Yadvinder Singh
J. I. S. Khattar
D. P. Singh
Rupinder Pal Singh *Editors*

Industrial and Biotechnological Applications of Algae

Industrial and Biotechnological Applications of Algae

Yadvinder Singh • J. I. S. Khattar D. P. Singh • Rupinder Pal Singh Editors

Industrial and Biotechnological Applications of Algae

Editors
Yadvinder Singh
Department of Botany
Central University of Punjab
Bathinda, Punjab, India

D. P. Singh Department of Botany Punjabi University Patiala, Punjab, India J. I. S. Khattar Department of Botany Punjabi University Patiala, Punjab, India

Rupinder Pal Singh Department of Food Processing Technology Sri Guru Granth Sahib World University Fatehgarh Sahib, Punjab, India

ISBN 978-981-96-1843-9 ISBN 978-981-96-1844-6 (eBook) https://doi.org/10.1007/978-981-96-1844-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

Preface

The realm of algae, often overshadowed by more conspicuous aspects of our natural world, has begun to emerge as a major player in the pursuit of sustainable and innovative approaches for food, health, energy, and environment sectors. As we navigate through an era marked by rapid technological and research advancements, the potential industrial and biotechnological applications of algae offer promising avenues for sustainable and environmentally safe solutions in these sectors. In recent years, algae have transcended their traditional roles as aquatic plants to become a central point of discussions about renewable energy, waste management, and biotechnological breakthroughs. Their versatility and high efficiency in photosynthesis, coupled with their ability to prosper in different and even harsh environments, have made them a potential player in the development of eco-friendly technologies and sustainable practices.

This book, *Industrial and Biotechnological Applications of Algae*, aims to provide a comprehensive and updated knowledge on the multifaceted roles that algae play/can play in modern science and industry. The contents of this book delve into their applications, ranging from biofuels and bioplastics to pharmaceuticals, foods, and environmental remediation. Each chapter presents a detailed analysis of current research, technological advancements, and real-world applications, underscoring the transformative potential of algae in addressing our most concerned global challenges.

The contributions in this book are crafted by leading and renowned experts in their field. Their insights reflect the dynamic and evolving nature of algal research and its implications for industrial processes and biotechnological innovations. By bridging the gap between theoretical research and practical applications, this book serves as both a reference and a source of inspiration for students, scientists, engineers, entrepreneurs, policymakers, and others.

As a leading editor and on behalf of our editorial team, we hope for an enthusiastic response from our readers and stakeholders. We are sure they will welcome this panorama of the algal world wholeheartedly.

Bathinda, Punjab, India Patiala, Punjab, India Patiala, Punjab, India Fatehgarh Sahib, Punjab, India Yadvinder Singh J. I. S. Khattar D. P. Singh Rupinder Pal Singh

Contents

1	Microalgae-Based Wastewater Treatment and Biomass	
	Production for Different Applications. Prabhkirat Kapahi, Esha Goyal, Tufail Fayaz, Sachitra Kumar Ratha, and Nirmal Renuka	1
2	Methods for Mass Cultivation of Algae for Various Applications J. Sagaya John Paul, M. Lakshmi Priyaa, Manjupriya Ayyanar, P. Antony Prakash Rejoy, B. Sathish Kumar, and S. Nagaraj	21
3	Role of Microbial Communities as Co-culture for Mass-Scale Production of Algal Biomass for Industrial Applications	45
4	Potential Applications of Algae in Foods	65
5	Algae and Aquaculture: Enhancing Fish Farming	85
6	Phycobiliproteins: Structure, Extraction, Purification, and Potential Uses Shveta Kaushal, Davinder Pal Singh, Jasvir Inder Singh Khattar, Manpreet Kaur, and Yadvinder Singh	111
7	Algal Astaxanthin: Genetics, Synthesis, and Advanced Biotechnological Strategies for Therapeutic Uses Nilamjyoti Kalita, Shaswatee Bhattacharjee, Debahooti Baruah, Soumin Nath, and Partha Pratim Baruah	137
8	Pharmaceutical and Medicinal Applications of Algae	157
9	Spirulina: Morphology, Cultivation, Harvesting as a Supplement and Its Therapeutic Properties Ala Khushala, Md. Nazneen Bobby, and Malathi Balasubramaniyan	179

viii Contents

10	Potential of Algal Metabolites in Cosmetics and Personal Care Products	199
	Sandeep Kaur and Jasvir Inder Singh Khattar	
11	Current Approaches in Microalgae for Sustainable Biofuel Production Baala Harini Anandapadmanaban and Renganathan Rajkumar	225
12	Macroalgal Biomass: An Alternative Renewable Energy Resource for Sustainable Biofuel Production	247
13	Algae as Sustainable Source for Nanoparticles Synthesis with Novel Biomedical Applications Vinay Kumar, Sandeep Kaushal, Jasneet Kaur, and Yadvinder Singh	261
14	Economic Perspectives of Algal Biotechnology Rupesh Bhardwaj, Abhishek Sahoo, Ankush Yadav, Nitesh, Suhani Sharma, Mukesh Meena, and Prashant Swapnil	285

Editors and Contributors

About the Editors

Yadvinder Singh is working as an Assistant Professor of Botany in the Department of Botany, Central Univtversity of Punjab, Bathinda, Punjab, India. He completed his Ph.D. in Botany at Punjabi University, Patiala. Dr. Singh is a recipient of numerous national and international awards and fellowships. In his 15 years of research career, he has published extensively on diverse topics, including extremophilic cyanobacteria and algae, the production of value-added products from cyanobacteria, freshwater limnology and ecology, the bioremediation potential of cyanobacteria, cyanobacterial systematics, and phylogenetics. He has published a number of research papers in journals of international repute and several book chapters, having more than 813 citations with 16 h-index and 19 i10-index. Dr. Singh has also been awarded the Early Career Research Award and is a lifetime member of various scientific societies as well as a reviewer for several peer-reviewed journals.

J. I. S. Khattar has recently retired as a Professor of Botany after serving at Punjabi University, Patiala, India, for 32 years. He has published over 70 research papers in reputable national and international journals, primarily in the fields of botany, with a focus on phycology, environmental microbiology, and cyanobacterial biotechnology, garnering more than 1505 citations and an h-index of 22. He has also edited a book on algal biology and biotechnology. His research focused on various aspects of algae, including the taxonomy, physiology, biochemistry, and biotechnology of cyanobacteria. He holds lifetime membership of various scientific bodies, including the Indian Botanical Society, the Indian Science Congress Association, the Association of Microbiologists of India, and the Biotech Research Society of India. He has successfully completed seven major research projects sponsored by various Indian funding agencies. He has supervised and mentored 27 Ph.D. and M.Phil. students. Besides his teaching and research activities, he also served as the Head of the Department of Botany and as the Dean of the Faculty of Life Sciences at Punjabi University, Patiala.

D. P. Singh is an esteemed botanist, researcher, and academician. He is a former Professor of Botany and Head of the Department of Botany at Punjabi University, Patiala, Punjab, India. Dr. Singh has made significant contributions to the

understanding of cyanobacterial physiology, biochemistry, and biotechnology. He obtained his Master's in Botany and Ph.D. in Life Sciences from Punjabi University, Patiala. His research career has been marked by a prolific publication record, with more than 45 research papers published in national and internationally peer-reviewed journals, as well as several book chapters. These publications have garnered 1105 citations, according to Google Scholar. Prof. Singh is a lifetime member of various scientific societies, notably the Indian Botanical Society, the Association of Microbiologists of India, and the Biotech Research Society of India, among others. In addition to his research contributions, Prof. Singh has played a crucial role in supervising and guiding students. He has successfully mentored over 10 Ph.D. and M.Phil students, supporting them in their research projects and nurturing their scientific abilities. He has co-edited a book titled *Algal Biology and Biotechnology*.

Rupinder Pal Singh is currently working as an Assistant Professor and In-charge of the Department of Food Processing Technology at Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab. He has 10 years of teaching and research experience. His area of research interest includes microbial and food technology, with a specialization in microbial and fermentation technology, which encompasses the production of industrial enzymes from microbial sources, applicable in the food and fermentation industries and also includes the extraction of biopolymers and bioactive compounds from agri-industrial wastes and the valorization of food agri-industrial wastes. He has published his research on the production, purification, and characterization of food-grade prebiotics, microbial production of bio-surfactants, and other food-grade bioactive compounds produced by microorganisms. Dr. Singh has published articles in leading peer-reviewed journals of international repute with good impact factors in the fields of microbiology, biotechnology, and food science. He is a recipient of MASHAV International Fellowship provided by the Ministry of Foreign Affairs of Israel. Currently, he and his team are working on the development of biodegradable food packaging materials from agricultural waste and waste from the fruit and vegetable industry.

Contributors

Abhishek Sahoo Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India

Ankush Yadav School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, India

B. Sathish Kumar Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India

Baala Harini Anandapadmanaban Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin, Taiwan, ROC

Davinder Pal Singh Department of Botany, Punjabi University, Patiala, Punjab, India

Debahooti Baruah Plant Ecology Laboratory, Department of Botany, Gauhati University, Assam, India

Tezpur College, Sonitpur, Assam, India

Esha Goyal Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, India

Gour Gopal Satpati Department of Botany, Bangabasi Evening College, University of Calcutta, Kolkata, West Bengal, India

Harinderjeet Kaur Department of Life Science, University School of Sciences, Rayat Bahra University, Kharar, Mohali, Punjab, India

Harjinder Singh Post Graduate Department of Botany, Khalsa College, Amritsar, Punjab, India

J. Sagaya John Paul Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India

Jasvir Inder Singh Khattar Department of Botany, Punjabi University, Patiala, Punjab, India

Jasneet Kaur Department of Zoology, Patel Memorial National College, Rajpura, Punjab, India

Ala Khushala Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, India

M. Lakshmi Priyaa Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India

Malathi Balasubramaniyan Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, India

Manjupriya Ayyanar Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India

Manmeet Kaur Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India

Manpreet Kaur Department of Botany, Sri Guru Teg Bahadur Khalsa College, Punjab, India

Md. Nazneen Bobby Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, India

Mohamad Padri Development of Algal Biotechnology in Kingdom of Saudi Arabia (DABKSA) Project, Beacon Development Department, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Alumni Association of the Department of Biology (IKAPROBIO), Universitas Negeri Makassar, Makassar, Indonesia

Mohamed Sahrul Tamzil Alumni Association of the Department of Biology (IKAPROBIO), Universitas Negeri Makassar, Makassar, Indonesia

Mukesh Meena Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India

Nilamjyoti Kalita Plant Ecology Laboratory, Department of Botany, Gauhati University, Assam, India

Nirmal Renuka Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, India

Nitesh School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, India

P. Antony Prakash Rejoy Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India

Partha Pratim Baruah Plant Ecology Laboratory, Department of Botany, Gauhati University, Assam, India

Prabhkirat Kapahi Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, India

Prashant Kumar Singh Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl, India

Prashant Swapnil School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, India

Renganathan Rajkumar Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India

Rowland Lalnunpuii Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl, India

Rupesh Bhardwaj School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, India

Rupinder Pal Singh Department of Food Processing Technology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India

S. Nagaraj Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India

Sachitra Kumar Ratha Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, India

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India

Sandeep Kaur P.G. Department of Botany, Kanya Maha Vidyalaya, Jalandhar, Punjab, India

Sandeep Kaushal Regional Institute of Education, NCERT, Ajmer, Rajasthan, India

Saurabh Gupta PG Department of Microbiology, Mata Gujri College, Fatehgarh Sahib, Punjab, India

Shaswatee Bhattacharjee Plant Ecology Laboratory, Department of Botany, Gauhati University, Assam, India

Shveta Kaushal Department of Botany and Environmental Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India

Soumin Nath Plant Ecology Laboratory, Department of Botany, Gauhati University, Assam, India

Dudhnoi College, Goalpara, Assam, India

Suhani Sharma School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, India

Tufail Fayaz Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, India

Vinay Kumar Department of Botany and Environmental Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India

Yadvinder Singh Department of Botany, Central University of Punjab, Bathinda, Punjab, India

Zothanpuia Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl, India

Microalgae-Based Wastewater Treatment and Biomass Production for Different Applications

1

1

Prabhkirat Kapahi, Esha Goyal, Tufail Fayaz, Sachitra Kumar Ratha, and Nirmal Renuka

Abstract

Phycoremediation is emerging as an innovative approach for the remediation of different types of wastewater rich in nutrients, dyes, pharmaceuticals, as well as other organic and inorganic pollutants. Different microalgal species (Chlorella, Chlamydomonas, Scenedesmus, etc.) have been employed for remediation of various kinds of wastewater, such as domestic, industrial, and municipal wastewater. Phycoremediation provides advantages over conventional treatment methods because it does not negatively impact the environment, and the complete removal of pollutants is also evidenced in many studies. However, several factors, like temperature, pH, light, etc., may impact the efficacy of the removal process, with the best removal found at optimum conditions, which may vary for each strain. Furthermore, the treatment process is accompanied by high-biomass production that can be used commercially in the biofuel, nutraceutical, pharmaceutical, and biofertilizers industries. This chapter, therefore, aims to provide insights into the bioremediation potential of microalgae with various valueadded products linked with generated biomass. Microalgae-mediated contaminant removal from different wastewater, the impact of culture conditions on the remediation efficiency and the mechanisms (biodegradation, biosorption, bioaccumulation) governing remediation have been discussed. Potential commercial applications of the generated microalgal biomass are also discussed.

P. Kapahi · E. Goyal · T. Fayaz · N. Renuka (⋈)

Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, India

e-mail: nirmal.renuka@cup.edu.in

S. K. Ratha

Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, India

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India

 \circledcirc The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

Y. Singh et al. (eds.), *Industrial and Biotechnological Applications of Algae*, https://doi.org/10.1007/978-981-96-1844-6_1

Keywords

Bioremediation \cdot Commercial applications \cdot Mechanisms \cdot Microalgae \cdot Wastewater treatment

1.1 Introduction

Water is a fundamental and vital requirement for the sustenance of life of all organisms. Thus, water must be safe, readily available, sufficient, and uncontaminated in all respects (Madhav et al. 2020). Water pollution and its remediation have become a significant global concern as most residential and industrial operations generate wastewater containing unwanted and harmful pollutants (Crini and Lichtfouse 2019; Rashid et al. 2021). Worldwide wastewater generation currently stands at about 380 trillion liters annually (Pratap et al. 2023). Unfortunately, just 24% of the wastewater produced is processed properly before it is released into rivers or utilized again for agricultural use (Pratap et al. 2023). Current wastewater treatment technologies utilize a combination of physical, chemical, and biological procedures (Crini and Lichtfouse 2019). Physical processes involve aeration, filtration, sedimentation, and screening, while chemical procedures rely on chemical interactions. Serious drawbacks to these procedures include high-energy input, high cost, changing basic qualities of water, and disruption of native vegetation. In contrast, biological wastewater treatment uses microbes to reduce contaminants (Ahmad et al. 2020; Kannaujiya et al. 2019). This method exhibits greater potential due to their ease of application, lower cost, energy-saving features, and enhanced ecological security (Al-Tohamy et al. 2022). Phycoremediation uses algae to remove harmful contaminants like pesticides, hydrocarbons, radioactive materials, and heavy metals from wastewaters (Koul et al. 2022). It aims to develop a sustainable alternative to traditional activated sludge while reducing production costs of algae cultivation (Li et al. 2019). Many microalgal species, such as Chlamydomonas reinhardtii, Chlorella salina, C. vulgaris, C. miniata, C. sorokiniana, Scenedesmus quadricauda, S. abundans, Monoraphidium braunii, Spirogyra spp., Botryococcus, Phormidium, Navicula sp., etc. have been studied for this purpose (Ankit et al. 2022; Sakarika et al. 2020). Some studies have shown that employing microalgae has resulted in the removal of approximately 100% of total nitrogen, iron, and ammonium nitrogen (Hassanien et al. 2023). Chlorella vulgaris, in three different wastewater types (primary, secondary, and petroleum effluent), can remove 78-83% of total nitrogen and 100% of total phosphorus (Znad et al. 2018). Chlorella sorokiniana showed 95% reduction of COD, 62% of N, and 95% of P in municipal wastewater under autotrophic conditions. Under mixotrophic metabolism, the reductions were 89% for COD, 76% for N, and 93% for (Kotoula et al. 2020). The biomass productivity is closely associated with the removal efficiency (Nguyen et al. 2022). Some microalgal strains are resilient to the extreme conditions of industrial and municipal wastewater, making them suitable for treating such wastewater (Abdelfattah et al. 2023). Additionally, the presence of carbohydrates, proteins, fats, carotenoids, and

Fig. 1.1 Microalgae enrichment in wastewater for remediation and other commercial applications

other bioactive compounds in their biomass makes them suitable for various industries, including food, animal feed, cosmetics, pharmaceuticals, biofertilizer, and biofuel production (Priyadharshini et al. 2021).

1.2 Applications of Microalgae for Wastewater Treatment

The decline in water quality over the past few decades has been a persistent issue driven by human intervention (Kumar et al. 2023). The three main domains of wastewater are domestic, industrial, and agricultural (Manasa and Mehta 2020). Bioremediation using microalgae and cyanobacteria offers an eco-friendly solution for treating contaminated water and enables wastewater recycling while providing raw materials for energy and material usage (Fig. 1.1).

1.2.1 Domestic Wastewater

Municipal wastewater, a blend of human waste and domestic water, is rich in carbon, nitrogen, and phosphorus, making it an ideal nutrient source for microalgae growth (Do et al. 2022; Ostermeyer et al. 2022). Scenedemsus obliquus demonstrated significant nutrient removal efficiency when tested for bioremediation of municipal wastewater, with both phosphorus and nitrogen removal rates above 99% (Ling et al. 2019). Additionally, the microalgal consortium of *Chlorella* sp. and *Scenedesmus* sp. in diluted wastewater showed higher nutrient removal capacity

(78–98%) and higher lipid content (24.5–34.8%) with greater biomass concentration (0.95–1.78 g L⁻¹) (Silambarasan et al. 2021). In primary-treated municipal wastewater, three native microalgae, i.e., *Nostoc muscorum, Navicula veneta*, and *Chlorella vulgaris*, were capable of significantly lowering wastewater's total nitrogen, total phosphorus, and chemical oxygen demand levels (Sisman-Aydin 2022).

1.2.2 Industrial Wastewater

Wastewater from various industries, including textile, automotive, petrochemical, leather, pharmaceutical, agricultural, paper, pulp, oil, brewing, food, and beverage, provides an extensive overview of industrial wastewater and disposal issues (Sathya et al. 2022). Several microalgal species, such as *Spirulina platensis*, *Scenedesmus quadricauda*, *Chlorella tenuis*, *Chlorella pyrenoidosa*, and *Chlorella vulgaris*, have distinct capacities to remove nitrogen, dyes, carbon, heavy metals, and other harmful substances found in wastewater (Sharma et al. 2022). It has been shown that *C. vulgaris* can remove up to 91.9% COD, 95.9% ammonium, 100% nitrate, and 98.8% phosphate from industrial effluents (Yadav et al. 2019). *Chlorococcum humicola* removed 44%, 38%, and 17% of copper, sodium, and cadmium from textile industry wastewater after 6 days of treatment (Borah et al. 2020). These studies indicate that microalgae may be an alternative to conventional treatment methods for remediating industrial wastewater.

1.2.3 Agriculture Wastewater

This wastewater, originating from agricultural activities, contains toxic chemicals from irrigation, herbicides, pesticides, antibiotics, and veterinary medicines (Ali et al. 2021; Plöhn et al. 2021). Reportedly, algae and cyanobacteria can biodegrade pesticides and remediate other pollutants from agricultural runoff. A consortium of cyanobacteria and microalgae, including *S. quadricuda*, *C. vulgaris*, and *S. platensis*, effectively removed heavy metals (nickel, cadmium, and lead) and pesticide malathion from wastewater (Abdel-Razek et al. 2019). *C. vulgaris*, after a two-stage process, showed 83.16%–94.27% of ammonium (NH₄+-N), 91.24–92.17% COD and 90.98–94.41% of total phosphorus (TP) removal from undiluted cattle farm wastewater (Lv et al. 2018). Three strains of microalgae (*Acutodesmus nygaardii*, *Coelastrella* sp., and *C. sorokiniana*) were used to clean raw piggery wastewater without dilution. Within 6 days, 90% and 92% of the pollutants (ammonia and COD) were successfully eliminated (Lee et al. 2021). Thus, microalgae emerged as an efficient approach for treating agricultural wastewater with simultaneous high biomass productivity.

1.3 Types of Pollutants Remediated by Microalgae

Recently, microalgae have gained attention as the bioremediators of nutrients, heavy metals, pesticides, herbicides, and pharmaceutical products by metabolizing, removing, or absorbing them (Jais et al. 2017; Fayaz et al. 2024; Sutherland and Ralph 2019; Hena et al. 2021). Remediation can be combined with microalgal biomass productivity and value-added product synthesis (Znad et al. 2018). Different contaminants removed by microalgae are discussed below.

1.3.1 Nutrients

Different types of wastewater are rich in nutrients like nitrogen, phosphorus, calcium, magnesium, sodium, sulfate, ammonium, and orthophosphate, which make it unfit for use and may affect water life (El-Sheekh et al. 2016; Fallahi et al. 2021; Mohammadi et al. 2018). Several studies have been conducted to evaluate the potential of microalgae in nutrient removal (Table 1.1). *Oocystis minuta, C. vulgaris,* and *S. obliquus* have been reported to efficiently remove phosphate, nitrate, and sulfate (Ajala and Alexander 2020). *Chlorella variabilis* TH03, when cultured in domestic wastewater, removed 74.8–89.8%, 93.8–96.1%, and 97.1–99.9%, of COD, total nitrogen, and phosphorus, respectively (Tran et al. 2021). Likewise, *Scenedesmus* grown in secondary effluent wastewater showed high nutrient recovery with an activated sludge system, leading to high methane production (Arias et al. 2018). Thus, microalgae efficiently remove various nutrients, which can be combined with value-added product synthesis to enhance their utilization and cost-effectiveness.

1.3.2 Heavy Metals

Heavy metal removal using microalgae is an emerging approach that has been researched by various researchers (Singh et al. 2021). Metals, namely cadmium, lead, and copper were remediated by *Spirulina* with a removal efficiency of 92.76%, 94.09%, and 80.75%, respectively, with 5–100 mg L⁻¹ concentration of each heavy metal (Sayadi et al. 2019). Biochar of *Scenedesmus quadrifolia* reflected 100% removal of 1–10 mg L⁻¹ hexavalent chromium from wastewater (Daneshvar et al. 2019). Another report demonstrated more than 80% Zn²⁺ and 60% Cd²⁺ removal after 3 days of incubation with 20 mg L⁻¹ and 4 mg L⁻¹ of Zn²⁺ and Cd²⁺, respectively with *C. vulgaris* JSC-7 (Alam et al. 2015). *Tetraselmis marina* AC16-MESO exhibited 40–90% removal of Cu²⁺, 100% removal of Fe³⁺, and 20–50% for Mn²⁺ within 3 days (Cameron et al. 2018). A comparative study on heavy metal removal by microalgal species demonstrated a maximum removal efficiency of 99.4% for manganese by *C. vulgaris*, 91.9% for zinc by *Chlorophyceae* spp., 38.6% for copper by *Chlorophyceae* spp. (Saavedra et al. 2018).

Table 1.1 Microalgal enrichment in different wastewater for pollutant removal

ter system (g L ⁻¹) Removal efficiency ture Mixed bubble column 0.6 ± 0.06 N removal—94.4 ± 1.0% ture Mixed bubble column 0.38 ± 0.06 N removal—94.4 ± 1.0% ture Mixed bubble column 0.38 ± 0.06 N removal—95.4 ± 0.3% Portical tubular 0.4 N removal—95.% Premoval—95.% Vertical tubular 0.90 N removal—98.% Premoval—100.% ter photobioreactor COD—63.% Premoval—100.% ter photobioreactor 0.1695 N removal—100.% ter photobioreactor NA Phosphorus-47.5% nill 500-mL conical flasks NA BOD reduced—81.% Robornical flasks NA BOD reduced—10.% COD—63.% CO removal - 74.7% Co removal - 17% ture Tubular TP removal—99.06% ture photobioreactors Nitrate-85.% Nitrate-85.% Nitrate-85.%		Type of	Cultivation method/	Biomass yield		Cultivation	
s suecica Aquaeulture Mixed bubble column 0.6 ± 0.06 N retriolecta Aquaeulture Mixed bubble column 0.38 ± 0.06 N retriolecta Aquaeulture Mixed bubble column 0.38 ± 0.06 N nus obliquus Urban Vertical tubular 0.4 N removal - 95.4 ± 0.3% nus obliquus Urban Vertical tubular 0.4 N removal - 92% nus obliquus Urban Vertical tubular 0.90 N removal - 92% nus Semedesmus, wastewater photobioreactor COD - 63% N nus Semedesmus, wastewater photobioreactor COD - 64% Ammonia - 71% cun humicola Textile mill 500-mL conical flasks 0.1695 Nitate-84.2% cun humicola Textile mill 500-mL conical flasks NA NA NH-N reduced-31% cun humicola Textile mill 500-mL conical flasks NA NA NA-N reduced-31% cun humicola Textile mill Tubular Co removal - 14% cun humicola Tubular To removal - 17% de removal - 17% Co removal - 200.0% cun humicola Tubular Tubular Tubular de removal -	Microalgal species	wastewater	system	$(\mathrm{g}\mathrm{L}^{-1})$	Removal efficiency	days/period	Reference
wastewater photobioreactors removal—94.4 ± 1.0% tertiolecta Aquaculture Mixed bubble column 0.38 ± 0.06 removal—>90% ius obliquus Urban Vertical tubular 0.4 N removal—95.4 ± 0.3% nus obliquus Urban Vertical tubular 0.4 N removal—95.8 n (Chlorella, Urban Vertical tubular 0.90 N removal—95.8 na, Scenedesmus, wastewater photobioreactor COD—63% na, Scenedesmus, wastewater photobioreactor COD—64% salina Municipal Erlenmeyer flasks N/1695 Nitrate-84.2% cum humicola Textile mill 500-mL conical flasks NA NH4_N reduced-41.6% cum humicola Textile mill 500-mL conical flasks NA BOD reduced -37% effluent Aquaculture Tubular 3.79 TN removal - 38% co removal - 82.62% Nitrate-85% Nitrate-85% Nitrate-85% Nitrate-85%	Tetraselmis suecica	Aquaculture	Mixed bubble column	0.6 ± 0.06	Z	7 days	Andreotti et al.
tertiolecta Aquaculture Mixed bubble column 0.38 ± 0.06 N uus obliquus Urban Vertical tubular 0.4 N removal - 95.4 ± 0.3% nus obliquus Urban Vertical tubular 0.4 N removal - 92.% nus obliquus Urban Vertical tubular 0.90 N removal - 92.% nus Scenedesmus, wastewater photobioreactor 0.90 N removal - 100% conditional Municipal Erlenmeyer flasks 0.1695 Nitrate-84.2% salina Municipal Erlenmeyer flasks NA NH,-N reduced-81.% cum humicola Textile mill 500-mL conical flasks NA NH,-N reduced-31% con removal - 44% Con removal - 44% con removal - 38% Cd removal - 38% cidium Aquaculture Tubular 3.79 TN removal - 82.62% Nitrate-85% Nitrate-85% Nitrate-85% Nitrate-85%		wastewater	photobioreactors		removal—94.4 \pm 1.0%		(2017)
uas obliquus Urban Vertical tubular 0.4 N removal - 95% nt. Chlorella, vastewater Urban Vertical tubular 0.90 N removal - 92% nt. Chlorella, vastewater Urban Vertical tubular 0.90 N removal - 92% nta, Scenedesmus, vastewater photobioreactor COD-64% COD-64% salina Municipal Erlenmeyer flasks 0.1695 Nitrate-84.2% ntum humicola Textile mill 500-mL conical flasks NA NH _x -N reduced-81% cum humicola Textile mill 500-mL conical flasks NA NH _x -N reduced-81% core removal - 74.47% Core removal - 74.47% Core removal - 74.47% core removal - 74.47% Core removal - 74.47% core removal - 74.47% Core removal - 74.47% core removal - 74.47% Nitrate-85% Nitrate-85% Nitrate-85% Nitrate-78% Nitrate-78% Nitrate-78% Nitrate-78%	Dunaliella tertiolecta	Aquaculture	Mixed bubble column	0.38 ± 0.06	N N	7 davs	
uus obliquus Urban Vertical tubular 0.4 N removal—95% nt. Chlorella, vastewater Urban Vertical tubular 0.90 N removal—92% nra, Scenedesmus, vastewater Photobioreactor 0.90 N removal—98% nra, Scenedesmus, wastewater Photobioreactor COD—64% salina Municipal Erlenmeyer flasks 0.1695 Nitrate-84.2% nwastewater Erlenmeyer flasks NA NH _x -N reduced-81% effluent 500-mL conical flasks NA NH _x -N reduced-31% coremoval - 144% Coremoval - 144% nduaculture Tubular Th removal - 17% nduaculture Tubular Th removal - 82.62% Nitrate-85% Nitrate-85% Nitrite-78% Nitrite-78%		wastewater	photobioreactors		removal - 95.4 \pm 0.3%	,	
uus obliguus Urban wastewater Vertical tubular 0.4 N removal—95% n (Chlorella, ora, Scenedesmus, astewater Urban Vertical tubular 0.90 N removal—98% ora, Scenedesmus, vastewater Municipal Erlenmeyer flasks 0.1695 Nirtate-84.2% salina Municipal Erlenmeyer flasks 0.1695 Nirtate-84.2% cum humicola Textile mill 500-mL conical flasks NA NH_N-N reduced-46% cum humicola Textile mill 500-mL conical flasks NA NH_N-N reduced-46% cum humicola Textile mill 500-mL conical flasks NA NA NA-N reduced-46% cum humicola Textile mill 500-mL conical flasks NA NA NA removal - 74.7% cum humicola Tubular Thremoval - 17% Co removal - 17% dramatewater photobioreactors Nitrate-85% Nitrate-85% Nitrate-85%			•		P removal - >90%		
m (Chlorella, transported to the control of the co	Scenedesmus obliquus	Urban	Vertical tubular	0.4	N removal—95%	13 days	Gouveia et al.
n (Chlorella, pra, Scenedesmus, satewater Vertical tubular 0.90 N removal—98% ora, Scenedesmus, satewater photobioreactor 0.1695 P removal—100% salina Municipal Erlenmeyer flasks 0.1695 Nitrate-84.2% cum humicola Textile mill 500-mL conical flasks NA NH ₄ -N reduced-81% effluent 500-mL conical flasks NA NH ₄ -N reduced-46% COD reduced -37% Fe removal - 74.47% Co removal - 44% Na removal - 38% cd removal - 17% Cd removal - 17% ridium Aquaculture Tubular TP removal - 17% wastewater photobioreactors Nitrate-85% Nitrate-85% Nitrite-78%		wastewater	photobioreactor		P removal -92%		(2016)
n (Chlorella, vastewater photobioreactor photobioreactor salina Municipal Erlenmeyer flasks 0.1695 Nitrate-84.2% Ammonia-71% Premoval -100% COD—64% COD—64% Ammonia-71% Phosphorus-47.5% Ammonia-71% Phosphorus-47.5% Committeent effluent effluent Aquaculture Aquaculture Tubular Aquaculture photobioreactors (Continuum) Nastewater photobioreactors (Continuum) Nature-85.6% Nitrate-85% Nitrate-					COD—63%		Gouveia et al.
vra, Scenedesmus, wastewater photobioreactor Premoval – 100% salina Municipal Erlenmeyer flasks 0.1695 Nitrate-84.2% cum humicola Textile mill 500-mL conical flasks NA NH ₄ -N reduced-81% effluent Formular COD reduced – 37% effluent Formular Aquaculture didum Aquaculture Tubular wastewater photobioreactors Nitrate-85% Nitrite-78% Nitrite-78%	Consortium (Chlorella,	Urban	Vertical tubular	0.90	N removal—98%	13 days	(2016)
salina Municipal Erlenmeyer flasks 0.1695 Nitrate-84.2% 6 cum humicola Textile mill 500-mL conical flasks NA NH ₄ -N reduced-81% 6 effluent COD reduced -37% Fe removal - 74.47% 74.47% 74.47% idium Aquaculture Tubular 3.79 TN removal - 17% wastewater photobioreactors Nitrate-85% Nitrite-78% Nitrite-78%	Chaetophora, Scenedesmus,	wastewater	photobioreactor		P removal -100%		
Municipal Erlenmeyer flasks 0.1695 Nitrate-84.2% 6 micola Textile mill 500-mL conical flasks NA Phosphorus-47.5% effluent NA NH ₄ -N reduced-81% COD reduced -46% COD reduced -37% Fe removal - 74.47% Co removal - 44% Na removal - 17% Aquaculture Tubular 3.79 TN removal- 82.62% wastewater photobioreactors Nitrate-85% Nitrite-78% Nitrite-78%	Navicula)				COD—64%		
wastewater Ammonia-71% Textile mill 500-mL conical flasks NA NH ₄ -N reduced-81% 6 effluent COD reduced -46% COD reduced -37% Fe removal - 74.47% Co removal - 44% Aquaculture Tubular 3.79 TN removal - 38% Aquaculture Thotobioreactors TP removal - 99.06% Nitrate-85% Nitrite-78%	Dunaliella salina	Municipal	Erlenmeyer flasks	0.1695	Nitrate-84.2%	6 days	Liu and Yildiz
Textile mill 500-mL conical flasks NA NH ₄ -N reduced-81%		wastewater			Ammonia-71%		(2018)
Textile mill 500-mL conical flasks NA NH ₄ -N reduced-81% effluent BOD reduced -46% COD reduced -37% Fe removal - 74.47% Co removal - 44% Na removal - 13% Cd removal - 17% Cd removal - 18% Cd remo					Phosphorus-47.5%		
BOD reduced -46%	Chlorococcum humicola	Textile mill	500-mL conical flasks	NA	NH ₄ -N reduced-81%	6 days	Borah et al.
COD reduced -37%		effluent			BOD reduced -46%		(2020)
Fe removal - 74.47% Co removal - 44% Co removal - 44% Co removal - 38% Cd removal - 17% Cd removal - 17% Cd removal - 17% Cd removal - 17% Cd removal - 10% Cd r					COD reduced -37%		
Co removal - 44% Na removal - 38% Aduaculture					Fe removal- 74.47%		
Na removal -38%					Co removal - 44%		
Aquaculture Tubular 3.79 Cd removal – 17% wastewater photobioreactors TP removal – 82.62% Nitrate-85% Nitrate-85%					Na removal -38%		
Aquaculture Tubular 3.79 TN removal- 82.62% wastewater photobioreactors TP removal- 99.06% Nitrate-85% Nitrate-85%					Cd removal -17%		
photobioreactors	Monoraphidium	Aquaculture	Tubular	3.79	TN removal- 82.62%	10 days	Hawrot-Paw
Nitrate-85% Nitrite-78%		wastewater	photobioreactors		TP removal- 99.06%		et al. (2020)
Nitrite-78%					Nitrate-85%		
					Nitrite-78%		
Orthophosphate-100%					Orthophosphate-100%		

1.3.3 Pharmaceuticals

Microalgae-based technology is an emerging technique for remediating wastewater containing pharmaceuticals and drugs (Fayaz et al. 2023; Xiong et al. 2021) (Table 1.2). An alkaline solution-treated biomass of *S. quadrifolia* depicted 91% removal of tramadol within 45 min (Ali et al. 2018). A comparative analysis revealed better pharmaceutical removal by *Tetradesmus* with 40% removal of paracetamol and 93% removal of salicylic acid compared to 21% and 25% removal by *Chlorella* sp. (Escapa et al. 2017). In addition to paracetamol, florfenicol (47 mg L⁻¹) was removed by *Chlorella* L38 with 96% efficiency (Song et al. 2019). Antibiotic triclosan remediation was studied employing three microalgae with a 99.7% removal rate in a day by *S. obliquus* culture, 100% removal efficiency in 7 days by *Desmodesmus* culture, and 69.3% removal by *C. pyrenoidosa* culture (Wang et al. 2018).

1.3.4 Dyes

Wastewater with dyes, if disposed of untreated, leads to their accumulation in the water bodies with adverse impacts on the aquatic life, flora, and fauna (Premaratne et al. 2021). Various studies have demonstrated the successful removal of dyes using microalgae (Ihsanullah et al. 2020; Majumdar et al. 2022) (Table 1.2). A study on *S. obliquus* demonstrated 98.14% removal of orange 2RL Azo dye (20 ppm) when supplemented with glucose at pH 11 (Hamouda et al. 2022). This species is also effective in bioremediating methyl red and congo red dyes with removal efficiencies

Table 1.2	Microalgal-based	pollutant removal studio	es

		Type of	Removal	Removal	
Microalgae	Pollutant	pollutant	mechanism	(%)	Reference
Chlorella vulgaris	Methylene blue	Synthetic dye	Surface adsorption	83.04%	Chin et al. (2020)
Scenedesmus sp.	Acid blue 161	Dye	Surface adsorption	76.65%	da Fontoura et al. (2017)
C. pyrenoidosa	Triclosan	Emerging contaminant	Bioaccumulation	69.30%	Wang et al. (2018)
Nostoc muscorum	Malathion	Pesticide	Biodegradation	91%	Ibrahim et al. (2014)
Pseudanabaena sp.	Cypermethrin	Pesticide	Biodegradation	98%	Bano et al. (2021)
Scenedesmus	17α-estradiol	Emerging	Biodegradation	85%	Bano et al.
dimorphus	17β-estradiol	contaminants		95%	(2021)
C. sorokiniana	Ibuprofen	Emerging	Biodegradation,	99%	de Wilt
	Paracetamol	contaminants	photolysis	99%	et al.
	Metoprolol			38%	(2016)

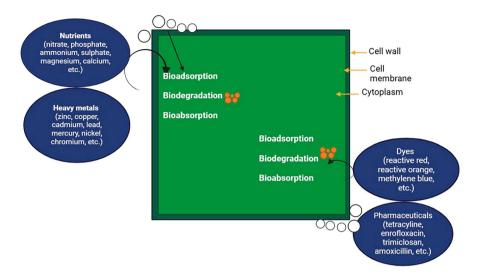


Fig. 1.2 Mechanisms governing contaminant uptake from wastewater by microalgae

of up to 48.60% and 41.15% in 10 days (Abou-El-Souod et al. 2020). *Arthrospira platensis* showed 75.7% and 61.11% removal of ismate violet 2R dye with dry and lipid-free biomass, respectively, at 10 mg L⁻¹ of initial dye concentration (Alprol et al. 2021). After 7 days of treatment, *Oscillatoria* and *Scenedesmus* mixture removed azo dyes reactive orange and reactive red with 98.5% and 97.5% removal efficiency, respectively (El-Sheekh et al. 2021). Thus, microalgae are an attractive option for remediating dyes from wastewater and utilizing the harvested biomass for other commercial applications.

1.4 Mechanisms of Microalgal Bioremediation

Microalgae can eliminate various pollutants through biosorption, bioaccumulation, or biodegradation (Fig. 1.2). These mechanisms are discussed in the following sections.

1.4.1 Biosorption

Biosorption is the ability of active/inactive, living/non-living materials of biological origin to bind and collect metal ions from aqueous solutions (Sathya et al. 2022). Microalgae biosorption is a passive, metabolically independent activity involving complexation, precipitation, adsorption, absorption, and ion exchange (Yaashikaa et al. 2021). Algal cell walls consist of lipids and hetero-polysaccharides with negatively charged groups such as phosphate, carboxyl, hydroxyl, and amino, interactively binding with metal ions (Ramesh et al. 2023). Other heavy metals like lead

and nickel were sequestered by microalgae *Rhizoclonium hookeri*, showing a maximum adsorption capacity of 81.7 mg g⁻¹ of lead and 65.81 mg g⁻¹ of nickel (Suganya et al. 2017). The ability of *Scenedesmus* sp. and *Synechocystis* sp. to adsorb diclofenac was examined. Diclofenac may be recovered from biomass by *Scenedesmus* sp. at a rate of 28 mg g⁻¹ and by *Synechocystis* sp. at a rate of 20 mg g⁻¹ (Coimbra et al. 2018).

1.4.2 Bioaccumulation

Bioaccumulation involves the gradual intracellular active diffusion across the cell membrane during the cellular metabolic activity and accumulation within the cells (Srimongkol et al. 2022). Regardless of the process, bioaccumulation is significantly impacted by internal and external physicochemical factors such as pH, temperature, contact time, and pollutant concentration (Abdelfattah et al. 2023). *Chlorococcum* sp. accumulated 239.09 μ g g⁻¹ dw Arsenic [As(III)] in 10 days when grown in 10 μ M arsenic (Upadhyay et al. 2022). The combined effect of biosorption and bioaccumulation is highly significant for the elimination of metal ions from wastewater (Rempel et al. 2021). Another study assessed the toxicity, bioaccumulation, and biodegradation of atrazine in the green microalga *C. mexicana*, finding it can accumulate and biodegrade atrazine within cells, ranging from 14% to 36% at 10–100 μ g L⁻¹ (Kabra et al. 2014).

1.4.3 Biodegradation

Biodegradation is the process by which pollutants are broken down into simpler molecules by enzymatic activities (Rempel et al. 2021). The biodegradation of diclofenac was investigated using two microalgal strains (Picocystis sp. and Graesiella sp.), which reached 69% and 44%, respectively, at 25 mg L⁻¹ of initial diclofenac concentration (Ouada et al. 2019). After 30 days of incubation, both Oscillatoria sp. and Chlorella sp. could degrade 95% and 78.71% of pyrene (50 mg L⁻¹), respectively (Aldaby and Mawad 2019). Similarly, nonylphenol was removed and biodegraded by four different freshwater microalgae. At 120 h, Chlorella vulgaris had the most significant nonylphenol biodegradation percentage of 68.80%, followed by 65.63% (Ankistrodesmus acicularis), 63.10% (Scenedesmus quadriauda), and 34.91% (Chroococcus minutus) (He Microalga, Chlamydomonas mexicana demonstrated the ability to accumulate and biodegrade atrazine within the cell, with atrazine degradation ranging from 14% to 36% at $10-100 \,\mu g \, L^{-1}$ (Kabra et al. 2014). Therefore, these studies indicate that different types of microalgae play a role in the biodegradation of contaminants, highlighting their capacity to convert a variety of dangerous compounds into less harmful forms.

1.5 Factors Influencing Microalgal Bioremediation

Microalgal bioremediation is influenced by factors like temperature, pH, nutrient availability, and light intensity, which can all impact the growth of microalgae, which varies from species to species (Khan et al. 2018).

1.5.1 Light

Light serves as both the energy source for algal photosynthesis and a prerequisite for the development of microalgae (Wang et al. 2022). Different microalgal strains (Pseudokirchneriella subcapitata, C. vulgaris, Microcystis aeruginosa, and Synechocystis salina) were utilized to investigate the effects of light irradiance and light: dark period on microalgal growth and nutrient removal (Gonçalves et al. 2014). Complete nitrogen removal was observed in cultures irradiated with a light intensity of 180 $\mu E \, m^{-2} \, s^{-1}$ (Gonçalves et al. 2014). Microalgal strains (Desmodesmus sp., C. vulgaris, S. obliquus, and Ettilia pseudoalveolaris) were cultured under different light intensities. Except for *Desmodesmus* sp., over 75% of total nitrogen and phosphorus content was removed from treated wastewater at 50 μE m⁻² s⁻¹ light intensity (Nzavisenga et al. 2020). The study examined the impact of different light qualities (red, blue, white, and mixed red and blue) on the nutrient removal, growth, and biochemical composition of C. sorokiniana in aquaculture effluent. Results showed that blue light degraded the most organic carbon (82.27%), while combined red and blue light removed the most total nitrogen and NH₃-N (93.25%) (He et al. 2023). These studies indicate the role light quality and intensity play in nutrient removal.

1.5.2 Temperature

Temperature plays a crucial role in regulating microalgae's metabolic processes and growth (Arora et al. 2021). An evaluation of different microalgal strains grown in secondary effluent from a treatment facility at 10 and 22 °C temperature revealed that both temperatures could help achieve 70% removal of the initial N and P (Abdelaziz et al. 2014). Another study evaluated nutrient removal efficiency in *P. subcapitata*, *C. vulgaris*, *M. aeruginosa*, and *S. salina* at 25 °C using light irradiance. The maximum nitrogen removal efficiency was 100% for all three species. Phosphorus removal efficiency varied, with *M. aeruginosa* having the lowest efficiency of 1.13% at 15 °C and *C. vulgaris* having the highest efficiency of 67.6% at 25 °C at the light intensity of 180 μE m⁻² s⁻¹ (Gonçalves et al. 2016). The study used three temperature regimes low (4 °C), high (35 °C), and alternating high-low (35 °C during the day and 4 °C at night) temperatures for 15 days to cultivate *C. vulgaris* in municipal wastewater. The highest biomass concentration (1.62 g L⁻¹) and most effective elimination of COD (83.0%), TN (96.5%), NH₃-N (97.8%), and TP

(99.2%) were observed when the alternating high-low temperature condition was used (Xu et al. 2019).

1.5.3 Nutrient Availability

The effect of wastewater discharge on the environment is lessened when water is pre-treated with microalgae to remove nutrients. *S. obliquus* was assessed for its growth and nutrient removal efficiency in a solution containing diammonium phosphate, urea, and glucose as P, N, and C sources (Shashirekha et al. 2016). The results showed a nearly 80% reduction in COD and BOD levels, and a maximum biomass yield of 1.23 g L⁻¹ was achieved in 5 days (Shashirekha et al. 2016). Complete removal of nitrates, carbon and phosphorus by *S. obliquus* was observed at C:N:P ratio of 0.2:0.14:0.08 in sugar mill effluent. The study assessed the nutrient removal efficiency of *Chlorella* and *Scenedesmus* under varying initial N and P concentrations (Beuckels et al. 2015). The concentration of nitrogen in the wastewater impacted the nutrient removal capacity of microalgae, where *Chlorella* and *Scenedesmus* showed a phosphorus removal of 2 mg L⁻¹ under 20 mg L⁻¹ nitrogen. In contrast, the phosphorus removal capacity increased to 6 mg L⁻¹ at more than 40 mg L⁻¹ nitrogen concentrations.

1.5.4 pH

pH is a crucial factor in microalgal cultures, influencing metabolism and regulating the availability and solubility of nutrients and CO₂. The ideal pH range for the generation of lipids and biomass in microalgal species is reported to be strain-specific (Qiu et al. 2017). The nutrient absorption by *Chlorella* sp. at pH values ranging from 5.0 to 11.0 showed that neutral or slightly alkaline conditions produced higher absorption efficiencies for total nitrogen and phosphorus, while acidic conditions led to lower absorption (Zhang et al. 2014). At an initial pH of 7.0, 87.77% of total nitrogen and 92.05% of phosphorus were removed by *Chlorella* sp. from 50% BG-11 medium (Zhang et al. 2014). Sutherland et al. (2015) concluded that covarying CO₂ and pH impacted the removal of dissolved inorganic nitrogen. At the lowest pH, the proportion of nitrogen removed increases at the greatest dissolved inorganic carbon concentration (Sutherland et al. 2015). Even at pH levels below 3, the mixed culture predominated by *Parachlorella* efficiently absorbed NH₄⁺-N and grew well in anaerobic digestion effluent (Yu et al. 2022).

1.6 Commercial Applications

Green solutions, like phycoremediation, are cost-effective, sustainable, and energy-efficient substitutes that yield critical secondary metabolites, biofuel, and nutrient recovery from contaminated freshwater sources (Kumar et al. 2023). Microalgae

recovered after wastewater processing, due to their high content of proteins, carbohydrates, and lipids, can be exploited to create value-added products (Udaiyappan et al. 2017). The industrial applications of the generated biomass are discussed below.

1.6.1 Biofuel Production

Microalgae are considered the most realistic green biodiesel production alternative due to their ability to grow on wastewater and their adaptability to changing atmospheric conditions (Bhalamurugan et al. 2018). Many studies have reported the possibility of biofuel production along with microalgal remediation (Table 1.3). Treating sewage effluent using *C. vulgaris* reduced 93% nitrates, 95% COD, and 92% BOD and simultaneously generated 0.67 g L⁻¹ biomass and 0.26 g L⁻¹ lipid yields (Pooja et al. 2022). Optimizing *Nostoc ellipsosporum* growth conditions, including 20% Fog's medium and 80% wastewater, increased biomass yield from 1.42 to 2.9 g L⁻¹, removed 87.59% nitrogen and 88.31% phosphate, and produced 24.62% bio-oil (Devi and Parthiban 2020). Biogas was generated from residual microalga consortium (*Nostoc*, *Phormidium*, and *Geitlerinema*) biomass in

Table 1.3 Microalgae-based pollutant removal from different wastewater with potential applications of the generated biomass

Microalgae	Wastewater treatment	Application	Biomass production	Reference
Neochloris sp. Chlorella sp. Chlorococcum sp.	Polluted river water pharmaceutical effluent	Feed and healthy food applications	520 mg L ⁻¹ 498 mg L ⁻¹ 450 mg L ⁻¹	Singh et al. (2020)
Chlorococcum humicola	Textile mill effluent	Bioethanol and biobutanol	0.87*10 ⁷ cells mL ⁻¹ d ⁻¹	Borah et al. (2020)
Chlorella sp. Scenedesmus sp.	Black gunpowder production effluents	Biofuel production, aquaculture, and the food industry.	380.60 mg L ⁻¹ 454.57 mg L ⁻¹	Condori et al. (2024)
Neochloris sp.	Aquaculture wastewater	Fish feed ingredient	$0.317 \pm 0.0473 \text{ g L}^{-1}$	Kashem et al. (2023)
Calothrix sp.	Sewage wastewater	Biofertilizers and pigments	916.67 ± 5.77 mg L ⁻¹	Renuka et al. (2013)
Chlamydomonas debaryana	Dairy wastewater	Biodiesel production	$3.66 \pm 0.21 \text{ g L}^{-1}$	Arora et al. (2016)
Chlorella fusca	Urban wastewater	Biofuel production	65.5× 10 ⁶ cell mL ⁻¹	Arrojo et al. (2022)

secondary effluent after phycobiliprotein extraction, yielding methane from 159 to 199 mL CH₄ g⁻¹ volatile solid (Arashiro et al. 2020). These studies indicate that microalgae cultivation in wastewater has the potential for commercial application in biofuel production.

1.6.2 Lipids and Pigment Production

The algal biomass produced during wastewater treatment can be used as a source of pigments as well as animal feed supplements (Marella et al. 2020). The study on Phaeodactylum tricornutum showed that treating it with swine wastewater: water ratio of 1:1 maximized algal biomass at 1.54 g L⁻¹ and fucoxanthin accumulation to 28.41 mg L⁻¹, highlighting its efficiency in nutrient removal and fucoxanthin production from swine effluent (Jiang et al. 2022). Nostoc, Phormidium, and Geitlerinema cultured in wastewater were effectively used to extract the natural pigments phycocyanin and phycoerythrin up to 20.1 mg⁻¹ g⁻¹ and 8.1 mg⁻¹ g⁻¹ dry weight, respectively (Arashiro et al. 2020). C. vulgaris showed carotenoid concentrations of 6.34 mg L⁻¹ and 201.69 mg L⁻¹ after 5 and 10 days of incubation in 10% and 5% tofu wastewater medium, while A. platensis had 1.16 mg L-1 and 72.20 mg L⁻¹ carotenoid content (Ajijah et al. 2020). Mixed algal cultures of Euglena gracilis and Selenastrum, grown in sludge-amended pike perch aquaculture wastewater, produced the maximum quantities of algal biomass (1.5 g L⁻¹), tocopherol (877.2 µg L⁻¹), and lipid (84.9 mg L⁻¹) (Tossavainen et al. 2019). Research shows microalgae species can effectively treat wastewater by removing nutrients and producing beneficial compounds like lipids, carotenoids, fucoxanthin, phycocyanin, and phycoerythrin.

1.6.3 Carbon Sequestration

Microalgae can be a significant carbon sink while utilizing nutrients from wastewater (Viswanaathan et al. 2022). They can sequester 1.3 kg of carbon dioxide per kilogram of biomass, and in open pond cultures, they can absorb and convert 513 tons of CO₂ into 280 tons of dry biomass per hectare per year (Sarwer et al. 2022). *Chlorella* sp. achieved maximum biomass growth (1.52 g L⁻¹) and CO₂ fixation rate (187.65 mg L⁻¹ d⁻¹) by the fifth day, with over 70% nutrient removal, indicating successful wastewater treatment and CO₂ capture (Yadav et al. 2019). *Chlorella* sp. cultivated in tannery effluent showed the maximal concentration of protein, carbohydrate, and lipid to be 160 μg mL⁻¹, 250 μg mL⁻¹, and 0.95 g L⁻¹, respectively; with 60.50% CO₂ removal (Rajalakshmi et al. 2021). These studies indicate that microalgae may be an effective alternative for the sequestration of carbon dioxide and wastewater treatment.

1.6.4 Biofertiliser Production

Wastewater-grown microalgal biomass from two consortia (*Anabaena, Phormidium, Westiellopsis, Spirogyra, Fischerella*) and unicellular (*Scenedesmus, Chlorella, Chroococcus, and Chlorococcum*) significantly improved wheat crop productivity and growth compared to the prescribed dosage of NPK fertilizers (Renuka et al. 2016). Five different microalgae strains (*Chlorella* sp., *Monoraphidium* sp., *Neochloris* sp., *Dictyosphaeriu*m sp., and *Scenedesmus* sp.) grown in municipal wastewater were found to be more effective in providing nitrogen content to wheat plants than NPK fertilizer (Das et al. 2019). The consortium of *Chlorella* sp. and *Scenedesmus* sp. grown in 75% wastewater with inorganic fertilizer improved shoot and root length (44% and 89%, respectively) of *Solanum lycopersicum* with 174% enhancement yield (Silambarasan et al. 2021). These studies suggest that microalgae obtained after wastewater treatment have significant potential as sustainable biofertilizers.

1.7 Conclusions

Microalgal bioremediation has recently attracted attention worldwide due to less negative environmental impacts. However, there is a need to reduce the cultivation cost and enhance the reliability of the biological approach. Optimizing various ecological factors and selecting wastewater-adapted microalgal strains would help overcome the underlying limitations. Furthermore, genetically modifying the microalgal strains can increase nutrient removal efficiency, make them resistant to toxic contaminants and enhance growth. Technology development for treating large volumes of wastewater would uplift the economic barrier to make this technology sustainable.

Acknowledgments Prabhkirat Kapahi is thankful to the Central University of Punjab, Bathinda, India, for PhD fellowship (CUPB/Acad.-54/2024-25/Notification/108). Esha Goyal (UGC grant number 221610125980) and Tufail Fayaz (UGC Grant number: 202021-JK04602587) are thankful to the University Grants Commission, Govt. of India for the PhD fellowship. Nirmal Renuka is thankful to the Central University of Punjab, Bathinda, India, for providing research seed money (Grant number: (CUPB/Acad./2022/1194) and infrastructural facilities. Sachitra Kumar Ratha is thankful to the Director, CSIR-National Botanical Research Institute, Lucknow, India.

Declaration of Competing Interest The authors declare that they have no known competing financial or personal interests.

References

Abdelaziz AE, Leite GB, Belhaj MA, Hallenbeck PC (2014) Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresour Technol 157:140–148

- Abdelfattah A, Ali SS, Ramadan H, El-Aswar EI, Eltawab R, Ho S-H et al (2023) Microalgae-based wastewater treatment: mechanisms, challenges, recent advances, and future prospects. Environ Sci Ecotechnol 13:100205
- Abdel-Razek MA, Abozeid AM, Eltholth MM, Abouelenien FA, El-Midany SA, Moustafa NY, Mohamed RA (2019) Bioremediation of a pesticide and selected heavy metals in wastewater from various sources using a consortium of microalgae and cyanobacteria. Slov Vet Res 56:61–73
- Abou-El-Souod G, Hamouda RA, El-Sheekh M (2020) Influence of heavy metal as co-contamination on biodegradation of dyes by free and immobilized *Scenedesmus obliquus*. Desalin Water Treat 182:351–358
- Ahmad S, Pandey A, Pathak VV, Tyagi VV, Kothari R (2020) Phycoremediation: algae as ecofriendly tools for the removal of heavy metals from wastewaters. Bioremediation of industrial waste for environmental safety: Volume II: biological agents and methods for industrial waste management. Springer, Singapore, pp 53–76
- Ajala SO, Alexander ML (2020) Assessment of *Chlorella vulgaris*, *Scenedesmus obliquus*, and *Oocystis minuta* for removal of sulfate, nitrate, and phosphate in wastewater. Int J Energy Environ Eng 11(3):311–326
- Ajijah N, Tjandra B, Hamidah U, Sintawardani N (2020) Utilization of tofu wastewater as a cultivation medium for *Chlorella vulgaris* and *Arthrospira platensis*. In: IOP conference series: earth and environmental science
- Alam MA, Wan C, Zhao X-Q, Chen L-J, Chang J-S, Bai F-W (2015) Enhanced removal of Zn²⁺ or Cd²⁺ by the flocculating *Chlorella vulgaris* JSC-7. J Hazard Mater 289:38–45
- Aldaby E, Mawad A (2019) Pyrene biodegradation capability of two different microalgal strains. Global NEST J 21(3):290–295
- Ali ME, Abd El-Aty AM, Badawy MI, Ali RK (2018) Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga *Scenedesmus obliquus*. Ecotoxicol Environ Saf 151:144–152
- Ali I, Naz I, Peng C, Abd-Elsalam KA, Khan ZM, Islam T et al (2021) Sources, classifications, constituents, and available treatment technologies for various types of wastewater: an overview. Aquananotechnology, pp 11–46
- Alprol AE, Heneash AM, Ashour M, Abualnaja KM, Alhashmialameer D, Mansour AT et al (2021) Potential applications of *Arthrospira platensis* lipid-free biomass in bioremediation of organic dye from industrial textile effluents and its influence on Marine Rotifer (*Brachionus plicatilis*). Materials 14(16):4446
- Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YA-G, Elsamahy T et al (2022) A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231:113160
- Andreotti V, Chindris A, Brundu G, Vallainc D, Francavilla M, García J (2017) Bioremediation of aquaculture wastewater from *Mugil cephalus* (Linnaeus, 1758) with different microalgae species. Chem Ecol 33(8):750–761
- Ankit, Bauddh K, Korstad J (2022) Phycoremediation: use of algae to sequester heavy metals. Hydrobiology 1(3):288–303
- Arashiro LT, Ferrer I, Pániker CC, Gómez-Pinchetti JL, Rousseau DP, Van Hulle SW, Garfí M (2020) Natural pigments and biogas recovery from microalgae grown in wastewater. ACS Sustain Chem Eng 8(29):10691–10701
- Arias DM, Solé-Bundó M, Garfí M, Ferrer I, García J, Uggetti E (2018) Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Bioresour Technol 247:513–519
- Arora N, Patel A, Sartaj K, Pruthi PA, Pruthi V (2016) Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae. Environ Sci Pollut Res 23:20997–21007

Arora K, Kaur P, Kumar P, Singh A, Patel SKS, Li X et al (2021) Valorization of wastewater resources into biofuel and value-added products using microalgal system. Front Energy Res 9:646571

- Arrojo MÁ, Regaldo L, Calvo Orquín J, Figueroa FL, Abdala Díaz RT (2022) Potential of the microalgae *Chlorella fusca* (Trebouxiophyceae, Chlorophyta) for biomass production and urban wastewater phycoremediation. AMB Express 12(1):43
- Bano S, Nadir M, Ahmed A, Rasool SG, Siddiqui PJA, Rasheed M (2021) Removal efficiency of marine filamentous cyanobacteria for Pyrethroids and their effects on the biochemical parameters and growth. Algal Res 60:102546
- Beuckels A, Smolders E, Muylaert K (2015) Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res 77:98–106
- Bhalamurugan GL, Valerie O, Mark L (2018) Valuable bioproducts obtained from microalgal biomass and their commercial applications: a review. Environ Eng Res 23(3):229–241
- Borah D, Kennedy B, Gopalakrishnan S, Chithonirai A, Nooruddin T (2020) Bioremediation and biomass production with the green microalga *Chlorococcum humicola* and textile mill effluent (TE). Proc Natl Acad Sci India Sect B Biol Sci 90:415–423
- Cameron H, Mata MT, Riquelme C (2018) The effect of heavy metals on the viability of *Tetraselmis marina* AC16-MESO and an evaluation of the potential use of this microalga in bioremediation. PeerJ 6:e5295
- Chin JY, Chng LM, Leong SS, Yeap SP, Yasin NHM, Toh PY (2020) Removal of synthetic dye by *Chlorella vulgaris* microalgae as natural adsorbent. Arab J Sci Eng 45:7385–7395
- Coimbra RN, Escapa C, Vázquez NC, Noriega-Hevia G, Otero M (2018) Utilization of non-living microalgae biomass from two different strains for the adsorptive removal of diclofenac from water. Water 10(10):1401
- Condori MAM, Condori MM, Gutierrez MEV, Choix FJ, García-Camacho F (2024) Bioremediation potential of the *Chlorella* and *Scenedesmus* microalgae in explosives production effluents. Sci Total Environ 920:171004
- Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155
- da Fontoura JT, Rolim GS, Mella B, Farenzena M, Gutterres M (2017) Defatted microalgal biomass as biosorbent for the removal of Acid Blue 161 dye from tannery effluent. J Environ Chem Eng 5(5):5076–5084
- Daneshvar E, Zarrinmehr MJ, Kousha M, Hashtjin AM, Saratale GD, Maiti A et al (2019) Hexavalent chromium removal from water by microalgal-based materials: adsorption, desorption and recovery studies. Bioresour Technol 293:122064
- Das P, Quadir M, Thaher M, Alghasal G, Aljabri H (2019) Microalgal nutrients recycling from the primary effluent of municipal wastewater and use of the produced biomass as bio-fertilizer. Int J Environ Sci Technol 16:3355–3364
- de Wilt A, Butkovskyi A, Tuantet K, Leal LH, Fernandes TV, Langenhoff A, Zeeman G (2016) Micropollutant removal in an algal treatment system fed with source separated wastewater streams. J Hazard Mater 304:84–92
- Devi TE, Parthiban R (2020) Hydrothermal liquefaction of *Nostoc ellipsosporum* biomass grown in municipal wastewater under optimized conditions for bio-oil production. Bioresour Technol 316:123943
- Do CVT, Pham MHT, Pham TYT, Dinh CT, Bui TUT, Tran TD (2022) Microalgae and bioremediation of domestic wastewater. Curr Opin Green Sustain Chem 34:100595
- El-Sheekh MM, Farghl AA, Galal HR, Bayoumi HS (2016) Bioremediation of different types of polluted water using microalgae. Rendiconti Lincei 27:401–410
- El-Sheekh M, El-Shanshoury A, Abou-El-Souod G, Gharieb D, El Shafay S (2021) Decolorization of dyestuffs by some species of green algae and cyanobacteria and its consortium. Int J Environ Sci Technol 18:1–12
- Escapa C, Coimbra R, Paniagua S, García A, Otero M (2017) Comparison of the culture and harvesting of *Chlorella vulgaris* and *Tetradesmus obliquus* for the removal of pharmaceuticals from water. J Appl Phycol 29:1179–1193

- Fallahi A, Rezvani F, Asgharnejad H, Nazloo EK, Hajinajaf N, Higgins B (2021) Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: a review. Chemosphere 272:129878
- Fayaz T, Renuka N, Ratha SK (2023) Antibiotic occurrence, environmental risks, and their removal from aquatic environments using microalgae: advances and future perspectives. Chemosphere 349:140822
- Fayaz T, Rana SS, Goyal E, Ratha SK, Renuka N (2024) Harnessing the potential of microalgaebased systems for mitigating pesticide pollution and its impact on their metabolism. J Environ Manag 357:120723
- Gonçalves A, Simões M, Pires J (2014) The effect of light supply on microalgal growth, CO₂ uptake and nutrient removal from wastewater. Energy Convers Manag 85:530–536
- Gonçalves AL, Pires JC, Simões M (2016) The effects of light and temperature on microalgal growth and nutrient removal: an experimental and mathematical approach. RSC Adv 6(27):22896–22907
- Gouveia L, Graça S, Sousa C, Ambrosano L, Ribeiro B, Botrel EP et al (2016) Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Res 16:167–176
- Hamouda RA, El-Naggar NEA, Abou-El-Souod GW (2022) Simultaneous bioremediation of Disperse orange-2RL Azo dye and fatty acids production by Scenedesmus obliquus cultured under mixotrophic and heterotrophic conditions. Sci Rep 12(1):20768
- Hassanien A, Saadaoui I, Schipper K, Al-Marri S, Dalgamouni T, Aouida M et al (2023) Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/ Cas9: a review. Front Bioeng Biotechnol 10:1104914
- Hawrot-Paw M, Koniuszy A, Gałczyńska M (2020) Sustainable production of *Monoraphidium* microalgae biomass as a source of bioenergy. Energies 13(22):5975
- He N, Sun X, Zhong Y, Sun K, Liu W, Duan S (2016) Removal and biodegradation of nonylphenol by four freshwater microalgae. Int J Environ Res Public Health 13(12):1239
- He Y, Lian J, Wang L, Tan L, Khan F, Li Y et al (2023) Recovery of nutrients from aquaculture wastewater: effects of light quality on the growth, biochemical composition, and nutrient removal of *Chlorella sorokiniana*. Algal Res 69:102965
- Hena S, Gutierrez L, Croué J-P (2021) Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: a review. J Hazard Mater 403:124041
- Ibrahim WM, Karam MA, El-Shahat RM, Adway AA (2014) Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. Biomed Res Int 2014(1):392682
- Ihsanullah I, Jamal A, Ilyas M, Zubair M, Khan G, Atieh MA (2020) Bioremediation of dyes: current status and prospects. J Water Proc Eng 38:101680
- Jais N, Mohamed R, Al-Gheethi A, Hashim MA (2017) The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Techn Environ Policy 19:37–52
- Jiang J, Huang J, Zhang H, Zhang Z, Du Y, Cheng Z et al (2022) Potential integration of wastewater treatment and natural pigment production by *Phaeodactylum tricornutum*: microalgal growth, nutrient removal, and fucoxanthin accumulation. J Appl Phycol 34(3):1411–1422
- Kabra AN, Ji M-K, Choi J, Kim JR, Govindwar SP, Jeon B-H (2014) Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, *Chlamydomonas mexicana*. Environ Sci Pollut Res 21:12270–12278
- Kannaujiya MC, Mandal T, Mandal DD, Mondal MK (2019) Treatment of leather industry wastewater and recovery of valuable substances to solve waste management problem in environment. In: Environmental contaminants: ecological implications and management. Springer, Singapore, pp 311–340
- Kashem AHM, Das P, AbdulQuadir M, Khan S, Thaher MI, Alghasal G et al (2023) Microalgal bioremediation of brackish aquaculture wastewater. Sci Total Environ 873:162384
- Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:1–21

Kotoula D, Iliopoulou A, Irakleous-Palaiologou E, Gatidou G, Aloupi M, Antonopoulou P et al (2020) Municipal wastewater treatment by combining in series microalgae *Chlorella sorokini*ana and macrophyte *Lemna minor*: preliminary results. J Clean Prod 271:122704

- Koul B, Sharma K, Shah MP (2022) Phycoremediation: a sustainable alternative in wastewater treatment (WWT) regime. Environ Technol Innov 25:102040
- Kumar A, Ponmani S, Sharma G, Sangavi P, Chaturvedi A, Singh A et al (2023) Plummeting toxic contaminates from water through phycoremediation: mechanism, influencing factors and future outlook to enhance the capacity of living and non-living algae. Environ Res 239:117381
- Lee S-A, Lee N, Oh H-M, Ahn C-Y (2021) Stepwise treatment of undiluted raw piggery wastewater, using three microalgal species adapted to high ammonia. Chemosphere 263:127934
- Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W et al (2019) Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour Technol 291:121934
- Ling Y, Sun L-p, Wang S-y, Lin CSK, Sun Z, Zhou Z-g (2019) Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochem Eng J 148:162–169
- Liu Y, Yildiz I (2018) The effect of salinity concentration on algal biomass production and nutrient removal from municipal wastewater by *Dunaliella salina*. Int J Energy Res 42(9):2997–3006
- Lv J, Liu Y, Feng J, Liu Q, Nan F, Xie S (2018) Nutrients removal from undiluted cattle farm wastewater by the two-stage process of microalgae-based wastewater treatment. Bioresour Technol 264:311–318
- Madhav S, Ahamad A, Singh AK, Kushawaha J, Chauhan JS, Sharma S, Singh P (2020) Water pollutants: sources and impact on the environment and human health. In: Sensors in water pollutants monitoring: role of material. Springer, Singapore, pp 43–62
- Majumdar R, Shaikh WA, Chakraborty S, Chowdhury S (2022) A review on microbial potential of toxic azo dyes bioremediation in aquatic system. Microb Biodegrad Bioremediat:241–261
- Manasa RL, Mehta A (2020) Wastewater: sources of pollutants and its remediation. Environ Biotechnol 2:197–219
- Marella TK, López-Pacheco IY, Parra-Saldívar R, Dixit S, Tiwari A (2020) Wealth from waste: diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Sci Total Environ 724:137960
- Mohammadi M, Mowla D, Esmaeilzadeh F, Ghasemi Y (2018) Cultivation of microalgae in a power plant wastewater for sulfate removal and biomass production: a batch study. J Environ Chem Eng 6(2):2812–2820
- Nguyen LN, Aditya L, Vu HP, Johir AH, Bennar L, Ralph P et al (2022) Nutrient removal by algae-based wastewater treatment. Curr Pollut Rep 8(4):369–383
- Nzayisenga JC, Farge X, Groll SL, Sellstedt A (2020) Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnol Biofuels 13:1–8
- Ostermeyer P, Capson-Tojo G, Hülsen T, Carvalho G, Oehmen A, Rabaey K, Pikaar I (2022) Resource recovery from municipal wastewater: what and how much is there? In: Resource recovery from water: principles and application. IWA, London, pp 1–19
- Ouada SB, Ali RB, Cimetiere N, Leboulanger C, Ouada HB, Sayadi S (2019) Biodegradation of diclofenac by two green microalgae: *Picocystis* sp. and *Graesiella* sp. Ecotoxicol Environ Saf 186:109769
- Plöhn M, Spain O, Sirin S, Silva M, Escudero-Oñate C, Ferrando-Climent L et al (2021) Wastewater treatment by microalgae. Physiol Plant 173(2):568–578
- Pooja K, Priyanka V, Rao BCS, Raghavender V (2022) Cost-effective treatment of sewage wastewater using microalgae *Chlorella vulgaris* and its application as bio-fertilizer. Energy Nexus 7:100122
- Pratap B, Kumar S, Nand S, Azad I, Bharagava RN, Ferreira LFR, Dutta V (2023) Wastewater generation and treatment by various eco-friendly technologies: possible health hazards and further reuse for environmental safety. Chemosphere 313:137547
- Premaratne M, Nishshanka G, Liyanaarachchi V, Nimarshana P, Ariyadasa TU (2021) Bioremediation of textile dye wastewater using microalgae: current trends and future perspectives. J Chem Technol Biotechnol 96(12):3249–3258