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Preface 

In the case of relatively low loads, the deformation mechanisms for materials, 
parts, and structures are reversible, and the elastic deformations are proportional to 
the stresses (with E, Young’s modulus of elasticity). 

In the case of complex loads, Hooke’s law is generalized into a three-dimensional 
relationship, and the linear nature of this law results in the following superposition 
principle: the stresses or deformations produced by the sum of several loading states 
on an elastic solid are equal to the sum of the stresses or deformations generated by 
each of the load states applied in isolation to the solid.  

If the stress exceeds a certain value σୣ (or Rୣ, σ, Y), known as the elasticity 
limit stress, the phenomenon ceases to be reversible and linear, and the theory of 
elasticity can no longer be applied. This limit may be difficult to demonstrate 
experimentally. It is conventionally defined as being the stress that generates an 
irreversible deformation close to 0.2%.  

For three-dimensional loads, different sets of criteria for yield strength will 
define the corresponding domain in the stress space. These include the Tresca and 
Von Mises criteria, while Hill’s criteria are suitable for composites, and are often 
used in the calculations to determine the scale of parts and structures.  

In the case that the elastic limit is crossed, slips will occur within the materials 
(dislocation in the crystals) and irreversible and permanent deformations can occur 
(in the plasticity domain).  

The stress on metals at a temperature exceeding about one-third of the absolute 
melting temperature has the property of deforming even if the stress remains 
constant: this phenomenon is known as creep (untreated), which translates into a 
viscoplastic deformation.  
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In principle, the laws of elastic, plastic and viscoplastic behavior associated with 
the equations describing the mechanics of continuous mediums make it possible to 
calculate the stresses and deformations in parts and structures.  

In many cases, it is sufficient to use the theory of elasticity, with the dimension 
criteria used to address safety concerns for the determination of the maximum 
permissible stress and/or maximum deformation. 

The criteria for ruptures make use of other theories. 

Structure of this book 

Chapter 1 provides a review of the concepts of rigidity, resistance and elastic 
energy, as well as stress-strain relationships and domains. Chapter 2 covers the use 
of scaling criteria for isotropic and anisotropic materials. Chapters 3 and 4 address 
the elastic mechanics of parts and structures. Chapter 5 covers elastic limit 
deflections and plastic hinges and Chapter 6 covers shearing and shear force.  

NOTE.– The full and detailed Appendix to this book provides diagrams of the  
100 examples covered throughout the book and the relevant page numbers and is 
available to download from www.iste.co.uk/leroy/rheology3.zip. 

Maurice LEROY 
October 2024 

http://www.iste.co.uk/leroy/rheology3.zip


1 

Elasticity, Rigidity 

1.1. Elasticity and rigidity tensors 

1.1.1. Hooke’s law 

In the domain of low elastic deformations, the deformation is proportional to the 
stress: ε = S σ 

where S is called elasticity. Similarly: σ = C ε 
with C = Sିଵ, where C is the rigidity. 

Hooke’s law consists of nine equations with nine terms, totaling 81 S୧୨୩୪ 
coefficients. 

Through taking into account the physical phenomena, we can reduce the number 
of these coefficients to 36. σ୧୨ is a symmetric tensor, thus S୧୨୩୪ = S୧୨୪୩, and ε୧୨ is a symmetric tensor, thus, S୧୨୩୪ 
= S୧୨୪୩. 
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1.1.2. Matrix notation 

The tensors ൣσ୧୨൧ and ൣε୧୨൧ are symmetrical. The notation can be simplified by 
adopting the following equivalences: 

– For ൣσ୧୨൧: 
 xx yy zz yz, zy zx, xz xy, yx 

Tensor notation 11 22 33 23.32 31.13 12.21 
Matrix notation 1 2 3 4 5 6 

Table 1.1. Tensor and matrix notations of ൣ𝜎൧  
In other words, six coefficients are given as: 

σଵଵ σଵଶ σଵଷσଶଵ σଶଶ σଶଷσଷଵ σଷଶ σଷଷ൩                             σଵ σ σହσ σଶ σସσହ σସ σଷ൩ 

– For ൣε୧୨൧ in relation to the strain tensor ൣe୧୨൧, we obtain: 

εଵଵ εଵଶ εଵଷεଶଵ εଶଶ εଶଷεଷଵ εଷଶ εଷଷ൩                             ⎣⎢⎢⎢
⎡ εଵ ଵଶ ε ଵଶ εହଵଶ ε εଶ ଵଶ εସଵଶ εହ ଵଶ εସ εଷ ⎦⎥⎥⎥

⎤
 

In S୧୨୩୪, the first two indices are contained in a single variant from 1 to 6 and the 
same is done for the last two indices. That is, S୧୨୩୪ = S୫୬. The factors 1, 2 and 4 are 
introduced at the same time as follows:  

– if m and n have the values of 1, 2, 3, S୧୨୩୪ = S୫୬; 

– if m or n have the values of 4, 5, 6,  S୧୨୩୪ = ଵଶ S୫୬; 

– if m and n have the values of 4, 5, 6,  S୧୨୩୪  = ଵସ S୫୬. 

1.1.3. Relationships between stresses and strains for isotropic bodies 

In the classic works on elasticity, the relationships between the stresses and the 
strains are expressed as a function of different quantities of the coefficients S୧୨ or C୧୨.  
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These are as follows: 

– Young’s modulus: E: ∆ ୪୪బ  = ଵ ୗ. This equation gives the relative elongation of a 
rod of section S subjected to an axial force F. 

– Poisson’s ratio ν. At the same time as a cylinder lengthens, it also narrows:   బ  = ν ∆ ୪୪బ . 

– The rigidity modulus, G: G = ଶ (ଵା ) . 
– The Lamé coefficients, λ and μ: λ = (ଵ ା )(ଵିଶ) E , μ = ଵଶ (ଵା ). 
To establish the relationships between the coefficients S୧୨ and C୧୨ and the classic 

coefficients, we will develop the matrices that we have obtained for the isotropic 
solids and compare them with the classic equations.  

Classic expressions Matrix notations εଵ = ଵ [σଵ − ν (σଶ +  σଷ)] εଵ = Sଵଵ σଵ + Sଵଶ σଶ + Sଵଷσଷ εଶ = ଵ [σଶ − ν (σଷ +  σଵ)] εଶ = Sଵଶ σଵ + Sଵଵ σଶ + Sଵଶσଷ εଷ = ଵ [σଷ − ν (σଵ +  σଶ)] εଷ = Sଵଶ σଵ + Sଵଶ σଶ + Sଵଵσଷ εସ = ଵୋ σସ εସ = 2 (Sଵଵ − Sଵଶ) σସ εହ = ଵୋ σହ εହ = 2 (Sଵଵ − Sଵଶ) σହ ε = ଵୋ σ ε = 2 (Sଵଵ − Sଵଶ) σ 

Table 1.2. Classical expressions and notations matrix of deformations 

The comparison of the coefficients gives: Sଵଵ = ଵ                  Sଵଶ = −  

and:  

2 (Sଵଵ − Sଵଶ) = ଵୋ 

and thus the equation G = E / [2 (1 + 𝜈)]. 

We express the stresses as a function of the strains (Table 1.3). 
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Classic expressions Matrix notations 
σଵ = (2μ + λ) εଵ + λ εଶ + λ εଷ σଵ = Cଵଵ εଵ + Cଵଶ εଶ + Cଵଶ εଷ 
σଶ = λ εଵ + (2μ + λ) εଶ + λ εଷ σଶ = Cଵଶ εଵ + Cଵଵ εଶ + Cଵଶ εଷ 
σଷ = λ εଵ + λ εଶ + (2 μ + λ) εଷ σଷ = Cଵଶ εଵ + Cଵଶ εଶ + Cଵଵ εଷ 

σସ = μ εସ σସ = ଵଶ (Cଵଵ − Cଵଶ) εସ 

σହ = μ εହ σହ = ଵଶ (Cଵଵ − Cଵଶ) εହ 

σ = μ ε σ = ଵଶ (Cଵଵ − Cଵଶ) ε 

Table 1.3. Classical expressions and matrix notations of strains  

According to the results of Table 1.3, we obtain: Cଵଵ = 2 μ + λ   and   Cଵଶ =  λ 

1.1.4. Tensors [𝝈] and [𝜺] and deviators 

The values of the traces in stresses and strains are as follows: 

– tr [σ] = − 3 p or − p = σ୫, with σ୫, the average stress; 
– tr [ε] = Θ dilatation with Θ 3⁄  = ε୫, the average strain. 

In the primary reference area, we have:  

σଵ 0 00 σଶ 00 0 σଷ൩ = σ୫ 0 00 σ୫ 00 0 σ୫൩ + σଵ − σ୫ 0 00 σ୍୍ − σ୫ 00 0 σ୍୍୍ − σ୫൩ 

tr = − 3p                                                              

or: 

S୍ 0 00 S୍୍ 00 0 S୍୍୍൩   ⟹    Notation for the deviator [S] 

  tr = 0 

ε୍ 0 00 ε୍୍ 00 0 ε୍୍୍൩ = ε୫ 0 00 ε୫ 00 0 ε୫൩ + εଵ − ε୫ 0 00 ε୍୍ − ε୫ 00 0 σ୍୍୍ − σ୫൩ 

   tr = Θ 
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or: 

 e୍ 0 00 e୍୍ 00 0 e୍୍୍൩   ⟹    Deviator [e] 

   tr = 0 

1.1.4.1. The case of isotropic materials in elasticity in the main reference 
area 

 σ୍σ୍୍σ୍୍୍൩ = a b bb a bb b a൩  ε୍ε୍୍ε୍୍୍൩ 

                Elastic stiffness matrix for isotropes 

Thus, we have:  σ୍ = a ε୍ + b (ε୍୍ + ε୍୍୍) 
or: σ୍ = (a – b)  ε୍ + b (ε୍ +  ε୍୍ + ε୍୍୍) 

                                                    Θ σ୍ = (a – b)  ε୍ + b Θ 

We will establish that  ቄa − b = 2Gb =  λ . 
We obtain the Lamé coefficients in the stresses: 

൝ σ୍σ୍୍σ୍୍୍
 = = = 2G2G2G  ε୍ ε୍୍ ε୍୍୍

+ ++ λ λ λ Θ Θ Θ === 2G2G2G  ε୍ ε୍୍ ε୍୍୍ +++ 3 3 3  λ λ λ ε୫ ε୫ ε୫  [1.1] 
(σ୍ + σ୍୍ + σ୍୍୍) = 2G Θ + 3 λ Θ 

 
         tr [σ]         = (2G + 3 λ) Θ   tr [ε] 
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and thus: 

3 σ୫ = (2 G + 3λ) 3 ε୫ σ୫ = (2 G + 3λ) ε୫                                                           [1.2] 

[1.1]   σ୍ = 2 G ε୍ + 3λ ε୫ 

[1.1] – [1.2]   σ୍ − σ୫ = 2G ε୍ + 3λ ε୫ − 2G ε୫ − 3λ ε୫ 

              = 2G (ε୍ − ε୫) 

and thus: S୍ = 2 G e୍                                                                           [1.3] 

The same is attained by permutation for S୍୍ and S୍୍୍, hence: 

[S] = 2 G [e]                                                                        [1.4] 

1.1.4.1.1. Relationship between stress and strain deviators 

The relationship between the stress and strain deviators is independent of the 
reference area in use. Thus, for any reference area x, y, z, we obtain:  

(σ୶୶ − σ୫)σ୷୶σ୶
σ୶୷(σ୷୷ − σ୫)σ୷

σ୶σ୷(σ − σ୫)൩ = 2G (ε୶୶ − ε୫)ε୷୶ε୶
ε୶୷(ε୷୷ − ε୫)ε୷

ε୶ε୷(ε − ε୫)൩ 

and thus, for example:  

a) σ୶୶ − σ୫ = 2G (ε୶୶ − ε୫) 

but according to [1.2]: σ୶୶ = 2 G ε୶୶ – 2 G ε୫ + σ୫        = 2 G ε୶୶ – 2 G ε୫ + 2 G ε୫ + 3 λ ε୫ ⟹ σ୶୶ = 2 G ε୶୶ + 3 𝜆 ε୫ 
and two other relationships via permutation: 

b) σ୶୷ = 2 G ε୶୷ 
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and thus:      σ୧୨ = 2 G ε୧୨ + δ୧୨ 3 λ ε୫                                            [1.5] 

i = j  ⟺ x, y, z   and    ቊδ୧୨  =  0 for i ≠  jδ୧୨  =   1 for i =  j 
– From [1.5]: shear strain for i ≠ j equal to: 2 ε୶୷ = ౮౯ୋ  = γ୶୷ 2 ε୷ = ౯ୋ  = γ୷ 2 ε୶ = ౮ୋ  = γ୶ 

with G, the elastic modulus for shearing (or transverse) (or μ) in Pascals. 

– From [1.5]: the elongation strain is equal to: 

+: traction −: compression 

EXAMPLE 1.1.–  

We have that i = j: ε୶୶ = ౮౮ଶ ୋ − ଷ  கౣଶ ୋ  

but [1.2] gives:  

3 ε୫ = 3 ౣଶୋ ା ଷ = ౮౮ା ౯౯ା ଶୋ ା ଷ  

and thus: ε୶୶ = ౮౮ଶ ୋ − ଷ  ଶ ୋ ౮౮ା ౯౯ା ଶୋ ା ଷ     
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or: ε୶୶ =  ା ୋୋ (ଶୋ ା ଷ)   σ୶୶ − ଶୋ (ଶୋ ା ଷ) ൫σ୷୷ + σ൯ 

               1/E                      ν/E 

With: 

– Values that can be measured by tests: E = ୋ (ଶୋ ା ଷ) ା ୋ , longitudinal elastic modulus (in Pa) 

ν = ଶ ( ା ୋ) , Poisson’s ratio (without unit)  [1.6] 

ε୶୶ = ଵ ൣσ୶୶ −  ν (σ୷୷ + σ൧ 
– Values that can be measured by permutation: ε୷୷ = ଵ ൣσ୷୷ −  ν (σ + σ୶୶൧  [1.7] ε = ଵ ൣσ −  ν (σ୶୶ + σ୷୷൧ 

REMARK.– 

G = ଶ (ଵ ା )            λ = (ଵ ା )(ଵ ି ଶ) [1.8] 

With:   

2G = a − b or b  

1.1.4.1.2. A few values: λ, E, G in daN/mm2 

 𝛌 𝟏𝟎ି𝟑 E 𝟏𝟎ି𝟑 G 𝟏𝟎ି𝟑 𝛎 
Steel 9–13 20–22 7.9–8.4 0.27–0.31 
Brass 8.5 11 4.1 0.33 

Copper 9–13 13 4.8 0.33–0.38 
Lead 3.5 1.6 0.56 0.43 
Glass 2.7–3 6 2.38 0.26 

Table 1.4. Elasticity coefficients of materials 
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The following relationships are obtained in the main reference area: ε୍   = ଵ ሾσ୍ − ν (σ୍୍ + σ୍୍୍)ሿ ε୍୍  = ଵ ሾσ୍୍ − ν (σ୍୍୍ + σ୍)ሿ ε୍୍୍ = ଵ ሾσ୍୍୍ − ν (σ୍ + σ୍୍)ሿ 
(note: σ > 0 traction; σ < 0 compression) 

and thus the shift to the stress and deformation states for elastic isotropic material in 
Figure 1.1.  

 

 
                         a) Stresses                                                 b) Strains  

Figure 1.1. Representation of Mohr domains  
from stress and strain states 
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Material E in GPs Material E in GPs 
Diamond 1000 Niobium and alloys 80–110 
Tungsten carbide WC 450–650 Silicon 107 
Osmium 551 Zirconium and alloys 96 
Cobalt/tungsten carbide cements 400–530 Silica glass and SiO2 (quartz) 94 
Ti, Zr, and Hf borides 500 Zinc and alloys 43–96 
Silicon carbide siC 450 Gold 82 
Boron 441 Calcite (marble, limestone) 81 
Tungsten 406 Aluminum 69 
Alumina Al2O3 390 Aluminum alloys 69–79 
Beryl BeO 380 Silver 76 
Tungsten carbide TiC 379 Sodium glass 69 
Molybdenum and alloys 320–365 Alkali metal halides (NaCl, Lif…) 15–68 
Tantalum carbide TaC  Granite 62 
Niobium carbide, NbC  Tin and alloys 41–53 
Silicon nitride, Si3N4  Concrete, cement 45–50 
Chrome 289 Fiberglass/epoxide composite 35–45 
Beryllium and alloys 200–289 Magnesium and alloys 41–45 
Magnesia MgO 250 GFRP 7–45 
Cobalt and alloys 200–248 Calcite 31 
Zirconia ZrO 160–241 Graphite 27 
Nickel 214 Alkides 20 
Nickel alloys 130–234 Shale (bituminous) 18 
CFRP 70–200 Common wood (// with fibers) 9–16 
Iron 196 Lead and alloys 14 
Iron-based superalloys 193–214 H2O Ice 9.1 
Ferric or weak steels 200–207 Melamines 6–7 
Alloys 190–200 Polyimides 3–5 
Mild steel 196 Polyesters 1–5 
Cast Irons 170–190 Acrylic resins 1.6–3.4 
Tantalum and alloys 150–186 Nylon 2–4 
Platinum 172 PMMA 3.4 
Uranium 172 Plysyrene 3–3.4 
Boron/epoxide composites 125 Polycarbonate 2.6 
Copper 124 Epoxy resins 3 
Copper alloys 120–150 Common wood (⊥ with fibers) 0.6–1.0 
Mullite 145 Polypropylene 0.9 
Zirconia ZrO2 145 High density polyethylene 0.7 
Vanadium 130 Polyurethane foam 0.01–0.06 
Titanium 116 Low density polyethylene 0.2 
Titanium alloys 80–130 Rubbers 0.01–0.1 
Palladium 124 PVC 0.003–0.01 
Brass and bronze 103–124 Expanded polymers 0.0001–0.01 

Table 1.5. Young’s moduli values (Ashby and Jones 1980) 
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E 
Young’s 
modulus  

in 109 Pascal 

ν 
Poisson’s  
Number 

ρ 
Density in  
103 kg/m3 

3
α

 
Linear 

expansion  
coefficient 
in 10–6/°C 

Aluminum 
AU4G Alloy 

71 
75 

0.34 
0.33 

2.6 
2.8 

23 
23.5 

Structural steel 
Spring steel 

Stainless steel 18–10 
Invar 

Common gray cast iron 
Malleable cast iron 

210 
220 
203 
140 

90 to 120 
170 to 190 

0.285 
0.29 
0.29 
0.29 
0.29 
0.17 

7.8 
7.8 
7.9 
8.7 

7.1 to 7.2 
7.2 to 7.4 

13 
13 

16.5 
0.9 

9 to 11 
9 to 11 

Commercial zinc 
Copper 

Beryllium 
Beryllium bronze 

Titanium 

78 
100 
300 
130 
105 

0.21 
0.33 
0.05 
0.34 
0.34 

7.15 
8.9 
1.85 
8.25 
4.5 

30 
17 
12 
17 
9 

Granite 
Marble 
Glass 

Plexiglass 

60 
26 
60 
2.9 

0.27 
0.3 

0.2 to 0.3 
0.4 

2.3 to 3 
2.8 

2.5 to 2.9 
1.8 

20 
8 to 8.5 

3.4 to 5.9 
80 to 90 

Rubber 0.02 0.5 1 160 

Concrete under compression

3

3

3

Cement by mat 200kg 10
at 300kg Cement by m 11 0.15
at 400kg 13Cement by m

 
  
 
 
  

 2 to 2.4 14 

Table 1.6. Elastic characteristics of various materials 
(Bellet and Barrau, elasticity course) 

1.1.4.2. A solid of stiffness [K] under shear 

A homogeneous and isotropic solid is stressed within its elastic domain of a 
stiffness [K]: 

[K] = a b bb a bb b a൩      a, b: consts “elastic” 
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The stress is “shear-type” stress with the value A (a real number), that is, 

ሾσሿ୶,୷, = 0 A AA 0 AA A 0൩ (MPa) 

Questions 

1) On the basis of A, plot the domain of the stress states (σ, τ) that all the  
facets (F) of the material undergo (note: the process used here is to search for the 
primary data values). What particular details do you notice?  

2) On the basis of A, determine the spherical tensors and deviators of the stress 
states that the facets (F) undergo. What particular details do you notice?  

3) On the basis of A, a and b, plot the domain of the strain states of the solid. 
What specific observations can you make?  

4) Determine the stresses and strains of the facets of equal inclination (having the 
same directional cosines) in the main reference area. 

5) Given that a = 25 GPa and b = 10 GPa, and that the elastic tension limit of the 
material is equal to σ = 0.5 GPa, deduce the intensity value of A for the facets with 
the same inclination. 

6) Provide the representation of these facets in the fields of stresses and 
deformations.  

 

Figure 1.2. Position gauge J (J: a gauge glued  
onto one side ⊥  at x; direction at 45°/y) 
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– Based on A, a, b, determine the response of the gauge. 

– Calculate this response (in microdeformations) for the intensity A of the 
question (5) and determine the value (in degrees) by sliding the solid.  

Solutions 

The characteristic equation is: 

ሾσሿ୶,୷, = 0 A AA 0 AA A 0൩  
(−σ)(−σ)(−σ) + AAA + AAA − (−σ)AA − (−σ)AA − (−σ)AA = 0   −σଷ + 2Aଷ +  σAଶ +  σAଶ +  σAଶ = 0   −σଷ + 2Aଷ + 3σAଶ = 0 

1) ሾσሿ = 2A 0 00 −A 00 0 −A൩. 

with R = ଷଶ (ୟିୠ) 

Figure 1.3. Mohr stress circle 

2) ሾσሿ = ሾPሿ + ሾSሿ gives ሾPሿ = ሾ0ሿ, tr [σ] = 0 

0 A AA 0 AA A 0൩  =   0 ൩  +   0 A AA 0 AA A 0൩ 

                         ሾPሿ               ሾSሿ 
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where: 

2A 0 00 −A 00 0 −A൩  =   0 ൩  + 2A 0 00 −A 00 0 −A൩ 

3) 3 σୟ୴ୣ୰ୟୣ = σ୍ + σ୍୍ + σ୍୍୍ = 0 = (2G + 3λ) εୟ୴ୣ୰ୟୣ 

                                                = ሾa − b + 3bሿ εୟ୴ୣ୰ୟୣ = ሾa + 2bሿ εୟ୴ୣ୰ୟୣ 

 εୟ୴ୣ୰ୟୣ = 0  ⟹ Θ = 0 σ୍ = 2 G ε୍ + λθ   ε୍ = ଶୋ = ୟିୠ = ଶୟିୠ 

σ୍୍ = 2 G ε୍୍ + 0   ε୍୍ = ିୟ ି ୠ = ε୍୍୍ 

with R = 
3A

2(a b)−
  

Figure 1.4. Mohr strain circle 

4) Von Mises facet (VM) a = b = c = ଵ√ଷ      σ =   ା   ା  ଷ = 0     
                                                                                  τ =  ଵଷ  √9 Aଶ + 9 Aଶ  = A√2  
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ε = 0 VM    g = √ଶୟ ି ୠ 
5) √ଶଷ   σ = 0.5 GPa  √ଶଷ  = A√2    A = ుଷ  = .ହଷ  = 0.166 GPa = 166 MPa. 

 

Figure 1.5. Comparison of Mohr’s circles 

6)  

nሬ⃗  ቄab= 0=  c bଶ + cଶ = 2bଶ = 1  b = ଵ√ଶ 

Figure 1.6. Facet (F) at 45° of the element 
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ε୶୷ = ౮౯ଶୋ  = ୟିୠ = ε୷ = ε୶ 

ε୶୶ = ౮౮ଶୋ  − ଷ கౣଶୋ  = 0 = ε୷୷ = ε 

ൣε୶,୷,൧ = 0 A AA 0 AA A 0൩   ଵୟ ି ୠ     ቚK =  ୟ ି ୠ 

ϕሬሬ⃗  = ሾεሿ . nሬ⃗  = 0 A AA 0 AA A 0൩  ଵୟ ି ୠ    ቮ 01/√21/√2ቮ 
with K = ୟିୠ; 

ϕሬሬ⃗   ⎩⎪⎨
⎪⎧X =  √ଶ + √ଶ =  ଶ√ଶ =  √2 KY =  √ଶ                                     Z =  √ଶ                                      

and: 

e = ℓℓ  = ϕሬሬ⃗  . nሬ⃗ = ଶ + ଶ = K = ୟ ି ୠ 

g = ඥϕଶ − eଶ = K√2 = √ଶୟ ି ୠ 

at the elastic limit of VM: 

e = .ଵଶହ ି ଵ   = .ଵଵହ  = 0.01106 or 11.066 μD 

g = e√2 = 15,649 μ radians or 0.89° 

1.1.4.3. Plate shearing  

A central load P is applied to a square plate on the side ℓ with a thickness of H. 
The isotropic material is deformed in its elastic domain.  

Two extension gauges, A and B, are placed as shown in Figure 1.7, with a 90° 
angle formed between the two gauges. 
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Figure 1.7. Plate under stress from a central  
force P (the “rail shear stress” type test) 

Questions 

1) On the basis of P, ℓ and h, determine the shear stress 𝜏 experienced by the 
half-element M according to CD. Plot the Mohr circles of the stress states and place 
the points A and B that represent the stresses for the facets perpendicular to the 
gauges. What can you observe about the strains?  

2) Determine the equation, giving the difference of the elastic constants a – b in 
terms of P, ℓ, h and e, e (answers from the gauges). 

3) Numerical application: Calculate the shear modulus G (in G Pa) for the 
following load: 

P = 10ଷ daN  
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with: e = 500 μD         (μD = 10ି); e = − 500 μD microdeformation; ℓ = 10 cm; 

h = 1 mm. 
Solutions 

1) τ = /ଶୗ  = ଶℓ୦    

 

Figure 1.8. Mohr stress circle 

ε = ଵ ሾσ୍ −  ν (σ୍୍ + 0)ሿ with σ୍ = τ and σ୍୍ = − τ ε = த (1 + ν) and ε = − த (1 + 𝜈) 
We thus obtain ε = − ε. 

2) a – b = 2G and  தஓ = G with γ = ε − ε and thus with τ = ଶℓ୦, we obtain: 

2 G = a – b = ℓ୦ (ୣఽି ୣా)   


