.1 km from the nearest shore, a distance believed
to be beyond the flying range of saddlebacks. The translocated population is thus
believed to be closed to emigration.

Armstrong et al. (2005) were interested in predicting future population growth
of the Mokoia Island saddleback population to assess future population viability
and to devise strategies for translocating birds from re-established populations
to places elsewhere. In particular, they were interested in evidence for density-
dependent population dynamics as the presence of density dependence can have
a major stabilizing influence on dynamics. Re-introductions are useful for studying
density dependent growth because founding populations are usually established at
low population densities and with a relatively high level of resource availability.

In their analysis, Armstrong et al. (2005) used a stochastic matrix model to
project the likely future trajectory of the Mokia Island saddleback population. Their
model tracked the number of males and females in the population at the start of
each breeding season and used estimates of survival and fledging rates from anal-
yses of their banding data and from fledgling surveys. Because Armstrong et al.
(2005) conditioned on these parameter estimates, their projection model does not
account for all the uncertainties in the analysis. Also, Armstrong et al. (2005) treated
abundance estimates obtained in their analysis as fixed, using these to assess density-
dependent effects on survival and juvenile production rates. In addition to unmod-
eled uncertainty there is also some sampling correlation unaccounted for between
the abundance and survival probability estimates.

With multiple sources of data and with interest in modeling parameters such as
survival and production rate as a function of population size, this problem is ideally
suited to an approach based on fitting a hierarchical model using Bayesian model
fitting procedures.
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3 Data and Models

3.1 Mark-Resighting Data

The 36 founder birds were color-marked before release. Mark-resighting data were
obtained from 24 surveys carried out between June 1992 and December 1997 at
approximately 3-month intervals: in March, June, September, and December. The
marked population comprised the 36 founding birds and 245 nestlings that were
banded during the five breeding seasons that took place during the study. Nestlings
were banded either in December or March according to when they were born. In
October 1996 an aerial poison drop was used to try and eradicate mice from the
island. An additional mark-resighting survey was carried out in November 1996 to
assess the effect of the poison drop on the saddlebacks. During the mark-resighting
surveys counts of all unmarked birds were also recorded.

To analyze the mark-recapture data we followed Armstrong et al. (2005) and
fitted a simple 2-age model in which juveniles became adults after 9 months. The
logit of the 3-month survival probabilities were modeled as a linear function of
effects due to the age of the bird (juvenile/adult), poison drop, and the number of
breeding pairs. We did not consider a sex-specific model as the analysis of the mark-
resighting data by Armstrong et al. (2005) found negligible support for sex-specific
survival.

To account for unexplained variation in three month survival probabilities over
time we included a normal N (0, σ 2) random effect. Because the intervals were
not exactly 3-months, interval-specific survival probabilities were adjusted for the
length of the interval.

Let y j denote the length of time between survey j and survey j + 1 (3 months =
1.0), β0 the overall mean 3-month survival probability on the logit scale, Z1i = 1
for if individual i is juvenile and 0 if it is adult, Z2 j = 1 if there was a poison drop
in the 3-month interval starting at the time of survey j and zero otherwise, and N j

denotes the number of breeding pairs in the breeding season associated with survey
j , then:

φi j = S
y j

i j

and

logit(Si j ) ∼ N (β0 + β1 Z1i + β2 Z2 j + β3 Z1i Z2 j + β4 ln(N j ), σ
2).

where φi j is the interval specific survival probability and Si j the 3-month survival
probability. Detection probabilities (pi j ; i = 2 . . . 25, j = 1 for juveniles, j =
2 for adults) we modeled as age- and time-specific fixed effects.

For model fitting we used the complete data likelihood (Schofield and Barker
2008) which is proportional to:

[X |d, p, R][d|S, R][S|β, Zσ 2]


