Christopher Cox

AN INTRODUCTION TO

LTE, LTE-Advanced, SAE, VoLTE and 4G Mobile Communications

SECOND EDITION

AN INTRODUCTION TO LTE

AN INTRODUCTION TO LTE LTE, LTE-ADVANCED, SAE, VoLTE AND 4G MOBILE COMMUNICATIONS

Second Edition

Christopher Cox

Director, Chris Cox Communications Ltd, UK

WILEY

This edition first published 2014 © 2014 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Cox, Christopher (Christopher Ian), 1965-An introduction to LTE LTE, LTE-advanced, SAE, VoLTE and 4G mobile communications / Christopher Cox. pages cm
Includes index.
ISBN 978-1-118-81803-9 (cloth)
1. Long-Term Evolution (Telecommunications) 2. Mobile communication systems – Standards. I. Title.
TK5103.48325.C693 2014
621.3845'6 – dc23

2014007432

A catalogue record for this book is available from the British Library.

ISBN:9781118818039

Set in 10/12 Times by Laserwords Private Limited, Chennai, India

To my nieces, Louise and Zoe

Contents

Preface			xxi
Ack	nowledge	ements	xxiii
List	List of Abbreviations		
1	Introduction		1
1.1	Archite	ectural Review of UMTS and GSM	1
	1.1.1	High-Level Architecture	1
	1.1.2	Architecture of the Radio Access Network	2
	1.1.3	Architecture of the Core Network	4
	1.1.4	Communication Protocols	5
1.2	Histor	y of Mobile Telecommunication Systems	6
	1.2.1	From 1G to 3G	6
	1.2.2	Third Generation Systems	7
1.3	The No	eed for LTE	8
	1.3.1	The Growth of Mobile Data	8
	1.3.2	Capacity of a Mobile Telecommunication System	9
	1.3.3	Increasing the System Capacity	10
	1.3.4	Additional Motivations	11
1.4	From U	UMTS to LTE	11
	1.4.1	High-Level Architecture of LTE	11
	1.4.2	Long-Term Evolution	12
	1.4.3	System Architecture Evolution	13
	1.4.4	LTE Voice Calls	14
	1.4.5	The Growth of LTE	15
1.5	From I	LTE to LTE-Advanced	16
	1.5.1	The ITU Requirements for 4G	16
	1.5.2	Requirements of LTE-Advanced	16
	1.5.3	4G Communication Systems	16
	1.5.4	The Meaning of $4G$	17
1.6	The 30	GPP Specifications for LTE	17
	Refere	nces	19
2	System	n Architecture Evolution	21
2.1	High-I	Level Architecture of LTE	21

21
21
22
s Network 23
23
24
25
25
25
27
28
entification 28
30
30
ols 31
cols 31
32
33
34
34
35
36
36
37
<i>GTP</i> 38
GRE and PMIP 39
39
40
40
40
41
43
45
49
49
49
50
51
53
55
gnal 55
Network 56
56
56
58

	3.3.1	Propagation Loss	58
	3.3.2	Noise and Interference	58
	3.3.3	Multipath and Fading	58
	3.3.4	Inter-symbol Interference	60
3.4	Error N	Management	61
	3.4.1	Forward Error Correction	61
	3.4.2	Automatic Repeat Request	62
	3.4.3	Hybrid ARQ	63
	Refere	nces	65
4	Ortho	gonal Frequency Division Multiple Access	67
4.1	Princip	ples of OFDMA	67
	4.1.1	Sub-carriers	67
	4.1.2	The OFDM Transmitter	68
	4.1.3	The OFDM Receiver	70
	4.1.4	The Fast Fourier Transform	72
	4.1.5	Block Diagram of OFDMA	72
	4.1.6	Details of the Fourier Transform	73
4.2	Benefit	ts and Additional Features of OFDMA	75
	4.2.1	Orthogonal Sub-carriers	75
	4.2.2	Choice of Sub-carrier Spacing	75
	4.2.3	Frequency-Specific Scheduling	77
	4.2.4	Reduction of Inter-symbol Interference	78
	4.2.5	Cyclic Prefix Insertion	79
	4.2.6	Choice of Symbol Duration	80
	4.2.7	Fractional Frequency Re-use	81
4.3	Single	82	
	4.3.1	Power Variations From OFDMA	82
	4.3.2	Block Diagram of SC-FDMA	83
	Refere	nces	85
5	Multip	ple Antenna Techniques	87
5.1	Divers	ity Processing	87
	5.1.1	Receive Diversity	87
	5.1.2	Closed Loop Transmit Diversity	88
	5.1.3	Open Loop Transmit Diversity	89
5.2	Spatial	l Multiplexing	90
	5.2.1	Principles of Operation	90
	5.2.2	Open Loop Spatial Multiplexing	92
	5.2.3	Closed Loop Spatial Multiplexing	94
	5.2.4	Matrix Representation	96
	5.2.5	Implementation Issues	99
	5.2.6	Multiple User MIMO	99
5.3	Beamf	forming	101
	5.3.1	Principles of Operation	101
	5.3.2	Beam Steering	102

	5.3.3	Downlink Multiple User MIMO Revisited	103
	Refere	nces	104
6	Archit	ecture of the LTE Air Interface	105
6.1	Air Int	erface Protocol Stack	105
6.2	Logica	1. Transport and Physical Channels	107
	6.2.1	Logical Channels	107
	6.2.2	Transport Channels	107
	6.2.3	Physical Data Channels	108
	6.2.4	Control Information	109
	6.2.5	Physical Control Channels	110
	6.2.6	Physical Signals	111
	6.2.7	Information Flows	111
6.3	The Re	esource Grid	111
	6.3.1	Slot Structure	111
	6.3.2	Frame Structure	113
	6.3.3	Uplink Timing Advance	115
	6.3.4	Resource Grid Structure	116
	6.3.5	Bandwidth Options	117
6.4	Multip	le Antenna Transmission	118
	6.4.1	Downlink Antenna Ports	118
	6.4.2	Downlink Transmission Modes	119
6.5	Resource Element Mapping		
	6.5.1	Downlink Resource Element Mapping	119
	6.5.2	Uplink Resource Element Mapping	121
	Refere	nces	123
7	Cell A	cquisition	125
7.1	Acquis	ition Procedure	125
7.2	Synchr	onization Signals	126
	7.2.1	Physical Cell Identity	126
	7.2.2	Primary Synchronization Signal	127
	7.2.3	Secondary Synchronization Signal	128
7.3	Downl	ink Reference Signals	128
7.4	Physic	al Broadcast Channel	129
7.5	Physic	al Control Format Indicator Channel	130
7.6	System	n Information	131
	7.6.1	Organization of the System Information	131
	7.6.2	Transmission and Reception of the System Information	133
7.7	Proced	ures after Acquisition	133
	Refere	nces	134
8	Data T	Transmission and Reception	135
8.1	Data T	ransmission Procedures	135
	8.1.1	Downlink Transmission and Reception	135
	8.1.2	Uplink Transmission and Reception	137

	8.1.3	Semi Persistent Scheduling	139
8.2	Transmi	ssion of Scheduling Messages on the PDCCH	139
	8.2.1	Downlink Control Information	139
	8.2.2	Resource Allocation	140
	8.2.3	Example: DCI Format 1	141
	8.2.4	Radio Network Temporary Identifiers	142
	8.2.5	Transmission and Reception of the PDCCH	143
8.3	Data Tra	ansmission on the PDSCH and PUSCH	144
	8.3.1	Transport Channel Processing	144
	8.3.2	Physical Channel Processing	146
8.4	Transmis	ssion of Hybrid ARQ Indicators on the PHICH	148
	8.4.1	Introduction	148
	8.4.2	Resource Element Mapping of the PHICH	148
	8.4.3	Physical Channel Processing of the PHICH	149
8.5	Uplink C	Control Information	149
	8.5.1	Hybrid ARQ Acknowledgements	149
	8.5.2	Channel Quality Indicator	150
	8.5.3	Rank Indication	151
	8.5.4	Precoding Matrix Indicator	151
	8.5.5	Channel State Reporting Mechanisms	151
	8.5.6	Scheduling Requests	152
8.6	Transmis	ssion of Uplink Control Information on the PUCCH	153
	8.6.1	PUCCH Formats	153
	8.6.2	PUCCH Resources	154
	8.6.3	Physical Channel Processing of the PUCCH	155
8.7	Uplink F	Reference Signals	155
	8.7.1	Demodulation Reference Signal	155
	8.7.2	Sounding Reference Signal	156
8.8	Power C	Control	157
	8.8.1	Uplink Power Calculation	157
	8.8.2	Uplink Power Control Commands	158
	8.8. <i>3</i>	Downlink Power Control	159
8.9	Disconti	nuous Reception	159
	8.9.1	Discontinuous Reception and Paging in RRC_IDLE	159
	8.9.2	Discontinuous Reception in RRC_CONNECTED	159
	Reference	ces	161
9	Randon	n Access	163
91	Transmi	ssion of Random Access Preambles on the PRACH	163
>.I	9.1.1	Resource Element Mapping	163
	9.1.2	Preamble Sequence Generation	165
	9.1.3	Signal Transmission	165
9.2	Non-Coi	ntention-Based Procedure	165
9.3	Contenti	ion-Based Procedure	160
	Reference	Ces	169
			- 07

10	Air Int	terface Layer 2	171
10.1	Mediur	n Access Control Protocol	171
	10.1.1	Protocol Architecture	171
	10.1.2	Timing Advance Commands	173
	10.1.3	Buffer Status Reporting	173
	10.1.4	Power Headroom Reporting	173
	10.1.5	Multiplexing and De-multiplexing	174
	10.1.6	Logical Channel Prioritization	174
	10.1.7	Scheduling of Transmissions on the Air Interface	175
10.2	Radio I	Link Control Protocol	176
	10.2.1	Protocol Architecture	176
	10.2.2	Transparent Mode	177
	10.2.3	Unacknowledged Mode	177
	10.2.4	Acknowledged Mode	178
10.3	Packet	Data Convergence Protocol	180
	10.3.1	Protocol Architecture	180
	10.3.2	Header Compression	180
	10.3.3	Prevention of Packet Loss during Handover	182
	Referer	nces	183
11	Power-	On and Power-Off Procedures	185
11.1	Power-	On Sequence	185
11.2	Networ	k and Cell Selection	187
	11.2.1	Network Selection	187
	11.2.2	Closed Subscriber Group Selection	187
	11.2.3	Cell Selection	188
11.3	RRC C	onnection Establishment	189
	11.3.1	Basic Procedure	189
	11.3.2	Relationship with Other Procedures	190
11.4	Attach	Procedure	191
	11.4.1	IP Address Allocation	191
	11.4.2	Overview of the Attach Procedure	192
	11.4.3	Attach Request	192
	11.4.4	Identification and Security Procedures	194
	11.4.5	Location Undate	195
	11.4.6	Default Bearer Creation	196
	11.4.7	Attach Accept	197
	11.4.8	Default Bearer Undate	198
11.5	Detach	Procedure	199
1110	Referer	nces	200
12	Securit	ty Procedures	203
12.1	Networ	k Access Security	203
	12.1.1	Security Architecture	203
	12.1.2	<i>Key Hierarchy</i>	204
	12.1.3	Authentication and Key Agreement	205
		* 0	

	12.1.4	Security Activation	207
	12.1.5	Ciphering	208
	12.1.6	Integrity Protection	209
12.2	Networ	rk Domain Security	210
	12.2.1	Security Protocols	210
	12.2.2	Security in the Evolved Packet Core	210
	12.2.3	Security in the Radio Access Network	211
	Referer	nces	212
13	Quality	y of Service, Policy and Charging	215
13.1	Policy a	and Charging Control	215
	13.1.1	Quality of Service Parameters	215
	13.1.2	Service Data Flows	217
	13.1.3	Charging Parameters	218
	13.1.4	Policy and Charging Control Rules	219
13.2	Policy a	and Charging Control Architecture	219
	13.2.1	Basic PCC Architecture	219
	13.2.2	Local Breakout Architecture	220
	13.2.3	Architecture Using a PMIP Based S5/S8	220
	13.2.4	Software Protocols	221
13.3	Session	n Management Procedures	222
	13.3.1	IP-CAN Session Establishment	222
	13.3.2	Mobile Originated SDF Establishment	223
	13.3.3	Server Originated SDF Establishment	224
	13.3.4	Dedicated Bearer Establishment	225
	13.3.5	PDN Connectivity Establishment	226
	13.3.6	Other Session Management Procedures	228
13.4	Data Tr	ransport in the Evolved Packet Core	228
	13.4.1	Packet Handling at the PDN Gateway	228
	13.4.2	Data Transport Using GTP	229
	13.4.3	Differentiated Services	230
	13.4.4	Multiprotocol Label Switching	231
	13.4.5	Data Transport Using GRE and PMIP	231
13.5	Chargir	ng and Billing	231
	13.5.1	High Level Architecture	231
	13.5.2	Offline Charging	232
	13.5.3	Online Charging	233
	Referer	nces	234
14	Mobili	ty Management	237
14.1	Transiti	ions between Mobility Management States	237
	14.1.1	SI Release Procedure	237
	14.1.2	Paging Procedure	239
	14.1.3	Service Request Procedure	239
14.2	Cell Re	eselection in RRC_IDLE	241
	14.2.1	Objectives	241

	14.2.2	Measurement Triggering on the Same LTE Frequency	241
	14.2.3	Cell Reselection to the Same LTE Frequency	242
	14.2.4	Measurement Triggering on a Different LTE Frequency	243
	14.2.5	Cell Reselection to a Different LTE Frequency	244
	14.2.6	Fast Moving Mobiles	244
	14.2.7	Tracking Area Update Procedure	245
	14.2.8	Network Reselection	246
14.3	Measure	ements in RRC_CONNECTED	247
	14.3.1	Objectives	247
	14.3.2	Measurement Procedure	247
	14.3.3	Measurement Reporting	248
	14.3.4	Measurement Gaps	249
14.4	Handov	er in RRC_CONNECTED	250
	14.4.1	X2 Based Handover Procedure	250
	14.4.2	Handover Variations	252
	Referen	ces	253
15	Inter-op	peration with UMTS and GSM	255
15.1	System	Architecture	255
	15.1.1	Architecture of the 2G/3G Packet Switched Domain	255
	15.1.2	S3/S4-Based Inter-operation Architecture	257
	15.1.3	Gn/Gp-Based Inter-operation Architecture	258
15.2	Power-C	On Procedures	259
15.3	Mobility	y Management in RRC_IDLE	259
	15.3.1	Cell Reselection	259
	15.3.2	Routing Area Update Procedure	260
	15.3.3	Idle Mode Signalling Reduction	262
15.4	Mobility	y Management in RRC_CONNECTED	262
	15.4.1	RRC Connection Release with Redirection	262
	15.4.2	Measurement Procedures	264
	15.4.3	Optimized Handover	265
	Referen	ces	268
16	Inter-op	peration with Non-3GPP Technologies	271
16.1	Generic	System Architecture	271
	16.1.1	Network-Based Mobility Architecture	271
	16.1.2	Host-Based Mobility Architecture	273
	16.1.3	Access Network Discovery and Selection Function	274
16.2	Generic	Signalling Procedures	275
	16.2.1	Overview of the Attach Procedure	275
	16.2.2	Authentication and Key Agreement	276
	16.2.3	PDN Connectivity Establishment	278
	16.2.4	Radio Access Network Reselection	280
16.3	Inter-Op	peration with cdma2000 HRPD	280
	16.3.1	System Architecture	280
	16.3.2	Preregistration with cdma2000	281

	16.3.3	Cell Reselection in RRC_IDLE	282
	16.3.4	Measurements and Handover in RRC_CONNECTED	283
	Referen	nces	286
17	Self-O	ptimizing Networks	289
17.1	Self-Co	onfiguration of an eNB	289
	17.1.1	Automatic Configuration of the Physical Cell Identity	289
	17.1.2	Automatic Neighbour Relations	290
	17.1.3	Random Access Channel Optimization	291
17.2	Inter-C	ell Interference Coordination	292
17.3	Mobilit	ty Management	292
	17.3.1	Mobility Load Balancing	292
	17.3.2	Mobility Robustness Optimization	293
	17.3.3	Energy Saving	295
17.4	Radio A	Access Network Information Management	295
	17.4.1	Introduction	295
	17.4.2	Transfer of System Information	296
	17.4.3	Transfer of Self-Optimization Data	297
17.5	Drive 7	Test Minimization	297
	Referen	nces	298
18	Enhan	cements in Release 9	301
18.1	Multim	nedia Broadcast/Multicast Service	301
	18.1.1	Introduction	301
	18.1.2	Multicast/Broadcast over a Single Frequency Network	302
	18.1.3	Implementation of MBSFN in LTE	302
	18.1.4	Architecture of MBMS	304
	18.1.5	Operation of MBMS	305
18.2	Locatio	on Services	306
	18.2.1	Introduction	306
	18.2.2	Positioning Techniques	306
	18.2.3	Location Service Architecture	307
	18.2.4	Location Service Procedures	308
18.3	Other E	Enhancements in Release 9	309
	18.3.1	Dual Layer Beamforming	309
	18.3.2	Commercial Mobile Alert System	310
	Referen	nces	310
19	LTE-A	dvanced and Release 10	313
19.1	Carrier	Aggregation	313
	19.1.1	Principles of Operation	313
	19.1.2	UE Capabilities	314
	19.1.3	Scheduling	316
	19.1.4	Data Transmission and Reception	316
	19.1.5	Uplink and Downlink Feedback	317
	19.1.6	Other Physical Layer and MAC Procedures	317

	19.1.7	RRC Procedures	317
19.2	Enhance	ed Downlink MIMO	318
	19.2.1	Objectives	318
	19.2.2	Downlink Reference Signals	318
	19.2.3	Downlink Transmission and Feedback	320
19.3	Enhance	ed Uplink MIMO	321
	19.3.1	Objectives	321
	19.3.2	Implementation	321
19.4	Relays	•	322
	19.4.1	Principles of Operation	322
	19.4.2	Relaying Architecture	323
	19.4.3	Enhancements to the Air Interface	324
19.5	Heterog	eneous Networks	324
	19.5.1	Introduction	324
	19.5.2	Enhanced Inter-Cell Interference Coordination	325
	19.5.3	Enhancements to Self-Optimizing Networks	326
19.6	Traffic (Offload Techniques	326
	19.6.1	Local IP Access	326
	19.6.2	Selective IP Traffic Offload	327
	19.6.3	Multi-Access PDN Connectivity	327
	19.6.4	IP Flow Mobility	329
19.7	Overloa	d Control for Machine-Type Communications	330
	Referen	ces	331
20	Release	s 11 and 12	333
20.1	Coordin	ated Multipoint Transmission and Reception	333
	20.1.1	Objectives	333
	20.1.2	Scenarios	334
	20.1.3	CoMP Techniques	335
	20.1.4	Standardization	336
	20.1.5	Performance	337
20.2	Enhance	ed Physical Downlink Control Channel	337
20.3	Interfere	ence Avoidance for in Device Coexistence	338
20.4	Machine	e-Type Communications	339
	20.4.1	Device Triggering	339
	20.4.2	Numbering, Addressing and Identification	340
20.5	Mobile	Data Applications	340
20.6	New Fea	atures in Release 12	341
	20.6.1	Proximity Services and Device to Device Communications	341
	20.6.2	Dynamic Adaptation of the TDD Configuration	342
	20.6.3	Enhancements for Machine-Type Communications and Mobile Data	344
	20.6.4	Traffic Offloading Enhancements	344
20.7	Release	12 Studies	345
	20.7.1	Enhancements to Small Cells and Heterogeneous Networks	345
	20.7.2	Elevation Beamforming and Full Dimension MIMO	346
	Referen	ces	346

21	Circuit S	witched Fallback	349
21.1	Delivery of	of Voice and Text Messages over LTE	349
	21.1.1	The Market for Voice and SMS	349
	21.1.2	Third Party Voice over IP	350
	21.1.3	The IP Multimedia Subsystem	351
	21.1.4	VoLGA	351
	21.1.5	Dual Radio Devices	352
	21.1.6	Circuit Switched Fallback	353
21.2	System A	rchitecture	353
	21.2.1 A	Architecture of the 2G/3G Circuit Switched Domain	353
	21.2.2	Circuit Switched Fallback Architecture	354
21.3	Attach Pro	ocedure	355
	21.3.1	Combined EPS/IMSI Attach Procedure	355
	21.3.2	Voice Domain Preference and UE Usage Setting	356
21.4	Mobility I	Management	357
	21.4.1	Combined Tracking Area/Location Area Update Procedure	357
	21.4.2 A	Alignment of Tracking Areas and Location Areas	357
	21.4.3	Cell Reselection to UMTS or GSM	358
21.5	Call Setur)	359
	21.5.1	Mobile-Originated Call Setup using RRC Connection Release	359
	21.5.2	Mobile Originated Call Setup using Handover	361
	21.5.3	Signalling Messages in the Circuit Switched Domain	362
	21.5.4	Mobile-Terminated Call Setup	363
	21.5.5	Returning to LTE	364
21.6	SMS over	SGs	365
	21.6.1	System Architecture	365
	21.6.2	SMS Delivery	365
21.7	Circuit Sv	vitched Fallback to cdma2000 1xRTT	366
21.8	Performa	nce of Circuit Switched Fallback	367
	Reference	2S	368
22	VoLTE a	nd the IP Multimedia Subsystem	371
22.1	Introducti	on	371
	22.1.1	The IP Multimedia Subsystem	371
	22.1.2	VoLTE	372
	22.1.3	Rich Communication Services	372
22.2	Hardware	Architecture of the IMS	373
	22.2.1	High-Level Architecture	373
	22.2.2	Call Session Control Functions	374
	22.2.3 A	Application Servers	375
	22.2.4 1	Home Subscriber Server	375
	22.2.5	User Equipment	375
	22.2.6	Relationship with LTE	376
	22.2.7	Border Control Functions	377
	22.2.8 1	Media Gateway Functions	378
	22.2.9 <i>l</i>	Multimedia Resource Functions	379

	22.2.10	Security Architecture	380
	22.2.11	Charging Architecture	380
22.3	Signalli	ng Protocols	381
	22.3.1	Session Initiation Protocol	381
	22.3.2	Session Description Protocol	382
	22.3.3	Other Signalling Protocols	382
22.4	Service	Provision in the IMS	382
	22.4.1	Service Profiles	382
	22.4.2	Media Feature Tags	383
	22.4.3	The Multimedia Telephony Service for IMS	383
22.5	VoLTE I	Registration Procedure	384
	22.5.1	Introduction	384
	22.5.2	LTE Procedures	384
	22.5.3	Contents of the REGISTER Request	385
	22.5.4	IMS Registration Procedure	387
	22.5.5	Routing of SIP Requests and Responses	388
	22.5.6	Third-Party Registration with Application Servers	389
	22.5.7	Subscription for Network-Initiated Deregistration	389
22.6	Call Set	up and Release	390
	22.6.1	Contents of the INVITE Request	390
	22.6.2	Initial INVITE Request and Response	391
	22.6.3	Acceptance of the Initial INVITE	393
	22.6.4	Establishment of a Call to a Circuit Switched Network	396
	22.6.5	Call Release	396
22.7	Access 1	Domain Selection	397
	22.7.1	Mobile-Originated Calls	397
	22.7.2	Mobile-Terminated Calls	398
22.8	Single R	Radio Voice Call Continuity	398
	22.8.1	Introduction	398
	22.8.2	SRVCC Architecture	399
	22.8.3	Attach, Registration and Call Setup Procedures	400
	22.8.4	Handover Preparation	400
	22.8.5	Updating the Remote Leg	401
	22.8.6	Releasing the Source Leg	403
	22.8.7	Handover Execution and Completion	403
	22.8.8	Evolution of SRVCC	404
22.9	IMS Cer	ntralized Services	405
22.10	IMS Em	ergency Calls	406
	22.10.1	Emergency Call Architecture	406
	22.10.2	Emergency Call Setup Procedure	407
22.11	Delivery	of SMS Messages over the IMS	408
	22.11.1	SMS Architecture	408
	22.11.2	Access Domain Selection	409
	Referen	ces	410

23	Perform	mance of LTE and LTE-Advanced	413
23.1	Peak Data Rates of LTE and LTE-Advanced		413
	23.1.1	Increase of the Peak Data Rate	413
	23.1.2	Limitations on the Peak Data Rate	415
23.2	Coverage of an LTE Cell		416
	23.2.1	Uplink Link Budget	416
	23.2.2	Downlink Link Budget	418
	23.2.3	Propagation Modelling	419
	23.2.4	Coverage Estimation	420
23.3	Capacity of an LTE Cell		421
	23.3.1	Capacity Estimation	421
	23.3.2	Cell Capacity Simulations	422
23.4	Performance of Voice over IP		424
	23.4.1	AMR Codec Modes	424
	23.4.2	Transmission of AMR Frames on the Air Interface	425
	23.4.3	Transmission of AMR Frames in the Fixed Network	426
	References		427
Biblio	graphy		429

Index

431

Preface

This book is about the world's dominant 4G mobile telecommunication system, LTE.

In writing the book, my aim has been to give the reader a concise, system level introduction to the technology that LTE uses. The book covers the whole of the system, both the techniques used for radio communication between the base station and the mobile phone, and the techniques used to transfer data and signalling messages across the network. I have avoided going into excessive detail, which is more appropriate for specialized treatments of individual topics and for the LTE specifications themselves. Instead, I hope that the reader will come away from this book with a sound understanding of the system and of the way in which its different components interact. The reader will then be able to tackle the more advanced books and the specifications with confidence.

The target audience is twofold. Firstly, I hope that the book will be valuable for engineers who are working on LTE, notably those who are transferring from other technologies such as GSM, UMTS and cdma2000, those who are experts in one part of LTE but who want to understand the system as a whole and those who are new to mobile telecommunications altogether. Secondly, the book should give a valuable overview to those who are working in non technical roles, such as project managers, marketing executives and intellectual property consultants.

Structurally, the book has four parts. The first part lays out the foundations that the reader will need in the remainder of the book. Chapter 1 is an introduction, which relates LTE to earlier mobile telecommunication systems and lays out its requirements and key technical features. Chapter 2 covers the architecture of the system, notably the hardware components and communication protocols that it contains and its use of radio spectrum. Chapter 3 reviews the radio transmission techniques that LTE has inherited from earlier mobile telecommunication systems, while Chapters 4 and 5 describe the more recent techniques of orthogonal frequency division multiple access and multiple input multiple output antennas.

The second part of the book covers the air interface of LTE. Chapter 6 is a high level description of the air interface, while Chapter 7 relates the low level procedures that a mobile phone uses when it switches on, to discover the LTE base stations that are nearby. Chapter 8 covers the low level procedures that the base station and mobile phone use to transmit and receive information, while Chapter 9 covers a specific procedure, random access, by which the mobile phone can contact a base station without prior scheduling. Chapter 10 covers the higher level parts of the air interface, namely the medium access control, radio link control and packet data convergence protocols.

The third part covers the signalling procedures that govern how a mobile phone behaves. In Chapter 11, we describe the high level procedures that a mobile phone uses when it switches on, to register itself with the network and establish communications with the outside world. Chapter 12 covers the security procedures used by LTE, while Chapter 13 covers the procedures that manage the quality of service and charging characteristics of a data stream. Chapter 14 describes the mobility management procedures that the network uses to keep track of the mobile's location. Chapter 15 describes how LTE inter-operates with the earlier technologies of GSM and UMTS, while Chapter 16 discusses inter-operation with other technologies such as wireless local area networks and cdma2000. Chapter 17 covers the self-configuration and self-optimization capabilities of LTE.

The final part covers more specialized topics. Chapters 18, 19 and 20 describe the enhancements that have been made to LTE in later releases of the specifications, notably an enhanced version of the technology that is known as LTE-Advanced. Chapters 21 and 22 cover the two most important solutions for the delivery of voice calls to LTE devices, namely circuit switched fallback and the IP multimedia subsystem. Finally, Chapter 23 reviews the performance of LTE and discusses the techniques that are used to estimate the coverage and capacity of an LTE network.

LTE has a large number of acronyms, and it is hard to talk about the subject without using them. However, they can make the material appear unnecessarily impenetrable to a newcomer, so I have aimed to keep the use of acronyms to a reasonable minimum, often preferring the full name or a colloquial one. There is a full list of abbreviations in the introductory material and new terms are highlighted using italics throughout the text.

I have also endeavoured to keep the book's mathematical content to the minimum needed to understand the system. The LTE air interface makes extensive use of complex numbers, Fourier transforms and matrix algebra, but the reader will not require any prior knowledge of these in order to understand the book. We do make limited use of complex numbers in Chapters 3 and 4 to illustrate our discussion of modulation, and introduce Fourier transforms and matrices in subsections of Chapters 4 and 5 to cover the more advanced aspects of orthogonal frequency division multiple access and multiple antennas. Readers can, however, skip this material without detracting from their overall appreciation of the subject.

Acknowledgements

Many people have given me assistance, support and advice during the creation of this book. I am especially grateful to Liz Wingett, Susan Barclay, Sophia Travis, Sandra Grayson, Mark Hammond and the rest of the publishing team at John Wiley & Sons, Ltd for the expert knowledge and gentle encouragement that they have supplied throughout the production process.

I am indebted to Michael Salmon and Geoff Varrall for encouraging me to write the first edition of this book and to the publishing team at Wiley for requesting a second. The advice and feedback I have received while preparing the manuscript have been invaluable and have given me many opportunities to correct errors and improve the material. In this respect, I would particularly like to thank Jeff Cartwright, Joseph Hoy, Julian Nolan, Michael Salmon, Mohammad Anas, Obi Chiemeka, Pete Doherty, Les Granfield, Karl van Heeswijk, Kit Kilgour and Paul Mason. I am especially indebted to Nicola Rivers, for her support and encouragement throughout the preparation of the second edition. Naturally, the responsibility for any remaining errors or omissions in the text, and for any lack of clarity in the explanations, is entirely my own.

Much of my knowledge of the more detailed aspects of LTE, notably of circuit switched fallback and the IP multimedia subsystem, has been gathered while delivering courses on behalf of various training providers. I am indebted to the directors and staff of Imagicom, Informa Telecoms Academy, Wray Castle and Mpirical, for the support and learning opportunities that they have provided to me. I would also like to extend my thanks to the delegates who have attended my training courses on LTE. Their questions and corrections have extended my knowledge of the subject, while their feedback has regularly suggested ways to explain topics more effectively.

Several diagrams in this book have been reproduced from the technical specifications for LTE, with permission from the European Telecommunications Standards Institute (ETSI), © 2013, 2012, 2011, 2010, 2006. 3GPPTM TSs and TRs are the property of ARIB, ATIS, CCSA, ETSI, TTA and TTC who jointly own the copyright for them. They are subject to further modifications and are therefore provided to you 'as is' for information purposes only. Further use is strictly prohibited.

Analysys Mason Limited kindly supplied the market research data underlying the illustrations of network traffic and operator revenue in Figures 1.6 and 21.1. I would like to extend my appreciation to Hilary Bailey, Morgan Mullooly, Terry Norman and James Allen for providing this information. The measurements of network traffic in Figure 1.5 and the subscription data underlying Figures 1.9 and 1.10 are by Ericsson, and I am grateful to Elin Pettersson and Svante Bergqvist for making these available.

List of Abbreviations

16-QAM	16 quadrature amplitude modulation
1G	First generation
1xRTT	1x radio transmission technology
2G	Second generation
3G	Third generation
3GPP	Third Generation Partnership Project
3GPP2	Third Generation Partnership Project 2
4G	Fourth generation
64-QAM	64 quadrature amplitude modulation
AAA	Authentication, authorization and accounting
ABMF	Account balance management function
ABS	Almost blank subframe
ACK	Positive acknowledgement
ACM	Address complete message
ADC	Analogue to digital converter
AES	Advanced Encryption Standard
AF	Application function/Assured forwarding
AKA	Authentication and key agreement
AM	Acknowledged mode
AMBR	Aggregate maximum bit rate
AMR	Adaptive multi rate
AMR-WB	Wideband adaptive multi rate
ANDSF	Access network discovery and selection function
ANM	Answer message
API	Application programming interface
APN	Access point name
APN-AMBR	Per APN aggregate maximum bit rate
ARIB	Association of Radio Industries and Businesses
ARP	Allocation and retention priority
ARQ	Automatic repeat request
AS	Access stratum/Application server
ASME	Access security management entity
ATCF	Access transfer control function
ATGW	Access transfer gateway
ATIS	Alliance for Telecommunications Industry Solutions

AuC	Authentication centre
AWS	Advanced Wireless Services
B2BUA	Back to back user agent
BBERF	Bearer binding and event reporting function
BBF	Bearer binding function
BCCH	Broadcast control channel
BCH	Broadcast channel
BD	Billing domain
BE	Best effort
BGCF	Breakout gateway control function
BICC	Bearer independent call control
BM-SC	Broadcast/multicast service centre
BPSK	Binary phase shift keying
BSC	Base station controller
BSR	Buffer status report
BSSAP+	Base station subsystem application part plus
BSSGP	Base station system GPRS protocol
BTS	Base transceiver station
CA	Carrier aggregation
CAMEL	Customized applications for mobile network enhanced logic
CBC	Cell broadcast centre
CBS	Cell broadcast service
CC	Call control/Component carrier
CCCH	Common control channel
CCE	Control channel element
CCO	Cell change order
CCSA	China Communications Standards Association
CDF	Charging data function
CDMA	Code division multiple access
CDR	Charging data record
CFI	Control format indicator
CGF	Charging gateway function
CIF	Carrier indicator field
CLI	Calling line identification
СМ	Connection management
CMAS	Commercial mobile alert system
C-MSISDN	Correlation mobile subscriber ISDN number
CoMP	Coordinated multi-point transmission and reception
COST	European Cooperation in Science and Technology
СР	Cvclic prefix
COI	Channel quality indicator
CRC	Cvclic redundancy check
C-RNTI	Cell radio network temporary identifier
CS	Circuit switched

CS/CB	Coordinated scheduling and beamforming
CSCF	Call session control function
CSFB	Circuit switched fallback
CSG	Closed subscriber group
CSI	Channel state information
CS-MGW	Circuit switched media gateway
CTF	Charging trigger function
D2D	Davias to davias
	Device to device
	Digital-to-analogue converter
UD 4D:	Decidei Decidei
UDI ID	Deciders relative to an isotropic antenna
dBm	Decidels relative to one milliwatt
DCCH	Dedicated control channel
DCI	Downlink control information
DenB	Donor evolved Node B
DFT	Discrete Fourier transform
DFT-S-OFDMA	Discrete Fourier transform spread OFDMA
DHCP	Dynamic host configuration protocol
DiffServ	Differentiated services
DL	Downlink
DL-SCH	Downlink shared channel
DNS	Domain name server
DPS	Dynamic point selection
DRS	Demodulation reference signal
DRVCC	Dual radio voice call continuity
DRX	Discontinuous reception
DSCP	Differentiated services code point
DSL	Digital subscriber line
DSMIP	Dual-stack mobile IP
DTCH	Dedicated traffic channel
DTM	Dual transfer mode
DTMF	Dual tone multi-frequency
EAG	Explicit array gain
eAN	Evolved access network
EAP	Extensible authentication protocol
EATE	Emergency access transfer function
FCGI	E-UTRAN cell global identifier
FCI	E-UTRAN cell identity
FCM	FPS connection management
FCN	Explicit congestion notification
E CSCE	Emergency call session control function
E-CSCI [®]	Enlanced Data Datas for CSM Evolution
EEA	Enhanced Data Kates for USIVI Evolution
EE	Er S eneryption algorithm Expedited forwarding
	Expedited forwarding
enkpd	Evolved nigh rate packet data

EIA	EPS integrity algorithm
EICIC	Enhanced inter cell interference coordination
EIR	Equipment identity register
EIRP	Equivalent isotropic radiated power
eMBMS	Evolved MBMS
EMM	EPS mobility management
eNB	Evolved Node B
EPC	Evolved packet core
ePCF	Evolved packet control function
EPDCCH	Enhanced physical downlink control channel
ePDG	Evolved packet data gateway
EPRE	Energy per resource element
EPS	Evolved packet system
E-RAB	Evolved radio access bearer
ERF	Event reporting function
ESM	EPS session management
E-SMLC	Evolved serving mobile location centre
ESP	Encapsulating security payload
ETSI	European Telecommunications Standards Institute
ETWS	Earthquake and tsunami warning system
E-UTRAN	Evolved UMTS terrestrial radio access network
EV-DO	Evolution data optimized
FCC	Federal Communications Commission
FDD	Frequency division dupley
FDMA	Frequency division multiple access
ED MIMO	Full dimension MIMO
FFT	Fast Fourier transform
FTP	File transfer protocol
1 11	The transfer protocol
GBR	Guaranteed bit rate
GCP	Gateway control protocol
GERAN	GSM EDGE radio access network
GGSN	Gateway GPRS support node
GMLC	Gateway mobile location centre
GMM	GPRS mobility management
GNSS	Global navigation satellite system
GP	Guard period
GPRS	General Packet Radio Service
GPS	Global Positioning System
GRE	Generic routing encapsulation
GRX	GPRS roaming exchange
GSM	Global System for Mobile Communications
GSMA	GSM Association
GTP	GPRS tunnelling protocol
GTP-C	GPRS tunnelling protocol control part
GTP-U	GPRS tunnelling protocol user part